• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
13
0
0

Teks penuh

(1)

Žªâï¡àì{¤¥ª ¡àì, 2000, ’®¬ 2, ‚ë¯ãáª4

“„Š 517.98

ŒŽ„“‹Ÿ›… Œ…› ˆ Ž…€’ސ› Œ€ƒ€€Œ

€. ƒ. Šãáà ¥¢

–¥«ì­ áâ®ï饩áâ âì¨|¯®ª § âì,ç⮬®¤ã«ïà­ë¥¢¥ªâ®à­ë¥¬¥àë ¨®¯¥à â®àë

Œ -£ à ¬â¥á­®á¢ï§ ­ë¤àã£á¤à㣮¬. ’®ç­¥¥£®¢®àï,¯à¨¨­â¥£à¨à®¢ ­¨¨¯®­ áë饭­®©

¬¥à¥ ¢®§­¨ª ¥â ®¯¥à â®à Œ £ à ¬,  ¨­â¥£à «ì­®¥ ¯à¥¤áâ ¢«¥­¨¥ ®¯¥à â®à  Œ £ à ¬

¯à¨¢®¤¨âª¬®¤ã«ïà­®©­ áë饭­®©¬¥à¥.

1. ‚¢¥¤¥­¨¥

ޝ¥à â®à®¬ Œ £ à ¬ ­ §ë¢ îâ ¯®à浪®¢® ­¥¯à¥àë¢­ë© ®¯¥à â®à ¢

K-¯à®áâà ­á⢥, á®åà ­ïî騩 ¨­â¥à¢ «ë. â®â ª« áá ®¯¥à â®à®¢ ¢¯¥à¢ë¥

à á-ᬮâ५ „. Œ £ à ¬, ª ª ¢á¯®¬®£ â¥«ì­®¥ â¥å­¨ç¥áª®¥ á।á⢮¯à¨

¯®áâ஥-­¨¨ ⥮ਨ ¯®«®¦¨â¥«ì­ëå ®¯¥à â®à®¢ ¢ ¯à®áâà ­áâ¢ å ¨§¬¥à¨¬ëå ä㭪権

(á¬. 横« à ¡®â [14{17],   â ª¦¥ ­¥¡®«ì让 ®¡§®à [18], ᮤ¥à¦ é¨©

ªà â-ª®¥ ®¯¨á ­¨¥ à §¢¨â®£® ¥î ¬¥â®¤  ¨ ä®à¬ã«¨à®¢ªã ®á­®¢­ëå १ã«ìâ â®¢).

‚. ‹îªá¥¬¡ã࣠¨ €. ˜í¯ [13] à á¯à®áâà ­¨«¨ ç áâì ⥮ਨ „. Œ £ à ¬,

á¢ï-§ ­­®© á ⥮६®© ⨯   ¤®­  | ¨ª®¤¨¬ , ­  ¯®«®¦¨â¥«ì­ë¥ ®¯¥à â®àë,

¤¥©áâ¢ãî騥 ¢ K-¯à®áâà ­á⢠å. ’¥à¬¨­ ý®¯¥à â®à Œ £ à ¬þ ¡ë« ¢¢¥¤¥­

¢ [4]. ‘¢®©á⢮ ®¯¥à â®à  á®åà ­ïâì ¨­â¥à¢ «ë ­ §¢ ­® ᢮©á⢮¬ Œ £ à ¬

¢ [13]; â ª¨¥ ®¯¥à â®àë ¢ [14{17] ­ §ë¢ «¨áì full-valued. ®¤à®¡­¥¥ ®¡

®¯¥à -â®à å Œ £ à ¬ á¬. ¢ [5, 6, 7, 9].

ˆ§¢¥áâ­®, ç⮠⥮६   ¤®­  | ¨ª®¤¨¬  ­¥ ¨¬¥¥â ¬¥áâ  ¤«ï ¬¥à á®

§­ ç¥­¨ï¬¨ ¢ K-¯à®áâà ­á⢥. ޤ­ ª®, Œ.  ©â ¯®ª § « ¢ [20], ç⮠⥮६ 

 ¤®­ | ¨ª®¤¨¬  á¯à ¢¥¤«¨¢  ¤«ïᯥ樠«ì­®£® ª« áá ¬®¤ã«ïà­ëå ¬¥àá

¤®¯®«­¨â¥«ì­ë¬ ãá«®¢¨¥¬­ áë饭­®áâ¨. ãáâìQ|íªáâ६ «ì­ë©ª®¬¯ ªâ

¨:B!C(Q) |­¥ª®â®à ï¬¥à . à¥¤¯®«®¦¨¬, çâ®L 1

()¤®¯ã᪠¥â

áâàãª-âãàã ¬®¤ã«ï ­ ¤ ª®«ì殬 C(Q). ’®£¤  ¬®¤ã«ïà­®áâì ¬¥àë ®§­ ç ¥â, çâ®

ᮮ⢥âáâ¢ãî騩 ¨­â¥£à « ï¥âáï ¬®¤ã«ì­ë¬ £®¬®¬®à䨧¬®¬ ¨§ L 1

() ¢

C(Q). ª¢¨¢ «¥­â­®¥ ãá«®¢¨¥§ ª«îç ¥âáï¢ â®¬,ç⮯à®áâà ­á⢮ L 2

()

á«ã-¦¨â ¬®¤ã«¥¬ Š ¯« ­áª®£® | ƒ¨«ì¡¥àâ  (á¬. [12, 20]). „®¯®«­¨â¥«ì­ë¥

ᢥ-¤¥­¨ï ® ¬®¤ã«ïà­ëå ¨ ­ áë饭­ëå ¬¥à å á¬. ¢ ª­¨£¥ [11], £¤¥, ¢ ç áâ­®áâ¨,

à §¢¨â ¡ã«¥¢®§­ ç­ë© ¯®¤å®¤ ª ¨áá«¥¤®¢ ­¨î í⮣® ª« áá  ¢¥ªâ®à­ëå ¬¥à.

c

(2)

–¥«ì ­ áâ®ï饩 áâ âì¨ | ¯®ª § âì, çâ® ¬®¤ã«ïà­ë¥ ¬¥àë ¨ ®¯¥à â®àë

Œ £ à ¬ â¥á­® á¢ï§ ­ë ¤àã£ á ¤à㣮¬. ’®ç­¥¥ £®¢®àï, ¯à¨¨­â¥£à¨à®¢ ­¨¨ ¯®

­ áë饭­®© ¬¥à¥¢®§­¨ª ¥â ®¯¥à â®àŒ £ à ¬,   ¨­â¥£à «ì­®¥ ¯à¥¤áâ ¢«¥­¨¥

®¯¥à â®à  Œ £ à ¬ ¯à¨¢®¤¨â ª ¬®¤ã«ïà­®© ­ áë饭­®© ¬¥à¥. ¥®¡å®¤¨¬ë¥

ᢥ¤¥­¨ï ¨¬¥îâáï ¢ [1, 2, 5, 7, 11].

2. à¥¤¢ à¨â¥«ì­ë¥ ᢥ¤¥­¨ï

‚ í⮬ ¯ à £à ä¥ ¯à¨¢¥¤¥¬ á奬㠨­â¥£à¨à®¢ ­¨ï «¥¡¥£®¢áª®£® ⨯  ¯®

¬¥à¥á®§­ ç¥­¨ï¬¨ ¢à¥è¥â®ç­®­®à¬¨à®¢ ­­®¬¯à®áâà ­á⢥. ’ ª®¥

¨­â¥£à¨-஢ ­¨¥¡ë«®à §¢¨â®Œ. ©â®¬[23]¤«ï¬¥àá®§­ ç¥­¨ï¬¨¢ «£¥¡à å‘â®ã­ ,

®¤­ ª® ¢áï ⥮à¨ï ®áâ ¥âáï ¢ ᨫ¥¤«ï ¬¥àá® §­ ç¥­¨ï¬¨ ¢ ¯à®¨§¢®«ì­®¬K

-¯à®áâà ­á⢥, á¬.[21,22]. ‚­ è¥¬¨§«®¦¥­¨¨¬ëá«¥¤ã¥¬ [11],£¤¥¯®áâ஥­¨ï

Œ.  ©â  [23] ¯®¢â®à¥­ë ¢ ­¥áª®«ìª® ¡®«¥¥ ®¡é¥© á¨âã æ¨¨: ¨­â¥£à¨à㥬묨

®¡ê¥ªâ ¬¨ï¢«ïîâáïí«¥¬¥­âë ­¥ª®â®à®£®K

-¯à®áâà ­á⢠, ª ª¢[2, 3], 

¢¥ª-â®à­ ïà¥è¥âª  ®¡à §®¢§ ¬¥­¥­  ­ à¥è¥â®ç­® ­®à¬¨à®¢ ­­®¥ ¯à®áâà ­á⢮.

Ž¢¥ªâ®à­®¬¨­â¥£à¨à®¢ ­¨¨ ¢K-¯à®áâà ­á⢠å¨á®®â¢¥âáâ¢ãî饬 ¢ à¨ ­â¥

â¥®à¥¬ë  ¤®­  | ¨ª®¤¨¬  á¬. â ª¦¥ [19].

2.1. ãáâìG | à áè¨à¥­­®¥ K-¯à®áâà ­á⢮ á ¯®à浪®¢®© ¥¤¨­¨æ¥© 1,  

(Y;F)|ᥪ¢¥­æ¨ «ì­®bo-¯®«­®¥à¥è¥â®ç­®­®à¬¨à®¢ ­­®¥¯à®áâà ­á⢮­ ¤

K-¯à®áâà ­á⢮¬ F.  áᬮâਬ ¯®¤ «£¥¡àã A ¯®«­®© ¡ã«¥¢®©  «£¥¡àë G(1)

¥¤¨­¨ç­ëå í«¥¬¥­â®¢ ¯à®áâà ­á⢠ G ¨ ª®­¥ç­®  ¤¤¨â¨¢­ãî ¬¥àã :A ! Y

®£à ­¨ç¥­­®© ¢¥ªâ®à­®© ¢ à¨ æ¨¨ >

>

>

>

>

>

: A ! F. â® ®§­ ç ¥â, çâ® >

>

>

> (a)

>

>

>

> 6

>

>

>

>

>

>

(a)(a2A),¯à¨ç¥¬ ¨¬¥¥â ¬¥áâ®ä®à¬ã«  (á¬. [10, 11]):

>

>

>

>

>

>

(a):=sup

n

X

k=1 j(a

k )j:a

k ^a

l = 0;

n

_

k=1 a

k =a

:

Ž¡®§­ ç¨¬ ᨬ¢®«®¬ S(A) ¢¥ªâ®à­ãî ¯®¤à¥è¥âªã ¢ G, á®áâ®ïéãî ¨§ ¢á¥å

A-¯à®áâëå (ª®­¥ç­®§­ ç­ëå) í«¥¬¥­â®¢ G, â. ¥. x 2 S(A) ®§­ ç ¥â, çâ®

¨¬¥-¥â ¬¥áâ® ¯à¥¤áâ ¢«¥­¨¥ x = P

n

k=1

k e

k

, £¤¥ f

1

;:::;

n

g R ¯à®¨§¢®«ì­ë,  

fe

1 ;:::;e

n

gA ¯®¯ à­®¤¨§êî­ªâ­ë. ®«®¦¨¬

I

(x):=

Z

xd:= n

X

k=1

k (e

k

) (x2S ,

A)

:

‘¯à ¢¥¤«¨¢® á«¥¤ãî饥 ã⢥ত¥­¨¥.

2.2. “ª § ­­ ï ä®à¬ã«  ª®à४⭮ ®¯à¥¤¥«ï¥â ¬ ¦®à¨àã¥¬ë© ®¯¥à â®à

I

:S(A)!Y, ¯à¨ç¥¬

>

>

>

>

>

>

> Z

xd >

>

>

>

>

>

> 6

Z

jxjd >

>

>

>

>

> ,

x2S(A)

(3)

Œ®¤ã«ïà­ë¥ ¬¥àë ¨ ®¯¥à â®àë Œ £ à ¬

4{19

 áᬮâਬ £« ¢­ë© ¨¤¥ «

G

(

1

) ¯®à®¦¤¥­­ë© ¥¤¨­¨æ¥©

1

¨ ¢¢¥¤¥¬ ¢ ­¥¬

­®à¬ã

kxk

:= inf

f

:

jxj61g:

’®£¤ 

G

(

1

) |

AM

-¯à®áâà ­á⢮. ãáâì

C

(

A

) |

§ ¬ëª ­¨¥

S

(

A

) ¢

AM

-¯à®áâà ­á⢥

G

(

1

).

2.3. ޝ¥à â®à I

¤®¯ã᪠¥â ¥¤¨­á⢥­­®¥ ¬ ¦®à¨à㥬®¥ ¯à®¤®«¦¥­¨¥ ­ 

C

(

A

)

, ª®â®à®¥ ®¡®§­ ç¨¬ ⥬ ¦¥ ᨬ¢®«®¬. à¨ í⮬ >

>

>

> I

>

>

>

>

=

I

|

| .

C

‘¬. [11; ¯¯. 1.2.1, 1.2.2].

B

2.4. „«ï ª ¦¤®£® ¬ ¦®à¨à㥬®£® ®¯¥à â®à  T

:

C

(

A

)

! Y áãé¥áâ¢ã¥â ¥¤¨­á⢥­­ ï ¬ ¦®à¨à㥬 ï¬¥à 

:

A!Y â ª ï, çâ®

Tx

=

Z

xd ,

x2C

(

A

)

:

à¥¤¯®«®¦¨¬ ⥯¥àì, çâ®

A

|

-¯®¤ «£¥¡à  ¢

E

(

1

).  áᬮâਬ

à á-è¨à¥­­®¥

K

-¯à®áâà ­á⢮

E G

á®áâ®ï饥 ¨§ ¢á¥å

A

-§­ ç­ëå à §«®¦¥­¨©

¥¤¨­¨æë (ᯥªâà «ì­ëå ä㭪権). ‚ª«î祭¨¥

E G

¯®­¨¬ ¥âáï ¢ á¬ëá«¥

®â®¦¤¥á⢫¥­¨ï

K

-¯à®áâà ­áâ¢

G

¨

K

(

E

(

1

)).

2.5.

Ž¯à¥¤¥«¨¬ ⥯¥àì ¨­â¥£à « ®â í«¥¬¥­â ,  ¯¯à®ªá¨¬¨à㥬®£®

A

-¯à®áâ묨 í«¥¬¥­â ¬¨. ‘ª ¦¥¬, çâ® ¯®«®¦¨â¥«ì­ë© í«¥¬¥­â

x 2 E ¨­â¥£-à¨à㥬

¯® ¬¥à¥

, ¨«¨

-

¨­â¥£à¨à㥬

, ¥á«¨ áãé¥áâ¢ã¥â ¢®§à áâ îé ï

¯®á«¥-¤®¢ â¥«ì­®áâì (

x

n

)

n2N

¯®«®¦¨â¥«ì­ëå í«¥¬¥­â®¢ ¢

S

(

A

),

o

-á室ïé ïáï ¢

G

ª

x

, ¯à¨ç¥¬ áã¯à¥¬ã¬ sup

n2N

R

x

n d

>

>

>

>

>

>

áãé¥áâ¢ã¥â ¢

F

. „«ï

¯®á«¥¤®¢ â¥«ì­®á-⨠(

x

n

) ¯®á«¥¤®¢ â¥«ì­®áâì ¨­â¥£à «®¢ (

I

(

x

n

))

n2N

¡ã¤¥â

bo

-äã­¤ ¬¥­â «ì­®©,

¯®í⮬㠬®¦­® ®¯à¥¤¥«¨âì ¨­â¥£à « ®â í«¥¬¥­â 

x

, ¯®« £ ï

I

(

x

):=

Z

xd

:=

bo

-lim

n!1

Z

x

n d:

Š®à४⭮áâì í⮣® ®¯à¥¤¥«¥­¨ï ¯à®¢¥àï¥âáï ¡¥§ âà㤠, á¬. [11; ¯. 1.2.6].

«¥-¬¥­â

x 2 E ¨­â¥£à¨à㥬

(=

-¨­â¥£à¨à㥬) ¥á«¨ ¥£® ¯®«®¦¨â¥«ì­ ï ç áâì

x

+

¨ ®âà¨æ â¥«ì­ ï ç áâì

x

,

¨­â¥£à¨à㥬ë. Ž¡®§­ ç¨¬ ᨬ¢®«®¬

L

1

(

)

¬­®-¦¥á⢮ ¢á¥å ¨­â¥£à¨à㥬ëå í«¥¬¥­â®¢ ¨ ¤«ï ª ¦¤®£®

x2L 1

(

) ¯®«®¦¨¬

I

(

x

):=

Z

xd

:=

Z

x +

d, Z

x ,

d:

‹¥£ª® ¯à®¢¥à¨âì, çâ®

L 1

(

) | äã­¤ ¬¥­â ¢

E

¨

I

:

L 1

(

)

! Y

| «¨­¥©­ë©

®¯¥à â®à. ‡ ¬¥â¨¬ â ª¦¥, çâ® ¨§ ª®­áâàãªæ¨¨ ¨­â¥£à «  á«¥¤ã¥â

L 1

(

) =

L

1

(

>

>

>

>

>

>

). Ž¯à¥¤¥«¨¬ ¢

L

1

(

) ¢¥ªâ®à­ãî ­®à¬ã á® §­ ç¥­¨ï¬¨ ¢

F

:

>

>

>

x >

>

>

1

:=

Z

jxjd >

>

>

>

>

> ,

x2L 1

(

)

(4)

4{20

€.ƒ. Šãáà ¥¢

‘ª ¦¥¬, çâ® ¤¢  í«¥¬¥­â 

x;y 2 L 1

(

)

-

íª¢¨¢ «¥­â­ë

, ¥á«¨ áãé¥áâ¢ã¥â

¥¤¨-­¨ç­ë© í«¥¬¥­â

e 2 G

(

1

), ¤«ï ª®â®à®£®

>

>

>

>

>

>

(

1 ,e

) = 0 ¨ [

e

]

x

= [

e

]

y

.

Œ­®-¦¥á⢮

N

(

) ¢á¥å í«¥¬¥­â®¢

-íª¢¨¢ «¥­â­ëå ­ã«î ¡ã¤¥â ᥪ¢¥­æ¨ «ì­®

o

-§ ¬ª­ãâë¬ ¯®à浪®¢ë¬ ¨¤¥ «®¬ ¢

L 1

(

). ˆ§ ®¯à¥¤¥«¥­¨ï ¨­â¥£à «  ¢¨¤­®,

çâ®

N

(

) =

fx 2 L 1

(

) :

>

>

>

x >

>

>

1

= 0

g

. ‚¢¥¤¥¬

K

-¯à®áâà ­á⢮

L

1

(

) ª ª

ä ªâ®à-¯à®áâà ­á⢮

L 1

(

) ¯®

-¨¤¥ «ã

N

(

). Š« áá íª¢¨¢ «¥­â­®áâ¨

í«¥-¬¥­â 

x 2 L 1

(

) ¡ã¤¥¬ ®¡®§­ ç âì ᨬ¢®«®¬ ~

x

. ‚¥ªâ®à­ ï ­®à¬  ­ 

L 1

(

)

á® §­ ç¥­¨ï¬¨ ¢

F

®¯à¥¤¥«ï¥âáï ä®à¬ã«®©

>

>

>

~

x >

>

>

1

:=

>

>

>

x >

>

> ,

x 2 L 1

(

)

. ’ ª¨¬

®¡à §®¬,

,

L 1

(

)

; >

>

>

>

>

>

| à¥è¥â®ç­® ­®à¬¨à®¢ ­­®¥ ¯à®áâà ­á⢮.

2.6. ’¥®à¥¬  ® ¬®­®â®­­®© á室¨¬®áâ¨. „®¯ãá⨬, çâ®

(

x n

)

n2N

|

¢®§à áâ îé ï ¯®á«¥¤®¢ â¥«ì­®áâì -¨­â¥£à¨à㥬ëå í«¥¬¥­â®¢, ¤«ï ª®â®à®©

¯®á«¥¤®¢ â¥«ì­®áâì ¨­â¥£à «®¢ ,

I

|

|

(

x

n

)

n2N

¯®à浪®¢® ®£à ­¨ç¥­  ¢ F. ’®£¤ 

áãé¥áâ¢ã¥â â ª®© í«¥¬¥­â x 2L 1

(

)

, çâ® ¢L 1

(

)

¢ë¯®«­¥­®x

~

=

W

n

~

x

n ¨

Z

xd

=

bo-

lim

n!1

Z

x

n d:

C

‘¬. [11; ¯. 1.2.8].

B

2.7. ’¥®à¥¬  ® ¬ ¦®à¨à®¢ ­­®© á室¨¬®áâ¨. ãáâì

(

x n

)

n2N

¯®á«¥-¤®¢ â¥«ì­®áâì -¨­â¥£à¨à㥬ëå í«¥¬¥­â®¢ ¨ o-

lim

x n

=

x ¢ G. …᫨ y2L 1

(

)

¨ jx

n

j6y

(

n2N

)

, â® x2L 1

(

)

¨ Z

xd

=

bo-

lim

n!1

Z

x

n d:

C

‘¬. [11; ¯. 1.2.9].

B

2.8. ’¥®à¥¬ . ãáâì

:

A!Y |áç¥â­® ¤¤¨â¨¢­ ï ¬ ¦®à¨à㥬 ï ¬¥-à . ’®£¤ áãé¥áâ¢ãîâäã­¤ ¬¥­â L

1

(

)

E ¨á¥ª¢¥­æ¨ «ì­® bo-­¥¯à¥àë¢­ë© ¬ ¦®à¨àã¥¬ë© ®¯¥à â®àI

:

L

1

(

)

!Y â ª¨¥, ç⮨¬¥îâ ¬¥áâ®ã⢥ত¥­¨ï: (1) L

1

(

)

A; (2) I

e

=

(

e

) (

e2A

)

;

(3) ¥á«¨ L A ¨ Ie

=

(

e

) (

e 2 A

)

¤«ï ­¥ª®â®à®£® äã­¤ ¬¥­â  L E ¨ bo-­¥¯à¥à뢭®£® ¬ ¦®à¨à㥬®£® ®¯¥à â®à  I

:

E ! Y, â® L L

1

(

)

¨ Ix

=

I

x

(

x2L

)

; (4)

>

>

>

> I

>

>

>

>

=

I

|

| .

(5)

Œ®¤ã«ïà­ë¥ ¬¥àë ¨ ®¯¥à â®àë Œ £ à ¬

4{21

2.9. ’¥®à¥¬ . ãáâì

E

0

|äã­¤ ¬¥­â¢

E

,ᮤ¥à¦ é¨©¯®à浪®¢ãî ¥¤¨-­¨æã¨

T

:

E

0

!

Y

|ᥪ¢¥­æ¨ «ì­®

bo

-­¥¯à¥à뢭멬 ¦®à¨à㥬멫¨­¥©­ë© ®¯¥à â®à. ’®£¤  áãé¥áâ¢ã¥â ¥¤¨­á⢥­­ ï ¬ ¦®à¨à㥬 ï

- ¤¤¨â¨¢­ ï ¬¥à 

:

A!

Y

â ª ï, çâ® L 1

(

)

E

0

¨

Tx

=

Z

xd;

> >

>

T

>

>

>

x

=

Z

xd

> >

>

>

>

>

(

x

2

E

0

)

:

C

‘¬. [11; ¯. 1.2.11].

B

2.10. ¥è¥â®ç­® ­®à¬¨à®¢ ­­®¥ ¯à®áâà ­á⢮ ,

L

1

(

)

;

>

>

>

>

>

>

br

-¯®«­®. C

„®ª § â¥«ìá⢮ ®á­®¢ ­® ­  â¥å ¦¥ á®®¡à ¦¥­¨ïå, çâ® ¨ ¤®ª § â¥«ìá⢮

â¥®à¥¬ë ¨áá  | ”¨è¥à  ¤«ï ᪠«ïà­ëå ¬¥à. à¨¢¥¤¥¬ á奬ã

¤®ª § â¥«ìáâ-¢ . …᫨ ¯®á«¥¤®¢ â¥«ì­®áâì (

x

n

)

n

2N

br

-äã­¤ ¬¥­â «ì­ , â®

>

>

>

x

n

,

x

m

>

>

>

6

r

k

f

(

n;m

>

k

) ¤«ï ­¥ª®â®à®£® í«¥¬¥­â 

f

2

F

+

¨ ç¨á«®¢®© ¯®á«¥¤®¢ â¥«ì­®áâ¨

(

r

n

)

n

2N

, á室ï饩áï ª ­ã«î. ®«®¦¨¬

L

(

f

) :=

f

x

2

L

1

(

) :

>

>

>

x

>

>

>

2

F

(

f

)

g

, £¤¥

F

(

f

) | ¯®à浪®¢ë© ¨¤¥ «, ¯®à®¦¤¥­­ë© í«¥¬¥­â®¬

f

. ’®£¤  (

x

n

)

L

(

f

)

¨ ¤®áâ â®ç­® ã¡¥¤¨âìáï ¢ ⮬, çâ®

L

(

f

) | ¡ ­ å®¢® ¯à®áâà ­á⢮ á ­®à¬®©

k

x

k

:=

k >

>

>

x

>

>

>

k

F

(

f

)

. „®¯ãá⨬, çâ® àï¤

P

1

n

=1

x

n

 ¡á®«îâ­® á室¨âáï ¢

L

(

f

).

’®£-¤  àï¤

P 1

n

=1 >

>

>

x

n

>

>

>

á室¨âáï ¢

AM

-¯à®áâà ­á⢥

F

(

f

), áâ «® ¡ëâì,

r

-á室¨âáï ª

⮩ ¦¥ á ¬®© á㬬¥. ®«®¦¨¬

t

:=

1 X

k

=1 >

>

>

x

k

>

>

>

;

n

:=

n

X

k

=1

x

k

; s

n

:=

X

n

k

=1 j

x

k

j

:

Š ª ¢¨¤­®, ¯®á«¥¤®¢ â¥«ì­®áâì (

s

n

) á®á⮨⠨§ ¯®«®¦¨â¥«ì­ëå ç«¥­®¢,

¢®§à á-⠥⠨

R

s

n

d

6

t

. ‘«¥¤®¢ â¥«ì­®, ¯® ⥮६¥ ® ¬®­®â®­­®© á室¨¬®áâ¨

áãé¥áâ-¢ã¥â ¯à¥¤¥«

y

:=

o

-lim

s

n

, ᮤ¥à¦ é¨©áï ¢

L

1

(

). ¥à ¢¥­á⢮

j

n

j 6

s

n

6

y

¢«¥ç¥â, çâ® àï¤

P 1

k

=1

x

k

o

-á室¨âáï. „«ï á㬬ë í⮣® à鸞

x

0

¢ë¯®«­¥­ 

®æ¥­-ª 

j

x

0

j6

y

, ®âªã¤ 

x

0

2

L

1

(

). à¨¢«¥ª ï ⥮६ã 2.7 ® á室¨¬®áâ¨, ¢ë¢®¤¨¬

>

>

>

n

,

f

0 >

>

>

=

R

j

n

,

x

0

j

d

>

>

>

>

>

>

!

0.

B

Œ®¦­® ¯®«ãç âì ¤ «ì­¥©è¨¥ १ã«ìâ âë ® ¯®«­®â¥ ¯à®áâà ­á⢠

¨­â¥£à¨-à㥬ëå í«¥¬¥­â®¢ ¯à¨ ᮮ⢥âáâ¢ãîé¨å ¤®¯®«­¨â¥«ì­ëå ®£à ­¨ç¥­¨ïå.

 -¯à¨¬¥à, ¬®¦­® ãáâ ­®¢¨âì ᥪ¢¥­æ¨ «ì­ãî

bo

-¯®«­®âã

L

1

(

), ¥á«¨

¯à®áâà ­áâ-¢®

F

ॣã«ïà­®. ޤ­ ª® à §«®¦¨¬®áâì § ¢¨á¨â ®â áãé¥á⢥­­® ¤à㣨å ᢮©áâ¢

¬¥àë.

3. Œ®¤ã«ïà­ë¥ ¢¥ªâ®à­ë¥ ¬¥àë

(6)

3.1. „® ª®­æ  ¯ à £à ä ¯à¥¤¯®« £ ¥¬, çâ® Y | ¯à®áâà ­á⢮  ­ å |

Š ­â®à®¢¨ç  ­ ¤K-¯à®áâà ­á⢮¬ F ¨ :A !Y | áç¥â­® ¤¤¨â¨¢­ ï¬¥à .

‚¢¥¤¥¬ ­ã«¥¢®© ¨¤¥ « ¬¥àë ä®à¬ã«®©

N():=fa2A: (8a 0

2A)a 0

6a ) (a 0

)=0g:

®­ïâ­®, çâ® N()=N( >

>

>

>

>

>

) =fa2 A: >

>

>

>

>

>

(a)=0g. ãáâì ~

A ¨ ®¡®§­ ç îâ

ä ªâ®à- «£¥¡àã A=N() ¨ ª ­®­¨ç¥áª®¥ ä ªâ®à-®â®¡à ¦¥­¨¥ A=N() ! ~

A

ᮮ⢥âá⢥­­®. ‘ãé¥áâ¢ã¥â¥¤¨­á⢥­­ ï¬¥à ~: ~

A !Y,¤«ïª®â®à®©~=

. ®«¥¥ ⮣®, >

>

>

~ >

>

>

= f >

>

>

>

>

>

.

ãáâì § ¤ ­ ¡ã«¥¢ £®¬®¬®à䨧¬ h :B:= P(F) ! ~

A. ã¤¥¬£®¢®à¨âì, çâ®

¬®¤ã«ïà­  ®â­®á¨â¥«ì­® h ¨«¨ h-¬®¤ã«ïà­ , ¥á«¨ b~(a) = (h(b)~ ^(a))

¤«ï ¢á¥å a 2 A ¨ b 2 B. Š ª ¢¨¤­®, ¬®¤ã«ïà­®áâì ¬¥àë ®§­ ç ¥â, çâ®

b(a)=(b 0

^a 0

) ¤«ï¢á¥å a 0

2(a) ¨ b 0

2h(b).

ãáâì e:= W

fb 2 B : (8a 2 A)b(a) = 0g. ’®£¤  e(A) = f0g ¨ (A)

(1,e)Y. ®«¥¥â®£®,b(A)=f0g¢â®¬¨â®«ìª®¢â®¬á«ãç ¥, ¥á«¨h(b)2N().

’¥¬ á ¬ë¬, h ¨­ê¥ªâ¨¢¥­ ­  [0;1 , e]. ‚ ¤ «ì­¥©è¥¬ ¡ã¤¥¬ áç¨â âì, çâ®

(A) ??

=Y ¨¢í⮬á«ãç ¥h¯à¥¤áâ ¢«ï¥âᮡ®©¨§®¬®àä­®¥¢«®¦¥­¨¥B ¢ ~

A.

ã¤¥¬ £®¢®à¨âì, çâ® h-¬®¤ã«ïà­ ï ¬¥à  ­ áë饭­  (®â­®á¨â¥«ì­® h), ¥á«¨

¤«ï«î¡®£®à §¡¨¥­¨ï¥¤¨­¨æë(b

)

2

¢B ¨¯à®¨§¢®«ì­®£®á¥¬¥©á⢠ (a

)

2 ¢

A áãé¥áâ¢ã¥â ¥¤¨­á⢥­­ë© (á â®ç­®áâìî ¤®íª¢¨¢ «¥­â­®áâ¨) í«¥¬¥­â a2A,

â ª®©, çâ®b

>

>

>

>

>

>

(a4a

)=0¤«ï¢á¥å 2. â® ãá«®¢¨¥à ¢­®á¨«ì­® ⮬ã, çâ®

h(b

)^(a)=h(b

)^(a

) (2), ¯®áª®«ìªã h-¬®¤ã«ïà­ .

3.2. ‚ à ¡®â¥ [20] Œ.  ©â ®¯à¥¤¥«¨« ¬®¤ã«ïà­®áâì ¬¥àë á«¥¤ãî騬

®¡-à §®¬.  áᬮâਬ £®¬®¬®à䨧¬ : C(Q) ! L 1

() (Q | íªáâ६ «ì­ë©

ª®¬¯ ªâ). Œ¥àã :B!C(Q) ­ §ë¢ îâ ¬®¤ã«ïà­®© ®â­®á¨â¥«ì­® , ¥á«¨

Z

(a)f d=a Z

fd (a2C(Q); f 2L 1

()):

ª¢¨¢ «¥­â­®áâì í⮣®®¯à¥¤¥«¥­¨ïá ¤ ­­ë¬¢ë襢ë⥪ ¥â¨§2.10,3.6¨

­ -«¨ç¨ï ¬®¤ã«ì­®© áâàãªâãàë ¢ à §«®¦¨¬®¬ à¥è¥â®ç­® ­®à¬¨à®¢ ­­®¬

¯à®áâ-à ­á⢥(á¬.[5, 7]).  áë饭­®áâì ¦¥ ¬¥àëᮣ« á­®Œ.  ©âã[20] ®§­ ç ¥â,

çâ® ¯à®áâà ­á⢮ L 2

() ¯à¥¤áâ ¢«ï¥â ᮡ®© ¬®¤ã«ì Š ¯« ­áª®£® |

ƒ¨«ì¡¥à-â . â® ®¯à¥¤¥«¥­¨¥ â ª¦¥ à ¢­®á¨«ì­® ¤ ­­®¬ã ¢ëè¥ ¢ ᨫã 3.6 ¨ ªà¨â¥à¨ï

¯®«­®âë à¥è¥â®ç­® ­®à¬¨à®¢ ­­®£® ¯à®áâà ­á⢠ ¨§[5, 7].

3.3. Œ¥à  ¬®¤ã«ïà­  ®â­®á¨â¥«ì­®¡ã«¥¢ ¨§®¬®à䨧¬  h ¢â®¬¨

⮫ì-ª® ¢â®¬ á«ãç ¥, ¥á«¨ â ª®¢®© ï¥âáï ¥¥ â®ç­ ï¬ ¦®à ­â  >

>

>

>

>

>

.

C „®¯ãá⨬, çâ® h-¬®¤ã«ïà­  ¨ ¤®ª ¦¥¬ ᮮ⭮襭¨¥ b f >

>

>

>

>

> ,

(a)

=

f >

>

>

>

>

> ,

h(b) ^(a)

. Ž­® à ¢­®á¨«ì­® à ¢¥­áâ¢ã b >

>

>

~ >

>

> ,

(a)

= >

>

>

~ >

>

> ,

h(b)^ (a)

(7)

¯®áª®«ìªã f >

>

>

>

>

>

= >

>

>

~ >

>

>

. ’¥¯¥àì âॡ㥬®¥ ¯à®¢¥àï¥âáï á«¥¤ãî騬¨ ¯à®áâ묨

¢ëç¨á«¥­¨ï¬¨ ¨á¯®«ì§ãî騬¨ 2.1:

b >

>

>

~ >

>

> ,

(a)

=b _

(

n

X

k

=1 ~

( ~a

k

): ~a 1

__~a

n

=(a) )

= _

(

n

X

k

=1 b~

,

(a

k

)

: a

1

__a

n

=a )

= _

(

n

X

k

=1 ~ ,

(b 0

)^(a

k

)

: a

1

__a

n

=a )

= _

(

n

X

k

=1 ~ ,

(c

k

)

: c

1

__c

n

=(b 0

)^(a) )

= >

>

>

>

>

> ,

h(b)^(a)

;

£¤¥ ª®­¥ç­ë¥ ¬­®¦¥á⢠ f ~a

1

;:::;~a

n

g ~

A, fa

1

;:::;a

n

g A, ¨ fc 1

;:::;c

n

g A ¯®¯ à­® ¤¨§êî­ªâ­ë ¨ h(b)= (b

0

) ¤«ï ­¥ª®â®à®£® b 0

2A. Ž¡à â­®¥

ã⢥à¦-¤¥­¨¥ á«¥¤ã¥â ¨§ ¤®ª § ­­®£® ­¨¦¥ ¯à¥¤«®¦¥­¨ï 4.3. B

3.4. ãáâìF |K-¯à®áâà ­á⢮áç¥â­®£®â¨¯ . ’®£¤ ¢á猪ïáç¥â­®

 ¤¤¨-⨢­ ï h-¬®¤ã«ïà­ ï ¬¥à , ®¯à¥¤¥«¥­­ ï ­ - «£¥¡à¥, ¡ã¤¥â ­ áë饭­®©.

C „«ï áç¥â­®£®à §¡¨¥­¨ï ¥¤¨­¨æë (b

n

)B ¨ ¯®á«¥¤®¢ â¥«ì­®á⨠(a

n

) A ¯®«®¦¨¬ a:=

W

fc

n

^a

n

: n 2 Ng, £¤¥ (c

n

) | ¯®á«¥¤®¢ â¥«ì­®áâì ¯®¯ à­® ¤¨§êî­ªâ­ëå í«¥¬¥­â®¢ ¢ A, ¤«ï ª®â®àëå h(b

n

) = (c

n

) (n 2 N). ˆá¯®«ì§ãï ¬®¤ã«ïà­®áâì ¨ áç¥â­ãî  ¤¤¨â¨¢­®áâì ¬¥àë , ¢ë¢®¤¨¬:

b

m

(a)= 1

X

n

=1

b

m

(c

n

^a

n

)= 1

X

n

=1 b

m

~

,

(c

n

)^(a

n

)

= 1

X

n

=1 ~ ,

(c

m

)^(c

n

)^(a

n

)

=~ ,

h(b

m

)^(a

m

)

=b

m

~ ,

(a

m

)

=b

m

(a

m

): B

‚¤ «ì­¥©è¥¬ ¡ã¤¥¬®â®¦¤¥á⢫ïâì ¬¥àë¨ ,~ ¥á«¨íâ® ­¥¢¥¤¥âª

¯ãâ -­¨æ¥.

3.5. ¥è¥â®ç­®­®à¬¨à®¢ ­­®¥¯à®áâà ­á⢮ L 1

()¤¨§ê⭮

à §«®¦¨-¬® ¢ ⮬ ¨ ⮫쪮¢ ⮬ á«ãç ¥, ¥á«¨ | ¬®¤ã«ïà­ ï ¬¥à .

Cãáâ쬥ࠬ®¤ã«ïà­ ®â­®á¨â¥«ì­®­¥ª®â®à®£®¡ã«¥¢ £®¬®¬®à䨧¬ 

h. „®ª ¦¥¬, çâ® b >

>

>

x >

>

>

1 =

>

>

>

> h(b)x

>

>

>

>

1

¤«ï ¢á¥å b 2 B ¨ x 2 L 1

(8)

4{24

€.ƒ. Šãáà ¥¢

¥¤¨­¨ç­ë© í«¥¬¥­â

h

(

b

)

2 A

á ¯®à浪®¢ë¬ ¯à®¥ªâ®à®¬ [

h

(

b

)] ¢

E

¨ ¡ã¤¥¬

¯¨á âì

h

(

b

)

x

¢¬¥áâ® [

h

(

b

)]

x

. ɇǬ

x

=

1

a

1

+

+

n

a

n

, £¤¥

1 ;:::;

n 2 R

¯à®¨§¢®«ì­ë,  

a 1

;:::;a

n

2 A

¯®¯ à­® ¤¨§êî­ªâ­ë, â®

h

(

b

)

x

=

1

h

(

b

)

^a 1

+

+

n

h

(

b

)

^a

n

¨ ¬®¦¥¬ ­ ¯¨á âì

I

(

h

(

b

)

x

) =

n

X

k=1

k

(

h

(

b

)

^a k

) =

n

X

k=1

k b

(

a

k

) =

bI

(

x

)

:

‚®§ì¬¥¬ ⥯¥àì ¢®§à áâ îéãî ¯®á«¥¤®¢ â¥«ì­®áâì (

x n

)

S

(

A

) â ªãî, çâ®

I

(

x

) =

bo

-lim

n

I

(

x

n

). ’®£¤ 

h

(

b

)

x

=

o

-lim

n

h

(

b

)

x

n

, ¯®áª®«ìªã ¯®à浪®¢ë©

¯à®¥ªâ®à [

h

(

b

)] ¯®à浪®¢® ­¥¯à¥à뢥­. ®«¥¥ ⮣®,

h

(

b

)

x n

6 x

, ¨ §­ ç¨â

h

(

b

)

x 2 L

1

(

), â ª ª ª

L 1

(

) | ¯®à浪®¢ë© ¨¤¥ « ¢

E

. ˆá¯®«ì§ãï ⥮६ã

2.7 ® á室¨¬®áâ¨, ¢ë¢®¤¨¬

bI

(

x

) =

b

,

bo

-lim

n!1

I

(

x

n

)

=

bo

-lim

n!1

I

(

h

(

b

)

x

n

) =

I

(

h

(

b

)

x

)

:

Žâá ¢¨¤­®, çâ®

L 1

(

)

d

-à §«®¦¨¬®. Ž¡à â­®¥ ®ç¥¢¨¤­®.

B 3.6. ¥è¥â®ç­® ­®à¬¨à®¢ ­­®¥ ¯à®áâà ­á⢮ L

1

(

)

¤¨§ê⭮ ¯®«­® ¢ ⮬ ¨ ⮫쪮 ¢ ⮬á«ãç ¥, ¥á«¨ ¬¥à  ­ áë饭­ .

C

„®¯ãá⨬, çâ®

­ áë饭­ . ãáâì (

b

)

2

| à §¡¨¥­¨¥ ¥¤¨­¨æë ¢

P

(

F

),   (

x

)

2

| ®£à ­¨ç¥­­®¥ ¯® ­®à¬¥ ᥬ¥©á⢮ ¢

L

1

(

). ãáâì

e

(

) :

R ! A

| ᯥªâà «ì­ ï äã­ªæ¨ï í«¥¬¥­â 

x

¨ ¯®«®¦¨¬ ¯® ®¯à¥¤¥«¥­¨î

e

(

):=

_

2 h

(

b

)

^e

(

) (

2R

)

:

”ã­ªæ¨ï

7!e

(

) á«ã¦¨â à §«®¦¥­¨¥¬ ¥¤¨­¨æë. â® ¬®¦­® ¯à®¢¥à¨âì

­¥¯®-á।á⢥­­ë¬ ¢ëç¨á«¥­¨¥¬, ¨á¯®«ì§ãï ¡¥áª®­¥ç­ë¥ ¤¨áâਡã⨢­ë¥ § ª®­ë ¢

¢¥ªâ®à­®© à¥è¥âª¥. ‚ ®¡®á­®¢ ­¨¨ ­ã¦¤ ¥âáï «¨èì à ¢¥­á⢮

e

:=

V

fe

(

) :

2Rg

= 0. ®áª®«ìªã

,

h

(

b

)

| à §«®¦¥­¨¥ ¥¤¨­¨æë ¢

A=N

(

), â®

¤®áâ â®ç-­® ¤®ª § âì, çâ®

h

(

b

)

^e

= 0 ¤«ï ¢á¥å

2

. ‘®®â¢¥âáâ¢ãî騥 ¢ëç¨á«¥­¨ï

¨¬¥îâ ¢¨¤:

h

(

b

)

^e

=

1

^

n=1 h

(

b

)

^e

(

,n

) =

1

^

n=1 0

@

h

(

b

)

^ _

2 h

(

b

)

e

(

,n

)

1

A

=

1 ^

n=1 _

2 h

(

b

)

^h

(

b

)

e

(

,n

) =

1

^

n=1 h

(

b

)

^e

(

(9)

Œ®¤ã«ïà­ë¥ ¬¥àë ¨ ®¯¥à â®àë Œ £ à ¬

4{25

® ⥮६¥ ® ८«¨§ æ¨¨ à áè¨à¥­­®£®

K

-¯à®áâà ­á⢠ ¢ ¢¨¤¥ ¢¥ªâ®à­®©

à¥-è¥âª¨ ¢á¥å à §«®¦¥­¨© ¥¤¨­¨æë ¢ 䨪á¨à®¢ ­­®© ¯®«­®© ¡ã«¥¢®©  «£¥¡à¥

(á¬. [2, 3]) áãé¥áâ¢ã¥â í«¥¬¥­â

x

¢ ¬ ªá¨¬ «ì­®¬ à áè¨à¥­¨¨

mL

1

(

), ¤«ï

ª®â®à®£®

e

(

) =

e

x

(

2 R

). ɇǬ

y

2

L

1

(

) | ¢¥àå­ïï £à ­¨æ  ᥬ¥©á⢠

(

j

x

j

), â®

j

x

j 6

y

, áâ «® ¡ëâì,

x

2

L

1

(

). à¨¬¥­¨¢ 1.4.2(10) ¨§ [9], ¯®«ã稬

e

h(b

)x

=

e

h(b

)x

(

2 R

), ®âªã¤ 

h

(

b

)

x

=

h

(

b

)

x

. ˆâ ª, ¬ë ¯à®¢¥à¨«¨, çâ®

L

1

(

) ¤¨§ê⭮ ¯®«­®. Ž¡à â­®¥ ã⢥ত¥­¨¥ ®ç¥¢¨¤­® ¨ ⥮६  ¤®ª § ­ 

¯®«­®áâìî.

B

4. ˆ­â¥£à «ì­ë¥ ®¯¥à â®àë Œ £ à ¬

‚ ¤ ­­®¬ ¯ à £à ä¥ ¯®ª § ­®, çâ® ¬®¤ã«ïà­ ï ¬¥à  ­ áë饭­  ¢ ⮬ ¨

⮫쪮 ¢ ⮬ á«ãç ¥, ª®£¤  ¯à®áâà ­á⢮ á㬬¨à㥬ëå í«¥¬¥­â®¢ á

¨­â¥£à «ì-­®© ­®à¬®© | ¯à®áâà ­á⢮  ­ å  | Š ­â®à®¢¨ç ,   ¨­â¥£à « | ®¯¥à â®à

Œ £ à ¬. “áâ ­ ¢«¨¢ ¥âáï â ª¦¥ ¢ à¨ ­â â¥®à¥¬ë  ¤®­  | ¨ª®¤¨¬  ¤«ï

­ áë饭­ëå ¬¥à.

4.1. ’¥®à¥¬ . „«ï áç¥â­® ¤¤¨â¨¢­®© ¬¥àëá®§­ ç¥­¨ï¬¨ ¢

¯à®áâà ­áâ-¢¥  ­ å  | Š ­â®à®¢¨ç  à ¢­®á¨«ì­ë á«¥¤ãî騥 ã⢥ত¥­¨ï:

(1)

| ­ áë饭­ ï ¬¥à ; (2)

>

>

>

>

>

>

| ­ áë饭­ ï ¬¥à ;

(3)

L

1

(

)

| ¯à®áâà ­á⢮  ­ å  | Š ­â®à®¢¨ç ;

(4)

L

1

(

)

| ¯®à浪®¢® ¯®«­ ï ¢¥ªâ®à­ ï à¥è¥âª  ¨ ®¯¥à â®à

T

:

L

1

(

)

!

F

, ®¯à¥¤¥«¥­­ë© ä®à¬ã«®©

T

x

~

=

I

|

|

(

x

)

,

x

2 L 1

(

)

, ï¥âáï

®¯¥-à â®à®¬ Œ £ à ¬.

C

(1)

)

(2): ‘«¥¤ã¥â ¨§ 3.6.

(2)

)

(3): ‘«¥¤ã¥â ¨§ 2.10, 3.6 ¨ ªà¨â¥à¨ï ¯®«­®âë à¥è¥â®ç­®

­®à¬¨à®-¢ ­­®£® ¯à®áâà ­á⢠ ¨§ [5, 7].

(3)

)

(4): Š ª ­¥âà㤭® ã¡¥¤¨âìáï ¢¥ªâ®à­ ï à¥è¥âª 

L

1

(

) ¯®à浪®¢®

-¯®«­ . ® ⥮६¥ 2.6

F

-§­ ç­ ï ­®à¬  ¢

L

1

(

) ᥪ¢¥­æ¨ «ì­® ¯®à浪®¢®

­¥-¯à¥à뢭 , â. ¥. ¤«ï ã¡ë¢ î饩 ¯®á«¥¤®¢ â¥«ì­®á⨠(

x

n

)

L

1

(

) ¢ë¯®«­ï¥âáï

o

-lim

n >

>

>

x

n

>

>

>

= 0, ¥á«¨ ⮫쪮

o

-lim

n

x

n

= 0. ‚®§ì¬¥¬ ¯®à浪®¢® ®£à ­¨ç¥­­®¥

¬­®¦¥á⢮

M

L

1

(

) á ¢¥àå­¥© £à ­¨æ¥©

u

2

L

1

(

). ¥§ ®£à ­¨ç¥­¨ï

®¡é-­®á⨠¬®¦­® ¯à¥¤¯®«®¦¨âì, çâ®

M

ᮤ¥à¦¨â ¢á¥ í«¥¬¥­âë ¢¨¤ 

x

1

__

x

n

¨

bo

-

P

2

h

(

b

)

x

, £¤¥

f

x

1

;:::;x

n

g

M

, (

x

)

M

, ¨ (

b

) | à §¡¨¥­¨¥

¥¤¨­¨-­¨æë ¢

P

(

F

). ‚ á ¬®¬ ¤¥«¥, ¤®¡ ¢¨¢ ª

M

â ª¨¥ í«¥¬¥­âë, ¬­®¦¥á⢮ ¢¥àå­¨å

£à ­¨æ

M

­¥ ¨§¬¥­¨âáï. ®«®¦¨¬

f

:= sup

f >

>

>

x

>

>

>

:

x

2

M

g6 >

>

>

u

>

>

>

¨ ¢ë¡¥à¥¬

¯®á«¥-¤®¢ â¥«ì­®áâì (

x

n

)

M

, ¤«ï ª®â®à®©

f

, >

>

>

x

n

>

>

>

6

(1

=n

)

f

. ɇǬ

y

n

:=

x

1

__

x

n

,

â®

f

, >

>

>

y

n

>

>

>

6

(1

=n

)

f

(

n

2 N

) ¨ (

y

n

) ¢®§à áâ ¥â. …᫨

y

= sup

n

y

n

, â®

>

>

>

y

>

>

>

=

f

.

‚®§ì¬¥¬ ⥯¥àì ¯à®¨§¢®«ì­ë© í«¥¬¥­â

z

2

M

¨ ¯à®¢¥à¨¬, çâ®

z

6

y

. „«ï

í⮣® § ¬¥â¨¬, çâ®

o

-lim

n

y

n

_

z

=

y

_

z

>

y

¨

o

-lim

n

>

>

>

y

n

_

z

>

>

>

=

>

>

>

y

_

z

>

>

>

(10)

â ª ª ª y

n

_ z 2 M. ’ ª¨¬ ®¡à §®¬, f 6 > > > y > > > 6 > > >

y_z >

>

>

6 f, §­ ç¨â,

f = >

>

>

y_z >

>

>

. ®áª®«ìªã­®à¬ L 1

() ¤¤¨â¨¢­ ­ ª®­ãá¥,¨¬¥î⬥áâ®

à ¢¥­áâ-¢ f = >

>

>

>

(y_z,y)+y > > > >= > > >

y_z,y > > > + > > > y > > > = > > >

y_z ,y >

>

>

+f,®âªã¤  >

>

>

y_z,y >

>

>

=0

¨ y_z =y. ’¥¬á ¬ë¬ ãáâ ­®¢«¥­®, çâ®y =sup (M) ¨L 1

()¯®à浪®¢® ¯®«­®.

 áᬮâਬ ­ ¯à ¢«¥­­®¥ ¢­¨§ ¬­®¦¥á⢮ D ¨ ¯ãáâì inf(D) = 0.

®«®-¦¨¬ f:=inff > > > x > > >

: x 2Dg. ®¢â®à¨¢ ¯à¨¢¥¤¥­­ë¥ ¢ëè¥ à áá㦤¥­¨ï, ¬®¦­®

¢ë¡à âì ¯®á«¥¤®¢ â¥«ì­®áâì (y

n ) L

1

() (­¥ ᮤ¥à¦ é¨åáï, ¢®®¡é¥ £®¢®àï,

¢ D) â ªãî, çâ® f = inf

n > > > y n > > >

¨ 0 = inf

n y

n

. ’ ª ª ª ­®à¬  ¯®à浪®¢®

-­¥¯à¥à뢭 ,⮯®«ãç ¥¬f =0. ’¥¬á ¬ë¬,T ¯®à浪®¢®­¥¯à¥à뢥­,

¯®áª®«ì-ªã Tx= > > > > x + > > > >, > > > > x , > > > > . ‚¢¨¤ã ᢮©á⢠ à §«®¦¨¬ëå à¥è¥â®ç­® ­®à¬¨à®¢ ­­ëå

¯à®áâà ­á⢠(á¬. [5, 7]) L 1

() ¤®¯ã᪠¥â ᮣ« á®¢ ­­ãî ¬®¤ã«ì­ãî áâàãªâãàã

­ ¤ Orth(F). ‘«¥¤®¢ â¥«ì­®, ¥á«¨ 0 6 f 6 Tx ¤«ï ­¥ª®â®à®£® 0 6 x 2 L 1

(),

â® áãé¥áâ¢ã¥â 2 Orth (F) â ª®©, çâ® f =Tx = > > > x > > >= > > > x > > >=

T(x). ’ ª¨¬

®¡à §®¬ T ®¡« ¤ ¥â᢮©á⢮¬ Œ £ à ¬.

(4) ) (1): ¥¯®á।á⢥­­® á«¥¤ã¥â ¨§ ᢮©á⢠®¯¥à â®à  Œ £ à ¬,

á¬. [7]. B

4.2. ãáâì : A ! F ¨ : A ! Y | ª®­¥ç­®  ¤¤¨â¨¢­ë¥ ¬¥àë. ƒ

®-¢®àïâ, çâ®  ¡á®«îâ­® ­¥¯à¥à뢭  ®â­®á¨â¥«ì­® ¨ ¯¨èãâ , ¥á«¨ > > > >(a) > > > >2 (A) ??

¤«ï ¢á¥å a2 A. Š ª ¢¨¤­®, ¨§ á«¥¤ã¥â N() N(),

¯®í⮬㠪®à४⭮®¯à¥¤¥«¥­ ¡ã«¥¢£®¬®¬®à䨧¬ %:A=N()!A=N()

ä®à-¬ã«®©% 0

=, £¤¥ 0

|ª ­®­¨ç¥áª¨© ä ªâ®à-£®¬®¬®à䨧¬ ¨§ A¢ A=N().

Ž¡®§­ ç¨¬ ᨬ¢®«®¬

a

¯®à浪®¢ë© ¯à®¥ªâ®à ¢ E, ᮮ⢥âáâ¢ãî騩

¥¤¨­¨ç-­®¬ã í«¥¬¥­âã a2A.

4.3. h , h%.

C ¥ ®£à ­¨ç¨¢ ï ®¡é­®á⨠¬®¦­® ¯à¥¤¯®«®¦¨âì, çâ®

¯®«®¦¨â¥«ì-­ . ® ãá«®¢¨î ¤«ï ª ¦¤®£® b 2 B ¢ë¯®«­ï¥âáï > > > > ,

h(b)^(a) > > > > 2 , h(b)^ 0 (a) ??

, áâ «® ¡ëâì, b ?

,

h(b)^(a)

= 0 ¤«ï ¢á¥å b 2 B ¨ a 2 A.

Žâá ¢ë¢®¤¨¬ ,

h(b)^ (a)

= b ,

h(b) ^ (a)

. ‡ ¬¥­¨¢ b ­  b ? , ¯®«ã-稬 b , h(b ?

)^(a)

= 0, ®âªã¤  b((a)) = b ,

h(b)^(a)

. ‘«¥¤®¢ â¥«ì­®,

b((a))= ,

h(b)^(a)

, çâ® ¨ âॡ®¢ «®áì.B

4.4. ’¥®à¥¬   ¤®­  | ¨ª®¤¨¬ . ãáâì ; : A ! F | áç¥â­®

 ¤¤¨â¨¢­ë¥ ¬¥àë, ¯à¨ç¥¬ ¯®«®¦¨â¥«ì­  ¨ ­ áë饭­ . …᫨  ¡á®«îâ­®

­¥¯à¥à뢭  ®â­®á¨â¥«ì­® , â® áãé¥áâ¢ã¥â â ª®© í«¥¬¥­â y 2L 1 (), çâ® (a)= Z a

(11)

Cà¥¤¯®«®¦¨¬á­ ç « , çâ®jj6. Ž¯à¥¤¥«¨¬®¯¥à â®àS

:L

1

()!F

ä®à¬ã«®©

S

(~x):=

Z

xd (x2L 1

()):

Š ª ¢¨¤­®, S

T, áâ «® ¡ëâì, ¯® ⥮६¥  ¤®­  | ¨ª®¤¨¬  ¤«ï

®¯¥à -â®à®¢ Œ £ à ¬ (á¬. [5, 13]) ¬®¦­® ­ ©â¨ â ª®© 2 Orth(L 1

()), çâ® jj 6I ¨

S

(u) = T(u) (u 2 L()). Žà⮬®à䨧¬ ¯à¥¤áâ ¢«ï¥âáï ¢ ¢¨¤¥ (u) = yu~

¤«ï ­¥ª®â®à®£® y~2L 1

(), jyj61, ®âªã¤ 

(a)=T(

a ~ y)=

Z

a

yd (a2A):

—⮡ë à áᬮâà¥âì ®¡é¨© á«ãç ©, ¯®«®¦¨¬

n

:=^(n) ¨ S

n :=S

n

(n2 N).

’®£¤ 

n

% , S

n % S

¨ ¢ ᨫ㠤®ª § ­­®£® ¢ëè¥ áãé¥áâ¢ã¥â

¢®§à áâ î-é ï ¯®á«¥¤®¢ â¥«ì­®áâì (y

n ) 2 L

1

(), ¤«ï ª®â®à®©

n

(a) = I

(

a y

n

) (a 2 A).

®áª®«ìªã I

(y

n

) =

n

(1) 6 (1), ¬®¦­® ¯à¨¬¥­¨âì ⥮६㠮

¬®­®â®­-­®© á室¨¬®áâ¨. ’ ª¨¬ ®¡à §®¬, í«¥¬¥­â y:= sup

n y

n

ᮤ¥à¦¨âáï ¢ L 1

() ¨

(a)=I

(

a

y) (a2A). B

4.5. ’¥®à¥¬ã 4.4 ¯®-áãé¥áâ¢ã ãáâ ­®¢¨« Œ.  ©â ¢ [20] ¤à㣨¬

ᯮá®-¡®¬. Ž­¢ë¢¥«íâ®â䠪⨧᫥¤ãî饣®¢á¯®¬®£ â¥«ì­®£®ã⢥ত¥­¨ï,

­¥¯®-á।á⢥­­® ¢ë⥪ î饣®¨§®¤­®£®à¥§ã«ìâ â ˆ. Š ¯« ­áª®£® [12;⥮६ 5]

(á¬. [20; «¥¬¬  4.2]):

ãáâì|­ áë饭­ ï¬¥à  á®§­ ç¥­¨ï¬¨ ¢C(Q)¨T :L 2

()!C(Q)|

®£à ­¨ç¥­­ë© ¯® ­®à¬¥ ¬®¤ã«ì­ë© £®¬®¬®à䨧¬. ’®£¤  áãé¥áâ¢ã¥â

¥¤¨­áâ-¢¥­­ ï äã­ªæ¨ï g2L 2

(), ¤«ïª®â®à®©

Tf = Z

fgd ,

f 2L 2

()

:

4.6. ãáâì|¯®«®¦¨â¥«ì­ ï­ áë饭­ ï¬¥à . ’®£¤ ®â®¡à ¦¥­¨¥x!

x

, £¤¥

x

®¯à¥¤¥«ï¥âáï ä®à¬ã«®©

x

(a):=I

(

a

x) (a2A), ¡ã¤¥âà¥è¥â®ç­ë¬

¨§®¬®à䨧¬®¬ ¢¥ªâ®à­ëå à¥è¥â®ª L 1

() ¨ fg ??

.

‹¨â¥à âãà 

1. €ª¨«®¢ ƒ. ., Šãâ â¥« ¤§¥ ‘. ‘. “¯®à冷祭­ë¥ ¢¥ªâ®à­ë¥

¯à®áâà ­-á⢠.|®¢®á¨¡¨àáª:  ãª , 1978.|368á.

2. ‚ã«¨å . ‡. ‚¢¥¤¥­¨¥ ¢ ⥮à¨î ¯®«ã㯮à冷祭­ëå ¯à®áâà ­áâ¢.|Œ.:

(12)

4{28

€. ƒ. Šãáà ¥¢

3. Š ­â®à®¢¨ç ‹. ‚., ‚ã«¨å . ‡., ¨­áª¥à €. ƒ. ”㭪樮­ «ì­ë©  ­ «¨§ ¢

¯®«ã㯮à冷祭­ëå ¯à®áâà ­á⢠å.|Œ.-‹.: ƒ®áâ¥å¨§¤ â, 1950.|548á.

4. Šãáà ¥¢ €. ƒ. ޡ鍥 ä®à¬ã«ë ¤¥§¨­â¥£à¨à®¢ ­¨ï // „®ª«. € ‘‘‘.|

1982.|’. 265, ü 6.|‘. 1312{1316.

5. Šãáà ¥¢ €. ƒ. ‚¥ªâ®à­ ï ¤¢®©á⢥­­®áâì ¨ ¥¥ ¯à¨«®¦¥­¨ï.|®¢®á¨¡¨àáª:

 ãª , 1985.|256á.

6. Šãáà ¥¢ €. ƒ. ‹¨­¥©­ë¥ ®¯¥à â®àë ¢ à¥è¥â®ç­® ­®à¬¨à®¢ ­­ëå

¯à®áâ-à ­á⢠å // ˆáá«¥¤®¢ ­¨ï ¯® £¥®¬¥âਨ ý¢ 楫®¬þ ¨ ¬ â¥¬ â¨ç¥áª®¬ã

 ­ «¨§ã.|®¢®á¨¡¨àáª:  ãª , 1987.|‘. 84{123.

7. Šãáà ¥¢ €. ƒ. Œ ¦®à¨àã¥¬ë¥ ®¯¥à â®àë // ‚ ª­: ‹¨­¥©­ë¥ ®¯¥à â®àë,

ᮣ« á®¢ ­­ë¥ á ¯®à浪®¬.|®¢®á¨¡¨àáª: ˆ§¤-¢® ˆ­-â  ¬ â-ª¨ ‘Ž €,

1995.|‘. 212{292.

8. Šãáà ¥¢ €. ƒ., Šãâ â¥« ¤§¥ ‘. ‘. ¥áâ ­¤ àâ­ ï ⥮à¨ï ¢¥ªâ®à­ëå

à¥-è¥â®ª // ‚ ª­: ‚¥ªâ®à­ë¥ à¥è¥âª¨ ¨ ¨­â¥£à «ì­ë¥ ®¯¥à â®àë /

ãå-¢ «®¢ €. ‚., Š®à®âª®¢ ‚. ., Šãáà ¥¢ €. ƒ., Šãâ â¥« ¤§¥ ‘. C.,

Œ ª -஢ . Œ.|®¢®á¨¡¨àáª:  ãª , 1991.|214á.; Dordrecht: Kluwer Academic

Publishers, 1996.

9. Šãáà ¥¢ €. ƒ., Šãâ â¥« ¤§¥ ‘. ‘. ‘㡤¨ää¥à¥­æ¨ «ë. ’¥®à¨ï ¨

¯à¨«®¦¥­¨ï.|®¢®á¨¡¨àáª:  ãª , 1992.|270 á.; Dordrecht: Kluwer

Aca-demic Publishers, 1995.

10. Šãáà ¥¢ €. ƒ., Œ «î£¨­ ‘. €. Ž ¯®à浪®¢® ­¥¯à¥à뢭®© á®áâ ¢«ïî饩

¬ ¦®à¨à㥬®£® ®¯¥à â®à  // ‘¨¡. ¬ â. ¦ãà­.|1987.|’. 28, ü 4.|‘. 127{

139.

11. Šãáà ¥¢ €. ƒ., Œ «î£¨­ ‘. €. ¥ª®â®àë¥ ¢®¯à®áë ⥮ਨ ¢¥ªâ®à­ëå

¬¥à.|®¢®á¨¡¨àáª: ˆ§¤-¢® ˆ­-â  ¬ â-ª¨ ‘Ž € ‘‘‘, 1988.|182á.

12. Kaplansky I. Modules over operator algebras // Amer. J. Math.|1953.|V. 75,

No. 4, P. 839{858.

13. Luxemburg W. A. J. and Schep A. A Radon{Nikodym type theorem for positive

operators and a dual // Indag. Math. (N.S.).|1978.|V. 40.|P. 357{375.

14. Maharam D. The representation of abstract measure functions // Trans. Amer.

Math. Soc.|1949.|V. 65, No. 2.|P. 279{330.

15. Maharam D. Decompositions of measure algebras and spaces // Trans. Amer.

Math. Soc.|1950.|V. 69, No. 1.|P. 142{160.

16. Maharam D. The representation of abstract integrals // Trans. Amer. Math.

Soc.|1953.|V. 75, No. 1.|P. 154{184.

17. Maharam D. On kernel representation of linear operators // Trans. Amer.

Math. Soc.|1955.|V. 79, No. 1.|P. 229{255.

18. Maharam D. On positive operators // Contemp. Math.|1984.|V. 26.|

P. 263{277.

(13)

Œ®¤ã«ïà­ë¥ ¬¥àë ¨ ®¯¥à â®àë Œ £ à ¬

4{29

functions and Radon{Nikodym type theorems // Proc. London Math. Soc.|

1982.|V. 45, No. 2.|P. 193{226.

20.

Wright J. D. M.

A Radon{Nikodym theorem for Stone algebra valued

mea-sures // Trans. Amer. Math. Soc.|1969.|V. 139.|P. 75{94.

21.

Wright J. D.M.

Stone algebra valued measures and integrals // Proc. London

Math. Soc. Proc. London Math. Soc.|1969.|V. 19, No. 3.|P. 107{122.

22.

Wright J. D. M.

The measure extension problem for vector lattices // Ann.

Inst. Fourier (Grenoble).|1971.|V. 21.|P. 65{68.

23.

Wright J. D. M.

Vector lattice measure on locally compact spaces // Math.

Z.|1971.|V. 120.|P. 193{203.

Referensi

Dokumen terkait

Disimpulkan bahwa tidak terdapat korelasi yang bermakna antara gambaran ekhostruktur, permukaan, dan ukuran hepar dengan kadar alkali fosfatase, tapi terdapat korelasi

Paket pengadaan ini terbuka untuk penyedia barang/jasa yang teregistrasi pada Layanan Pengadaan Secara Elektronik (LPSE) dan memenuhi persyaratan yang tercantum

Jalan Slamet Riyadi No. Pendaftaran dan Pengambilan Dokumen Kualifikasi / Download Dokumen dilakukan mulai Hari Kamis / tgl. Jadwal Pelaksanaan dilihat dalam aplikasi SPSE pada

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peserta/Penyedia barang/jasa berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara elektronik

GREAT POWER CONCERT MODEL IN ASIA PACIFIC Although it is not easy to predict whether or not the rivalry of great powers will likely bring the region into a major war because of

Because of that, it is important to exmines the tradition of sharing samples of virus, not only from the perspective of WHO and CBD, but also from the international human rights

“ Sarana komputer dalam perusahaan sangat mempengaruhi implementasi teknologi informasi pada perusahaan. Dengan lebih banyak fasilitas pendukung yang disediakan bagi

There are two main approaches of ethics, integrity and com- pliance approach, applying in public administration. In this pa- per, I would like to study specifically about