• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
6
0
0

Teks penuh

(1)

“„Š517.98

މސ„€Ž‚›• €‹ƒ…€• Ž‚‘ŠŽƒŽ’ˆ€

”. . €à§¨ªã«®¢

 ¡®â ¯®á¢ï饭 ¨§ã祭¨î©®à¤ ­®¢  ­ «®£ ¡í஢᪨娢®«î⨢­ëå «£¥¡à. „«ï

à áᬠâ-ਢ ¥¬®£®á«ãç ï ¢¢¥¤¥­®¯®­ï⨥ ¡áâࠪ⭮£®¨§¬¥à¨¬®£®®¯¥à â®à ,¯à¨á®¥¤¨­¥­­®£®ª

 «-£¥¡à¥, ¨ ãáâ ­®¢«¥­®, çâ® è¨à®ª¨© ª« áá㯮à冷祭­ëå ©®à¤ ­®¢ëå  «£¥¡à ॠ«¨§ã¥âáï ª ª

¯®¤ «£¥¡àë «£¥¡à  ¡áâà ªâ­ë娧¬¥à¨¬ë宯¥à â®à®¢, ¯à¨á®¥¤¨­¥­­ëå ª¬®¤ã«ïà­®©

¬®­®-â®­­®¯®«­®©©®à¤ ­®¢®©¡ ­ å®¢®© «£¥¡à¥. ‚ª ç¥á⢥¢á¯®¬®£ â¥«ì­®£®á।á⢠¯®áâ஥­®

¯¨àᮢ᪮¥à §«®¦¥­¨¥¯®¡¥áª®­¥ç­®¬ãᥬ¥©áâ¢ã¯à®¥ªâ®à®¢.

1. ‚¢¥¤¥­¨¥

‚à ¡®â å‘ â® ¨¥à¡¥à¨ ­  [1{5]¡ë«¨ ¨áá«¥¤®¢ ­ë áá®æ¨ â¨¢­ë¥ «£¥¡àë

 ¡-áâà ªâ­ëå ¨§¬¥à¨¬ëå ®¯¥à â®à®¢ ¤«ï AW

- «£¥¡àë. ë«® ¤®ª § ­®, çâ®®­¨

ï-îâáï ¡í஢᪨¬¨-  «£¥¡à ¬¨.

–¥«ì ¤ ­­®© à ¡®âë | ¨áá«¥¤®¢ âì ©®à¤ ­®¢ë  ­ «®£¨ ¡í஢᪨å -  «£¥¡à. ‚

à ¡®â å[6,7]¡ë«® ãáâ ­®¢«¥­®,ç⮢ª« áᥠJB- «£¥¡à¨¬¥¥âáﯮ¤ª« áá,

¯à¥¤áâ ¢¨-⥫¨ª®â®à®£® 㤮¢«¥â¢®àïîâ ©®à¤ ­®¢ã  ­ «®£ã ãá«®¢¨ï íà . â¨  «£¥¡àë, á«¥¤ãï

’®¯¯¨­£ã, ¡ë«¨ ­ §¢ ­ë AJW- «£¥¡à ¬¨. „ «¥¥, ¢ à ¡®â¥ [8] ¡ë«¨ ¨§ã祭ë

©®à¤ -­®¢ë  «£¥¡àë ¡áâà ªâ­ë娧¬¥à¨¬ëå ®¯¥à â®à®¢¤«ïJBW- «£¥¡à. ë«®¤®ª § ­®,

çâ®í⨠ «£¥¡àë ïîâáï ©®à¤ ­®¢ë¬¨ ­ «®£ ¬¨ ¡íà®¢áª¨å ¨­¢®«î⨢­ëå  «£¥¡à.

‚à ¡®â å [9] ¨ [10] ¡ë«¨ ¢¢¥¤¥­ë¨ ¨§ã祭ë OJ-  «£¥¡àë. ޤ¨­ ¨§ ®á­®¢­ëå

१ã«ì-â â®¢ íâ¨å à ¡®â ã⢥ত ¥â, çâ® ¢á猪ï OJ- «£¥¡à  ¢«®¦¨¬  ¢ ©®à¤ ­®¢ã  «£¥¡àã

«®ª «ì­®¨§¬¥à¨¬ëå ®¯¥à â®à®¢®â­®á¨â¥«ì­® JW- «£¥¡àë ᢮¨å ®£à ­¨ç¥­­ëå

í«¥-¬¥­â®¢. ‚ ¤ ­­®© à ¡®â¥ íâ®â १ã«ìâ â ¯¥à¥­¥á¥­ ­  á«ãç © OJ-  «£¥¡àë á

¬®¤ã-«ïà­®© AJW- «£¥¡à®© ®£à ­¨ç¥­­ëå í«¥¬¥­â®¢ ¨ ¤®ª § ­®, çâ® â ª¨¥ OJ- «£¥¡àë

ïîâá﩮ठ­®¢ë¬¨ ­ «®£ ¬¨ ¡í஢᪨娭¢®«î⨢­ëå «£¥¡à. ‚¤ ­­®©à ¡®â¥

¯®áâ஥­®â ª¦¥¯¨àᮢ᪮¥à §«®¦¥­¨¥¯à®¨§¢®«ì­®©¬®­®â®­­®¯®«­®©JB- «£¥¡àë

(AJW-  «£¥¡àë). „¥«® ¢ ⮬, çâ® ¤® á¨å ¯®à ¢ ⥮ਨ ©®à¤ ­®¢ëå  «£¥¡à

¨á¯®«ì-§®¢ «¨áì ¯¨àᮢ᪨¥ à §«®¦¥­¨ï ©®à¤ ­®¢ëå  «£¥¡à ¯® ª®­¥ç­ë¬ ᥬ¥©á⢠¬

¯à®-¥ªâ®à®¢. ‚ â® ¦¥ ¢à¥¬ï, ¯¨àᮢ᪮¥ à §«®¦¥­¨¥ ¯® ¡¥áª®­¥ç­®¬ã ®à⮣®­ «ì­®¬ã

ᥬ¥©áâ¢ã ¯à®¥ªâ®à®¢ áãé¥á⢥­­® ã¯à®á⨫® ¡ë ¤®ª § â¥«ìá⢠ ¬­®£¨å 䠪⮢. ‚

¤ ­­®© áâ âì¥ ¤ ­® ãá«®¢¨¥ ¯®áâ஥­¨ï ¯¨àᮢ᪮£® à §«®¦¥­¨ï ¬®­®â®­­® ¯®«­®©

JB- «£¥¡àëA ¯®¡¥áª®­¥ç­®¬ã®à⮣®­ «ì­®¬ã ᥬ¥©áâ¢ãfp

g áãá«®¢¨¥¬supp

=1.

2. ˆ§¬¥à¨¬ë¥ ¨ «®ª «ì­® ¨§¬¥à¨¬ë¥ ®¯¥à â®àë

¤«ï ¬®¤ã«ïà­®© AJW- «£¥¡àë

‚áî¤ã ¢ ¤ ­­®© áâ âì¥, ¥á«¨ ­¥ ®£®¢®à¥­® ¯à®â¨¢­®¥, A | ¬®¤ã«ïà­ ï

AJW- «£¥¡à  ¨ P(A) | à¥è¥âª  ¯à®¥ªâ®à®¢¢ A. „«ï¯®á«¥¤®¢ â¥«ì­®á⨠fe

n g

í«¥-¬¥­â®¢P(A)¡ã¤¥¬¯¨á âìe

n

",¥á«¨e

n 6e

n+1

¤«ï¢á¥ån;¥á«¨,ªà®¬¥â®£®,supe

n =e,

c

(2)

â® ¯¨è¥¬

e

n

"

e

. ®á«¥¤®¢ â¥«ì­®áâì f

e

n

g í«¥¬¥­â®¢

P

(

A

) ¡ã¤¥¬ ­ §ë¢ âì ᨫ쭮 ¯«®â­®© ®¡« áâìî, ¥á«¨

e

n

" 1. ‘ãé¥á⢥­­® ¨§¬¥à¨¬ë© ®¯¥à â®à | íâ® ¯®á«¥-¤®¢ â¥«ì­®áâì ¯ à f(

x

n

;e

n

)g, £¤¥

x

n

2

A

¨ f

e

n

g | ᨫ쭮 ¯«®â­ ï ®¡« áâì, â ª ï, çâ® ¨§

m

6

n

á«¥¤ã¥â

e

m

x

n

=

e

m

x

m

.  ¯à¨¬¥à, ¥á«¨

x

2

A

¨

x

n

=

x

,

e

n

= 1 ¤«ï ¢á¥å

n

,â® f(

x

n

;e

n

)g | áãé¥á⢥­­® ¨§¬¥à¨¬ë©®¯¥à â®à, ª®â®àë© ¡ã¤¥¬ ®¡®§­ ç âì ç¥à¥§ f(

x;

1)g. ɇǬ

x

2

A

¨

e

2

P

(

A

), â® ­ ¨¡®«ì訩  ­­ã«¨àãî騩 ¯à®¥ªâ®à í«¥-¬¥­â (1,

e

)

x

®¡®§­ ç ¥âáï ç¥à¥§

x

,1

[

e

], â.¥. 1,

x

,1

[

e

] ï¥âáï­®á¨â¥«¥¬ (1,

e

)

x

. ‚¢¥¤¥¬ ®â­®è¥­¨¥ íª¢¨¢ «¥­â­®á⨠­  ¬­®¦¥á⢥ ¢á¥å áãé¥á⢥­­® ¨§¬¥à¨¬ëå

®¯¥-à â®à®¢. „¢ áãé¥á⢥­­®¨§¬¥à¨¬ë宯¥à â®à f(

x

n

;e

n

)g¨f(

y

n

;f

n

)g íª¢¨¢ «¥­â­ë (¯¨è¥¬ f(

x

n

;e

n

)g f(

y

n

;f

n

)g), ¥á«¨ áãé¥áâ¢ã¥â ᨫ쭮 ¯«®â­ ï ®¡« áâì f

g

n

g â ª ï, çâ®

g

n

x

n

=

g

n

y

n

¤«ï ¢á¥å

n

. Š« áá íª¢¨¢ «¥­â­®áâ¨[

x

n

;e

n

] áãé¥á⢥­­®¨§¬¥à¨¬ëå ®¯¥à â®à®¢ f(

x

n

;e

n

)g ­ §ë¢ ¥âáï ¨§¬¥à¨¬ë¬ ®¯¥à â®à®¬, ¯à¨á®¥¤¨­¥­­ë¬ª  «£¥¡-à¥

A

. Ž¡®§­ ç¨¬ ¬­®¦¥á⢮ ¢á¥å ¨§¬¥à¨¬ëå ®¯¥à â®à®¢,¯à¨á®¥¤¨­¥­­ëåª

A

,ç¥à¥§

C

(

A

). ’ ª ¦¥, ª ª ¢ á«ãç ¥

JBW

- «£¥¡àë (á¬. [8]) ¢¢®¤ïâáï  «£¥¡à ¨ç¥áª¨¥ ®¯¥à -樨¢

C

(

A

): ¯ãáâì

2R ¨ [

x

n

;e

n

], [

y

n

;f

n

] ¨§¬¥à¨¬ë¥ ®¯¥à â®àë, ¯à¨á®¥¤¨­¥­­ë¥ ª  «£¥¡à¥

A

,¯®«®¦¨¬

[

x

n

;e

n

]=[

x

n

;e

n

]

;

[

x

n

;e

n

]+[

y

n

;f

n

]=[

x

n

+

y

n

;e

n

^

f

n

]

;

[

x

n

;e

n

][

y

n

;f

n

]=[

x

n

y

n

;g

n

]

;

£¤¥

g

n

=

e

n

^

f

n

^((

x

n

)

,1

[

e

n

])^((

y

n

) ,1

[

f

n

])¤«ï¢á直å

n

. Žâ­®á¨â¥«ì­®íâ¨å®¯¥à æ¨©

C

(

A

) ï¥âáï ©®à¤ ­®¢®© «£¥¡à®©. ãáâì

S

(

X;M

8

3

) | ©®à¤ ­®¢  «£¥¡à , £¤¥

X

| íªáâ६ «ì­ë© ª®¬¯ ªâ, ¯®áâà®-¥­­ ï â ª ¦¥, ª ª ¨ ¢ [9; £«. III]. …᫨ ¯¥à¥­¥á⨠⥮६ë 1.20 ¨ 2.9 ¨§ [8] ­  á«ãç ©

AJW

- «£¥¡àë,â® ¯®«ãç âáïá«¥¤ãî騥१ã«ìâ âë.

’¥®à¥¬  1. ãáâì

A

| ¬®¤ã«ïà­ ï

AJW

- «£¥¡à  ¨

A

= P

i

A

i

, £¤¥

A

i

|

AJW

-¯®¤ «£¥¡à   «£¥¡àë

A

¤«ï ª ¦¤®£®

i

. ’®£¤ 

C

(

A

)= Q

i

C

(

A

i

), £¤¥ Q

i

C

(

A

i

) |  «£¥¡à ¢á¥åᥬ¥©áâ¢f

x

i

g,

x

i

2

C

(

A

i

),c¯®ª®¬¯®­¥­â­ë¬¨®¯¥à æ¨ï¬¨. ‚ç áâ­®áâ¨, ¨¬¥¥â¬¥áâ®à §«®¦¥­¨¥

C

(

A

)=

C

(

A

sp

)

S

(

X;M

8

3 ).

’ ª ¦¥, ª ª ¨ ¢ [8] ¬®¦­® ¢¢¥á⨠áãé¥á⢥­­® «®ª «ì­® ¨§¬¥à¨¬ë¥ ®¯¥à â®àë,

«®ª «ì­®¨§¬¥à¨¬ë¥ ®¯¥à â®àë ¨ ©®à¤ ­®¢ã  «£¥¡àã

S

(

A

) «®ª «ì­® ¨§¬¥à¨¬ëå ®¯¥-à â®à®¢ ¤«ï ¬®¤ã«ïà­®©

AJW

- «£¥¡àë

A

. ‚ í⮬ á«ãç ¥, ¨¬¥¥â ¬¥áâ® á«¥¤ãîé ï ⥮६ :

’¥®à¥¬  2.ãáâì

A

| ¬®¤ã«ïà­ ï

AJW

- «£¥¡à . ’®£¤ 

C

(

A

)=

S

(

A

).

3. ¥áª®­¥ç­®¥ ¯¨àᮢ᪮¥ à §«®¦¥­¨¥

¬®­®â®­­® ¯®«­®© AJW-  «£¥¡àë

‚¢¥¤¥¬ ¯®­ï⨥ ¡¥áª®­¥ç­®© áã¬¬ë ¯¨àá®¢áª¨å ª®¬¯®­¥­â ¬®­®â®­­® ¯®«­®©

AJW

- «£¥¡àë

A

. ãáâì f

p

g | ¡¥áª®­¥ç­®¥ ®à⮣®­ «ì­®¥ ᥬ¥©á⢮ ¯à®¥ªâ®à®¢ á â®ç­®©¢¥àå­¥© £à ­¨æ¥© 1¢

A

. —¥à¥§

P

f

p

Ap

g®¡®§­ ç¨¬ ¬­®¦¥á⢮ n

f

a

g:(8

;

)

a

2f

p

Ap

g(9

K

2R)(8

n

2N)

,

8f

a

k

l

g

nk;l

=1

f

a

g

n

X

k;l

=1

a

k

l

6

K

o

(3)

Ÿá­®, ç⮮⭮á¨â¥«ì­®¯®ª®¬¯®­¥­â­ëå  «£¥¡à ¨ç¥áª¨å®¯¥à æ¨© ®­® ¡ã¤¥â

¢¥ªâ®à-­ë¬ ¯à®áâà ­á⢮¬. ¥âà㤭® ¯à®¢¥à¨âì, çâ® ¯à®áâà ­á⢮ P

f

p

Ap

g á ­®à¬®© kk :f

x

g ! kf

x

gk(f

x

g 2

P

f

p

Ap

g) ï¥âáï ¡ ­ å®¢ë¬ ¯à®áâà ­á⢮¬, £¤¥ kf

x

gk = sup

f

x

kl

g

mk;l

=1

f

x

g k

P

m

k;l

=1

x

k

l

k. Žâ­®á¨â¥«ì­® ¯®ª®¬¯®­¥­â­®£®

¯®àï¤-ª  P

f

p

Ap

g ï¥âáï 㯮à冷祭­ë¬­®à¬¨à®¢ ­­ë¬ ¯à®áâà ­á⢮¬á ¥¤¨­¨æ¥©. ‡ ¬¥â¨¬, ç⮥᫨

a

2

A

,â® f

p

ap

g2

P

f

p

Ap

g. à¨ í⮬, â ª ª ª sup

p

=1, â® ¢ ᨫ㠫¥¬¬ë 2 ¨§ [7]

A

¬®¦­® ¢«®¦¨âì ¢

P

f

p

Ap

g ª ª 㯮à冷祭­®¥ ­®à¬¨à®-¢ ­­®¥ ¯®¤¯à®áâà ­á⢮ á ¥¤¨­¨æ¥©. ãáâì f

a

g2

P

f

p

Ap

g â ª®©, çâ®f

a

g>0. ‡ ¬¥â¨¬, çâ®â®£¤  ¤«ï«î¡®£®

n

¨ ¤«ï «î¡®£®ª®­¥ç­®£® ­ ¡®à  f

a

k

l

g

nk;l

=1

f

a

g í«¥¬¥­â

a

:= f

a

k

l

g

nk;l

=1

, £¤¥

:= (

n;

1

;:::;

n

;

1

;:::;

n

), ï¥âáï í«¥¬¥­â®¬

 «-£¥¡àë

A

¨ ¬­®¦¥á⢮ í«¥¬¥­â®¢

a

®¡à §ã¥â ®£à ­¨ç¥­­ãî ¢

A

¬®­®â®­­® ¢®§à á-â îéãî á¥âì (

a

). à¨ í⮬ áãé¥áâ¢ã¥â ç¨á«®

K

â ª®¥, çâ® k

a

k 6

K

¤«ï ¢á¥å

. ¥âà㤭® ãáâ ­®¢¨âì, çâ®

a

" f

a

g. Žâá, â ª ª ª

A

¬®­®â®­­® ¯®«­ , â® f

a

g 2

A

. ®í⮬ã

A

¤®¯ã᪠¥â ¡¥áª®­¥ç­®¥ ¯¨àᮢ᪮¥ à §«®¦¥­¨¥ ¯® ᥬ¥©áâ¢ã f

p

g,â.¥.

A

=

P

f

p

Ap

g.

à¥¤«®¦¥­¨¥1.ãáâì

A

|¬®­®â®­­®¯®«­ ï

AJW

- «£¥¡à ¨f

p

g|ᥬ¥©á⢮ ¯®¯ à­®®à⮣®­ «ì­ëå ¯à®¥ªâ®à®¢á ãá«®¢¨¥¬sup

p

=1. ’®£¤ 

A

=

P

f

p

Ap

g.

4. Œ­®¦¥á⢮ ®£à ­¨ç¥­­ëå í«¥¬¥­â®¢ C(A) ᮢ¯ ¤ ¥â á A

‹¥¬¬  1. ãáâì

A

| ¬®­®â®­­® ¯®«­ ï ¬®¤ã«ïà­ ï

AJW

-  «£¥¡à , [

x

n

;e

n

] 2

C

(

A

),

f

1 =

e

1 ,

f

2 =

e

2 ,

e

1

;::: f

n

=

e

n

,

e

n

,1

;:::

. ’®£¤ 

U

f

k

x

n

=

U

f

k

x

n

+

m

(

k;m;n

2 N

; k

6

n

), f

f

k

x

n

f

l

g = f

f

k

x

m

+

n

f

l

g (

k;l;m;n

2 N

; l

6

n

) ¨ f

f

i

x

k

f

p

g = f

f

i

x

k

+

m

f

p

g

(

i;k;m;p

2N

; i

6

k

6

p

).

C ® ®¯à¥¤¥«¥­¨î ¨¬¥¥¬

e

1

x

1

=

e

1

x

1+

m

,

U

e

1

x

1 + f

e

1

x

1

e

?

1

g =

U

e

1

x

1+

m

+

f

e

1

x

1+

m

e

?

1

g, ¨ ®âá

U

e

1

x

1 =

U

e

1

x

1+

m

,

U

f

1

x

1 =

U

f

1

x

1+

m

. ˆ§ à ¢¥­á⢠ f

e

1

x

1

e

?

1 g =

f

e

1

x

1+

m

e

?

1

g á«¥¤ã¥â, çâ® f

f

1

x

1

f

?

k

g = f

f

1

x

1+

m

f

?

k

g (

k

6= 1). ¥à¥¬ ¯à®¨§¢®«ì­®¥ à -¢¥­á⢮

e

k

x

k

=

e

k

x

k

+

m

. ‚ᨫã⥮६뮯¨àᮢ᪮¬à §«®¦¥­¨¨

U

e

k

x

k

+f

e

k

x

k

e

?

k

g=

U

e

k

x

k

+

m

+f

e

k

x

k

+

m

e

?

k

g. Žâá

U

e

k

x

k

=

U

e

k

x

k

+

m

¨

U

f

i

x

k

=

U

f

i

x

k

+

m

, f

f

i

x

k

f

k

g = f

f

i

x

k

+

m

f

k

g(

i

6

k

). ‚᢮î®ç¥à¥¤ì¨§à ¢¥­á⢠ f

e

k

x

k

e

?

k

g=f

e

k

x

k

+

m

e

?

k

g á«¥¤ã¥â,çâ® f

f

i

x

k

f

p

g=f

f

i

x

k

+

m

f

p

g (

i

6

k;p

>

k

).B

à¥¤«®¦¥­¨¥2.ãáâì

A

|¬®­®â®­­®¯®«­ ï¬®¤ã«ïà­ ï

AJW

- «£¥¡à . ’®£¤  ¬­®¦¥á⢮®£à ­¨ç¥­­ëå í«¥¬¥­â®¢©®à¤ ­®¢®©  «£¥¡àë

C

(

A

)ᮢ¯ ¤ ¥â á

A

.

C„®ª ¦¥¬çâ®,¥á«¨[

x

n

;e

n

]61

,â®[

x

n

;e

n

]2

A

. ¥à¥¬f

f

m

x

m

f

n

g 1

m;n

=1

.

¥âàã¤-­®§ ¬¥â¨âì, ç⮢ ᨫ㫥¬¬ë1f

f

m

x

m

f

n

g 1

m;n

=1

㤮¢«¥â¢®àï¥â ãá«®¢¨î®¯à¥¤¥«¥­¨ï

¯¨àᮢ᪮£® à §«®¦¥­¨ï

A

= P

n;m

f

f

n

Af

m

g. ãáâì

x

= P

1

n;m

P 1

n;m

f

f

m

x

m

f

n

g. ’®£¤ 

x

2

A

. à¨ í⮬[

x

n

;e

n

][

x;

1],â.¥. [

x;

1]=[

x

n

;e

n

]. Žâá¨ ¯®«ã稬,çâ®

x

2

A

.B

5. OJ-  «£¥¡àë

Ž¯à¥¤¥«¥­¨¥.

OJ

- «£¥¡àã

E

(á¬. [9, £«. III]) ­ §®¢¥¬ ã­¨¢¥àá «ì­®©, ¥á«¨ ¤«ï «î¡®£® ᯥªâà «ì­®£®á¥¬¥©á⢠ f

e

E

áãé¥áâ¢ã¥â ¨­â¥£à «

R

+1

,1

de

.

ˆ§â¥®à¥¬ë2, â ª ¦¥,ª ª ¨ ¢[10],¢ë¢®¤¨âáï á«¥¤ãî饥¯à¥¤«®¦¥­¨¥:

à¥¤«®¦¥­¨¥3.ãáâì

A

|¬®­®â®­­®¯®«­ ï¬®¤ã«ïà­ ï

AJW

- «£¥¡à . ’®£¤ 
(4)

’¥®à¥¬  3. „«ï ¬®­®â®­­® ¯®«­®© ¬®¤ã«ïà­®© AJW- «£¥¡àë A

ᮮ⢥âáâ¢ãî-é ï ¥© OJ- «£¥¡à  C(A) ã­¨¢¥àá «ì­ .

Cãáâìx= R

+1

,1 de

. ®®¯à¥¤¥«¥­¨îx¥áâì(®)-¯à¥¤¥«á㬬 = P +1 ,1 ln(e x n , e x n,1 ), £¤¥ n > l n > n,1

. Ÿá­®, çâ® fe

n

g ï¥âáï ᨫ쭮 ¯«®â­®© ®¡« áâìî ¨

e x

n

x 2 A ¤«ï «î¡®£® n 2 N. ’®£¤  [xe x n ;e x n ] ï¥âáï ¨§¬¥à¨¬ë¬ ®¯¥à â®à®¬, ᯥªâà «ì­®¥à §«®¦¥­¨¥ª®â®à®£® ¥áâì R +1 ,1 de .B

‘«¥¤ãîéãî⥮६㬮¦­® ¤®ª § âìâ ª¦¥,ª ªâ¥®à¥¬ã3.2 ¨§ [9].

’¥®à¥¬  4. ‘®¢®ªã¯­®áâì ®£à ­¨ç¥­­ëå í«¥¬¥­â®¢  «£¥¡àë S(X;M 8

3 ) íâ®

AJW- «£¥¡à  ‘(X;M 8

3 ).

‘«¥¤ãî騥¤¢¥ ⥮६ëïîâáï ®ç¥¢¨¤­ë¬¨á«¥¤á⢨ﬨ ⥮६ë3.3 ¨§[9] ¨

ᮮ⢥âá⢥­­®â¥®à¥¬ 3¨ 4.

’¥®à¥¬  5. ãáâì E | OJ-  «£¥¡à , ã ª®â®à®© JB- «£¥¡à  ®£à ­¨ç¥­­ëå

í«¥-¬¥­â®¢ ¨§®¬®àä­  ¬®¤ã«ïà­®© AJW- «£¥¡à¥ A. ’®£¤  E ¨§®¬®àä­  ­®à¬ «ì­®©

OJ-¯®¤ «£¥¡à¥ã­¨¢¥àá «ì­®©OJ- «£¥¡àëC(A) ¡áâà ªâ­ë娧¬¥à¨¬ë宯¥à â®à®¢,

¯à¨á®¥¤¨­¥­­ëåªA.

’¥®à¥¬  6. ãáâì E | OJ- «£¥¡à , ã ª®â®à®© JB- «£¥¡à  ®£à ­¨ç¥­­ëå

í«¥¬¥­â®¢ ¨§®¬®àä­  AJW- «£¥¡à¥ ‘(X;M 8

3

). ’®£¤  E ¨§®¬®àä­  ­®à¬ «ì­®©

OJ-¯®¤ «£¥¡à¥ ã­¨¢¥àá «ì­®©OJ- «£¥¡àë S(X;M 8

3 ).

à¥¤«®¦¥­¨¥ 4.ãáâìA|¬®­®â®­­®¯®«­ ïAJW-  «£¥¡à . ’®£¤  ¤«ï¢á类©

¬ ªá¨¬ «ì­®©á¨«ì­® áá®æ¨ â¨¢­®©¯®¤ «£¥¡àëE

0

 «£¥¡àëC(A)áãé¥áâ¢ã¥â

¬ ªá¨-¬ «ì­ ï ᨫ쭮  áá®æ¨ â¨¢­ ï¯®¤ «£¥¡à  A

0

 «£¥¡àë A â ª ï, çâ®C(A

0 )=E

0 ¨ A

0

ᮢ¯ ¤ ¥â á ¬­®¦¥á⢮¬®£à ­¨ç¥­­ëåí«¥¬¥­â®¢ E

0 .

C‚ª ç¥á⢥ A

0

¡¥à¥¬¬­®¦¥á⢮ ¢á¥å ®£à ­¨ç¥­­ëåí«¥¬¥­â®¢  «£¥¡àëE

0 .

¥-è¥âª P(A

0

)¬®¤ã«ïà­ . ’®£¤ , ¥á«¨¤«ïáãé¥á⢥­­®¨§¬¥à¨¬®£®®¯¥à â®à fx

n ;e n g, fy n ;f n

g 2C(A

0

) ¨¬¥¥â¬¥áâ® fx

n ;e

n g fy

n ;f

n

g, â® íâ¨áãé¥á⢥­­® ¨§¬¥à¨¬ë¥

®¯¥-à â®àë íª¢¨¢ «¥­â­ë ¨ ¢ A. ’ ª¨¬ ®¡à §®¬ C(A

0

) £®¬®¬®àä­® ¢«®¦¨âáï ¢ C(A).

¥âà㤭® ¯à®¢¥à¨âì,çâ®C(A

0

) £®¬®¬®àä­®,­® ­¥®¡ï§ â¥«ì­®¨­ê¥ªâ¨¢­®¢«®¦¨âáï

¢ E

0

. ‚ â® ¦¥ ¢à¥¬ï, ¢ ᨫã ⥮६ë 5E

0

C(A

0

). Žâá, â ª ª ªà áᬮâ७­ë¥

¢ë襣®¬®¬®à䨧¬ë ¨¤¥­â¨ç­ë,â®E

0

=C(A

0 ).B

à¥¤«®¦¥­¨¥ 5. ãáâì A | ¬®­®â®­­® ¯®«­ ï ¬®¤ã«ïà­ ï AJW- «£¥¡à , x,

y | í«¥¬¥­âë  «£¥¡àë C(A), ¯à¨ç¥¬ ®¤¨­ ¨§ x, y ¯®«®¦¨â¥«¥­. ’®£¤  á«¥¤ãî騥

ãá«®¢¨ï íª¢¨¢ «¥­â­ë: a) xy =0, b) x 2

y =0,c) x 2

y 2

=0, d) r(x)r(y) =0. à¨

¢ë¯®«­¥­¨¨®¤­®£®¨§ íâ¨åãá«®¢¨©x$y,â.¥. í«¥¬¥­âëx ¨y ᮢ¬¥áâ­ë.

C „®¯ãá⨬, çâ® ¢ë¯®«­¥­® a). ãáâì x > 0 ¨ B | ©®à¤ ­®¢   «£¥¡à ,

¯®-஦¤¥­­ ï í«¥¬¥­â ¬¨ y ¨ x. ® ¨§¢¥áâ­®© ⥮६¥ ˜¨à订   «£¥¡à  B

ᯥæ¨- «ì­ . ’®£¤  xy = ,yx ®â­®á¨â¥«ì­®  áá®æ¨ â¨¢­®£® 㬭®¦¥­¨ï, ¨ xyx = ,yx 2

,

-x 2

y = xyx, â. ¥. yx 2

= x 2

y. Žâá ¯® ¯à¥¤«®¦¥­¨î 5 ¨§ [10] x 2

$ y ¢ B. ’ ª

ª ª C(A) = A

sp

S(X;M 8

3

) (⥮६  1), â® áãé¥áâ¢ã¥â 業âà «ì­ë© ¯à®¥ªâ®à z á

ãá«®¢¨ï¬¨ A

sp

= C(zA

sp

), S(X;M 8

3

) = ‘(A

ex

). ãáâì x, y 2 A

sp

. ’®£¤  x 2

$ y ¢

A

sp

¨ áãé¥áâ¢ã¥â ¬ ªá¨¬ «ì­ ï ᨫ쭮  áá®æ¨ â¨¢­ ï ¯®¤ «£¥¡à  A

0 A

sp

â ª ï,

çâ®x;y 2A

0

. ˆ¬¥¥¬ A ®£à

0

| ¬ ªá¨¬ «ì­ ï ᨫ쭮  áá®æ¨ â¨¢­ ï ¯®¤ «£¥¡à 

 «£¥¡-àë A. ‚ ᨫ㠯।«®¦¥­¨ï 4 A

0

= C(A ®£à

0

) ¨ áãé¥áâ¢ã¥â íªáâ६ «ì­ë© ª®¬¯ ªâX

â ª®©, çâ® C(A ®£à 0 ) = C 1

(X),   á«¥¤®¢ â¥«ì­®, ¨ A

0

= C

1

(X).  áᬮâਬ

®â®¡à -¦¥­¨¥ (t) = p

x(t) 2

(5)

x(t) 2C

1

(X), â® 2C

1

(X). ‘«¥¤®¢ â¥«ì­®, x 2

=x 2C

1

(X) =A

0

. ’®£¤  x$ y

¨ x 2

y=x(xy) =0. ˆâ ª,¤®ª § ­®, çâ® ))b) ¯à¨x;y2A

sp

¨ ãá«®¢¨¥ a) ¢«¥ç¥â

x$y.

‡ ¬¥â¨¬, çâ® ª®£¤  x;y 2 S(X;M 8

3

) ¨ x > 0, â® ãá«®¢¨¥ xy = 0 à ¢­®á¨«ì­®

x 2

y = 0, ¯à¨ç¥¬ x $ y. „¥©á⢨⥫쭮, (8t 2 X) x(t)y(t) = 0 , x(t) 2

y(t) = 0 ¨

x(t) $ y(t) ¢ M 8

3

, ¥á«¨ x(t), y(t) < 1 (á¬. [7]). ’ ª ª ª 㬭®¦¥­¨¥ ¯®â®ç¥ç­®¥, â®

x 2

y=0 ¨x$y. ˆ§¯à®¢¥¤¥­­ëå ¢ëè¥à áá㦤¥­¨©á«¥¤ã¥â,çâ®x 2

y=0¨ x$y

¢ C(A). ‡­ ç¨â,a))b).

’ ªª ªa))b)¨x,y|¯à®¨§¢®«ì­ë¥,â® b))c). „ «¥¥,¢á¨«ãà ¡®âë[10] ¨¬¥îâ

¬¥á⮨ ®áâ «ì­ë¥ã⢥ত¥­¨ï. B

„«ï¯®¤¬­®¦¥á⢠SE

+

©®à¤ ­®¢®© «£¥¡àëE ®¡®§­ ç¨¬S ?

=fa2E:U

a s=

0;8s 2 Sg. ã¤¥¬ £®¢®à¨âì, çâ® E | ©®à¤ ­®¢   «£¥¡à  ¡í஢᪮£® ⨯ , ¥á«¨ ¤«ï

¢á类£® SE

+

áãé¥áâ¢ã¥â ¯à®¥ªâ®àe2E â ª®©,çâ®S ?

=U

e (E).

’¥®à¥¬  7. ãáâì E | OJ- «£¥¡à , A | JB- «£¥¡à  ®£à ­¨ç¥­­ëå í«¥¬¥­â®¢

 «£¥¡àë E ¨ A ¨¬¥¥â à §¤¥«ïî饥 ᥬ¥©á⢮ ­®à¬ «ì­ëå ä㭪樮­ «®¢. ’®£¤  E

ï¥âáï ©®à¤ ­®¢®© «£¥¡à®© ¡í஢᪮£® ⨯ .

C®ãá«®¢¨î⥮६ë A ï¥âáïJBW- «£¥¡à®©. ‚ᨫã [8] ©®à¤ ­®¢  «£¥¡à 

C(A) ï¥âáï ©®à¤ ­®¢®©  «£¥¡à®© ¡í஢᪮£® ⨯ . ãáâì S ?

E

= fa 2 E : U

a s =

0;8s 2 Sg ¤«ï ¯à®¨§¢®«ì­®£® S E

+

. Ÿá­®, çâ® S ?

E = S

?

\E = U

e

(C(A)) \E.

‡ ¬¥â¨¬, çâ®U

e

(E)U

e

(C(A)) ¨U

e (U

e

(C(A))\E) =U

e

(C(A))\E. ‘«¥¤®¢ â¥«ì­®,

S ?

E =U

e (E). B

’¥®à¥¬ 8.ãáâìA|¬®­®â®­­®¯®«­ ï¬®¤ã«ïà­ ïAJW- «£¥¡à . ’®£¤ C(A)

ï¥âá﩮ठ­®¢®© «£¥¡à®©¡í஢᪮£®â¨¯ ,â.¥. ¤«ï¢á类£®¬­®¦¥á⢠SC(A)

+

áãé¥áâ¢ã¥â ¯à®¥ªâ®à eâ ª®©,çâ®S ?

=U

e

(C(A)).

C ®áª®«ìªã C(A) ï¥âáï OJ-  «£¥¡à®©, â® ¢ ᨫã [10, £«. III] ¤«ï ª ¦¤®£®

a 2 C(A) áãé¥áâ¢ã¥â ¥£® ­®á¨â¥«ì r(a) ¢ C(A). …᫨ ¤«ï ¯à®¨§¢®«ì­®£® a 2 C(A),

a2S ?

,⮢ᨫã¯à¥¤«®¦¥­¨ï5ar(s)=0(s2S)¨,¥á«¨f =sup

s2S

r(s),â®af =0.

Žâá U

1,f

(C(A)) S ?

. ãáâì a 2 S ?

. „®ª ¦¥¬, çâ® a 2 U

1,f

(C(A)). ˆ¬¥¥¬

af =0. Žâá(1,f)a=0¨ a2U

1,f

(C(A)). ‘«¥¤®¢ â¥«ì­®, U

e

(C(A))=S ?

,£¤¥

e=1,f.B

‘«¥¤ãî騩䠪⤮ª §ë¢ ¥âáï â ª ¦¥,ª ª¨ ⥮६ 7.

‘«¥¤á⢨¥. ãáâì E | OJ- «£¥¡à , E

®£à

| ¬®¤ã«ïà­ ï AJW- «£¥¡à 

®£à ­¨-祭­ëåí«¥¬¥­â®¢ E. ’®£¤  E | ©®à¤ ­®¢   «£¥¡à ¡í஢᪮£® ⨯ .

‡ ¬¥ç ­¨¥. ‚ à ¡®â¥ [11] ¡ë«  ¯®áâ஥­ ¡ã«¥¢®§­ ç­ ï ॠ«¨§ æ¨ï AJW

- «-£¥¡à. ˆá¯®«ì§ãï â¥å­¨ªã ¬®¦­® ¯®áâநâì  ¡áâà ªâ­ë¥ ¨§¬¥à¨¬ë¥ ®¯¥à â®àë ¤«ï

ॠ«¨§ æ¨© AJW- «£¥¡à ¨ ¯¥à¥­¥á⨠१ã«ìâ âë ® á¢ï§ïå ¬¥¦¤ã  ¡áâà ªâ­ë¬¨

¨§-¬¥à¨¬ë¬¨®¯¥à â®à ¬¨¤«ï JBW- «£¥¡à ¨  ¡áâà ªâ­ë¬¨¨§¬¥à¨¬ë¬¨ ®¯¥à â®à ¬¨

¤«ï ¯à®¨§¢®«ì­ëåAJW- «£¥¡à (á¬. [8, x 5, ⥮६ë1{3]).

‹¨â¥à âãà 

1.

BerberianS.K.

The regular ring of a nite

AW

-algebra // Ann. of Math.|1957.|V. 65.|P. 224{

240.

2.

Berberian S.K.

Note on a theorem of Fuglede and Putnam // Proc. Amer. Math. Soc.|1959.|

(6)

3.

BerberianS.K.

A note on the algebra of mesurable operators of an

AW

-algebra // Tohoku Math. J.|

1970.|V. 22.|P. 613{618.

4.

SaitoK.

On the algebra of mesurable operators for a general

AW

-algebras. I // Tohoku Math. J.|

1969.|V. 21.|P. 249{270.

5.

SaitoK.

On the algebra of mesurable operators for a general

AW

-algebras. II // Tohoku Math. J.|

1971.|V. 23.|P. 525{534.

6.

€à§¨ªã«®¢”..

Ž¡  ¡áâà ªâ­ëå

JW

- «£¥¡à å // ‘¨¡. ¬ â. ¦ãà­.|1998.|ü 1.|‘. 20{27.

7.

€à§¨ªã«®¢”..

Ž¡ ®¤­®¬  ­ «®£¥ ¯¨àᮢ᪮£® à §«®¦¥­¨ï // ‘¨¡. ¬ â. ¦ãà­.|1999.|ü 3.|

‘. 485{492.

8.

€à§¨ªã«®¢”. .

‰®à¤ ­®¢ë  «£¥¡àë  ¡áâà ªâ­ëå ¨§¬¥à¨¬ëå ®¯¥à â®à®¢ ¤«ï

JBW

- «£¥¡à //

Œ â¥¬ â¨ç¥áª¨¥ âàã¤ë ˆŒ ‘Ž €.|2000.|’. 3, ü2.|‘. 29{70.

9.

€î¯®¢˜. €.

Š« áá¨ä¨ª æ¨ï ¨ ¯à¥¤áâ ¢«¥­¨¥ 㯮à冷祭­ëå ©®à¤ ­®¢ëå  «£¥¡à.|’ èª¥­â:

” ­, 1986.

10.

‘ àë¬á ª®¢ ’. €., €î¯®¢ ˜. €., • ¤¦¨¥¢ „¦., —¨«¨­ ‚. ˆ.

“¯®à冷祭­ë¥  «£¥¡àë.|

’ èª¥­â: ” ­, 1983.

11.

Šãáà ¥¢€.ƒ.

Ž áâàãªâãà¥

AJW

- «£¥¡à ⨯ 

I

2

// ‘¨¡. ¬ â. ¦ãà­.|1999.|ü 4.|‘. 905{917.

Referensi

Dokumen terkait

We have shown in Theorem 3.7 that every relative graph algebra is isomorphic to a graph algebra. In Theorem 5.1 we shall prove a gauge-invariant uniqueness theo- rem for C ∗

theorem in this paper will be proved without the assumption of unitality, we may assume that the C ∗ -algebra A is an inductive limit of full matrix algebras over finite

Now, proceeding on the lines of [7], one can easily obtain the J B ∗ -algebra analogues of certain results due to Kadison and Pedersen (namely, [7, Corol- lary 12, Theorem 14 and

Section II will contain the proof of the theorem of factorization of matrix-functions and present the theorem of singular operators that are Noetherian in weighted

We would like to investigate whether an analogue of Theorem 4.3, the Carleson measure characterization of compact weighted composition operators, holds for Dirichlet spaces..

Using grading on this algebra we construct an analog of Cuntz algebras which gives a homotopical interpretation of..

In this note, we obtain a new multiplicative perturbation theorem for local C - regularized cosine function with a nondensely defined generator A.. An application to

The classic functional calculus for bounded operators on Banach space is generalized for bounded elements of algebra Q P ( X )..