• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
14
0
0

Teks penuh

(1)

Equivariant Iwasawa Theory: An Example

J¨urgen Ritter and Alfred Weiss1

Received: November 6, 2007 Revised: April 22, 2008

Communicated by Peter Schneider

Abstract. The equivariant main conjecture of Iwasawa theory is shown to hold for a Galois extensionK/kof totally real number fields with Galois group anl-adic pro-lLie group of dimension 1 containing an abelian subgroup of index l, provided that Iwasawa’sµ-invariant

µ(K/k) vanishes.

2000 Mathematics Subject Classification: 11R23, 11R32, 11R42 Keywords and Phrases: Iwasawa theory, IwasawaL-functions

This note justifies a remark made in the introduction of [6] according to which the “main conjecture” of equivariant Iwasawa theory, as formulated in [2, p.564], holds when G = G(K/k) is a pro-l group with an abelian subgroup

G′ of indexl.

We quickly repeat the general set-up and, in doing so, refer the reader to [5,§1]

for facts and notation that is taken from our earlier papers on Iwasawa theory. Namely,l is a fixed odd prime number andK/k a Galois extension of totally real number fields, with k/Q and K/k∞ finite, where k∞ is the cyclotomic

Zl-extension of k. Throughout it will be assumed that Iwasawa’s µ-invariant

µ(K/k) vanishes. We also fix a finite setSof primes ofkcontaining all primes above∞and all those whose ramification index inK/k is divisible byl.

In this situation it is shown in [5] that the “main conjecture” of equivariant Iwasawa theory would follow from two kinds of hypothetical congruences bet-ween values of IwasawaL-functions. One of these kinds, the so-called torsion congruences(see [5, Proposition 3.2]), stated as

ver(λKab/k)

λK/k′

≡1 modT′

1

(2)

in the proof of the proposition in§2, has meanwhile been verified in [6].

The purpose of the present paper is to show that the torsion congruences al-ready suffice to obtain the whole conjecture in the special case when G is a pro-l group with an abelian subgroupG′ of index l. Before stating the precise

theorem we need to recall some notation (compare [5,§1]).

Λ∧Gis the l-completion of the localization Λ•Gwhich is obtained from

the Iwasawa algebra ΛG=Zl[[G]] by inverting all central elements which

are regular in ΛG/lΛG;Q∧Gis the total ring of fractions of Λ∧G;

T(Q∧G) =Q∧G/[Q∧G,Q∧G] is the quotient of Q∧Gby Lie

commuta-tors;

ifGis a pro-l group, then (see [5,§2]

2)

(LD)

K1(Λ∧G) −→L T(Q∧G)

Det ↓ Tr

≃ ↓

HOM(RlG,(Λc∧Γk)×) −→L Hom∗(RlG,Qc∧Γk)

is the logarithmic diagram defining thelogarithmic pseudomeasure

tK/k∈T(Q∧G) by Tr(tK/k) =L(LK/k)

whereLK/k=LK/k,S∈HOM(RlG,(Λc∧Γk)×) is the IwasawaL-function.

Theorem. With K/k and S as at the beginning and G = G(K/k) a pro-l

group,tK/kis integral (i.e., tK/k∈T(Λ∧G)) wheneverGhas an abelian

subgroupG′ of indexl.

As a corollary, by [5, Proposition 3.2] and [6, Theorem],LK/k∈DetK1(Λ∧G) ,

which implies the conjecture (see [3, Theorem A]), up to its uniqueness asser-tion. However,SK1(QG) = 1 because each simple component, after tensoring up with a suitable extension field of its centre, becomes isomorphic to a ma-trix ring of dimension a divisor of l2by the proof of [2, Proposition 6], as the character degreesχ(1) all divide l. Now apply [7, p.334, Corollary].

The proof of the theorem is carried out in§2; before, in a short§1, we introduce

restriction maps

ResGG′ :T(Q∧G)→T(Q∧G′)

and

ResGG′ : Hom∗(RlG,Qc∧Γk)→Hom∗(RlG′,Qc∧Γk′)

2

RlG is the ring of all (virtual) Qlc

-characters of G with open kernel; Γk = G(k∞/k) ; Λ

c

∧Γk =Zlc⊗ZlΛ∧Γk withZlc the ring of integers in a fixed algebraic

clos-ureQlc

(3)

making the diagram

K1(Λ∧G) −→L T(Q∧G) −→Tr Hom∗(RlG,Qc∧Γk)

resG′

G ↓ Res

G′

G ↓ ResG

G ↓

K1(Λ∧G′) L

−→ T(Q∧G′)

Tr′

−→ Hom∗(RlG′,Qc∧Γk′)

commute 3 for any pair of pro-l groupsG=G(K/k) and G=G(K/k)G

such that [G: G′] is finite. We remark that replacing ResG′

G by the “natural”

restriction map,

(resG′

Gf)(χ′) =f(indGG′χ′), f ∈Hom

(R

lG,Qc∧Γk), χ′∈RlG′,

does not work, because induction and Adams operations do not commute.

1 .

Res

LetG=G(K/k) be a pro-l group andG′ =G(K/k)Gan open subgroup.

Recall that Ψ : Λc

∧Γk → Λc∧Γk is the map induced by Ψ(γ) = γl for γ ∈ Γk

(compare [5,§1]) and thatψlis thel

th Adams operation onR

l(−).

Definition. ResGG′ : Hom∗(RlG,Qc∧Γk)→Hom∗(RlG′,Qc∧Γk′) sends f to

ResGG′f =

χ′7→f(indGG′χ′) +

X

r≥1 Ψr

lr (f(ψ r−1

l χ))

,

where χ=ψl(indGG′χ′)−ind

G

G′(ψlχ′).

To justify the definition we must show that the sumP

r≥1 is actually a finite sum. For this, let{t}be a set of coset representatives ofG′ inG, soG= ˙∪ttG,

and define

m(g) = min{r≥0 :glr ∈G′} for g∈G .

Then

indGG′χ′(g) =

X

t

˙

χ′(gt) = X {t:m(gt)=0}

χ′(gt),

if, as usual, ˙χ′ coincides withχonGand vanishes onG\G. Hence,

χ(g) = (indGG′χ′)(gl)−indGG′(ψlχ′)(g)

=P

m(glt)=0χ′(glt)− P

m(gt)=0χ′(glt) = P

m(gt)=1χ′(glt).

If r0 is such that Gl

r0

⊂G′, then ψr0−1

l χ = 0 and P

r≥1 =

Pr0−2

r=1 , because the sum P

m(gt)=1is empty wheng∈Gl r0−1

.

3

For finiteG, this ResG′

G, making the left square commute, appears already in [1, p.14].

For us the properties (HD),(TD) of ResG′

(4)

It remains to show that ResGG′f ∈Hom∗(RlG′,Qc∧Γk′) , i.e., ResG ′

Gf is a Galois

stable homomorphism, compatible with W-twists (see [5,§1]), and taking values

in Qc∧Γk′. The first property is easily checked and the third follows from the

second as in [2, proof of Lemma 9]. We turn to twisting. Letρ′ be a type-W character ofG, soρis inflated from Γ

Lemma 1. The diagram below commutes. In it, L and L′ are the lower hori-zontal maps of the logarithmic diagram (LD) forGandG′, respectively.

(5)

The proof of Lemma 1 is complete.

By means of the trace isomorphism Tr :T(−)→Hom∗(−) we next transport ResGG′ to ResG

G :T(Q∧G)→T(Q∧G′), i.e., the diagram

(TD)

T(Q∧G)

Tr

−→ Hom∗(RlG,Qc∧Γk)

ResGG′ ↓ Res G′

G ↓

T(Q∧G′)

Tr′

−→ Hom∗(RlG′,Qc∧Γk′)

commutes.

Lemma 2.

K1(Λ∧G) →L T(Q∧G)

resG′

G ↓ Res

G′

G ↓

K1(Λ∧G′) L

→ T(Q∧G′)

commutes andResGG′tK/k=tK/k′.

The first claim follows from gluing together the diagrams (LD), (HD), (TD) and applying [2, Lemma 9]; the second claim follows from resG′

GLK/k=LK/k′

[2, Proposition 12].

The next lemma already concentrates on the case when G′ is abelian and

[G : G′] = l. We set A = G/G= hai and observe that a acts on Gby

conjugation.

Lemma 3. Let τ: Λ∧G→T(Λ∧G)denote the canonical map andg∈G. IfG′

is abelian4 and of index l inG, then ResGG′(τ g) =

Pl−1 i=0ga

i

if g∈G′ gl if g /G.

The lemma is just a special case of

Proposition A. Let H be an open subgroup of G=G(K/k). For g ∈Gset

mH

G(g) = min{r ≥ 0 : gl r

∈ H} 5, and let t run through a set of left

representatives ofH in G, i.e., G= ˙S

tH. Then

1. ResHGτG(g) =PtτH((t−1gt)l

mHG(t−1gt) )/lmH

G(t

−1gt)

, 2. Resis transitive ,

3. ResHG is integral, i.e.,ResHG(T(Λ∧G))⊂T(Λ∧H)forH≤Gof finite

index.

Proposition A will be shown in the Appendix.

For the purpose of this paper it is enough to know Lemma 3 which we quick-ly prove directquick-ly on appquick-lying Tr′ to both sides and employing the formula Tr′(τ′g)(χ) =χ(g)g withg denoting the image ofgGin Γ

k′ (see [5,§1]) :

4

whenceτ′

: Λ∧G′→T(Λ∧G′) is the identity map

5

somH

G(g) is them(g) defined earlier withH=G

(6)

1. (Tr′ResGG′(τ g))(χ′) = ResG

G(Tr(τ g))(χ′) = Tr(τ g)(ind G G′χ′) +

Ψ

l Tr(τ g)(χ) since Gl ⊂ G′. Now, if g ∈ G′, Tr(τ g)(ind G G′χ′) =

Pl−1 i=0χ′(ga

i

)g and χ(g) = 0. On the other hand, if g ∈/ G′,

Tr(τ g)(indGG′χ′) = 0 and Ψ

l Tr(τ g)(χ) =

1

l ind G

G′χ′(gl)gl = χ′(gl)gl

since we may choosea=g modG′.

2. Tr′(Pl−1 i=0ga

i

)(χ′) =Pl−1 i=0χ′(ga

i

)g, sincegai

andg have the same image in Γk and so in Γk′. On the other hand, Tr′(gl)(χ′) =χ′(gl)gl.

The lemma is established.

We note that if Γ (≃Zl) is a central subgroup of Gcontained in the abelian

subgoup G′ of index l, then the elements ofT

∧G) can uniquely be written

as P

gβgτ(g) with βg ∈ Λ∧Γ and g running through a set of preimages of

conjugacy classes ofG/Γ (see [3, Lemma 5]). For each summand we have

ResGG′(βgτ(g)) =

Pl−1 i=0βgga

i

ifg∈G′

Ψ(βg)gl ifg /∈G′.

2 .

Proof of the theorem

In this section G = G(K/k) is a pro-l group and G′ = G(K/k) an abelian

subgroup of indexl(K/kis as in the introduction). As before,A=G/G′ =hai,

and we set ˆA= 1 +a+· · ·+al−1.

IfGitself is abelian, the theorem holds by [4,§5, Example 1], whence we assume

that Gis non-abelian.

Lemma 4. Assume that there exists an element x ∈ T(Λ∧G) such that

deflGGabx= deflG

ab

G tK/k andResG

Gx= ResG

GtK/k. Then tK/k∈T(Λ∧G).

Denoting by Kab the fixed field of the finite group [G, G], we first obser-ve, because of [5, Lemma 2.1] and Lemma 2, that deflGGabtK/k = tKab/k and ResGG′tK/k=tK/k′are integral : indeed, a logarithmic pseudomeasure is integral

whenever the group is abelian.

From [4, Proposition 9] we obtain a powerln ofl such thatlnt

K/k∈T(Λ∧G).

Consider the element ˜x = ln(xt

K/k) ∈ T(Λ∧G). It satisfies deflG

ab

G x˜ =

0 = ResGG′x˜. We are going to prove ˜x = 0 which implies x = tK/k because

Hom∗(RlG,Qc∧Γk), and soT(Q∧G), is torsionfree; whence the the lemma will

be verified.

The proof of ˜x= 0 employs the commutative diagram shown in the proof of [5, Proposition 2.2] :

1 +a ֌ G)× defl

Gab G

։ (Λ∧Gab)×

ˇ L↓ Lab↓

τ(a) ֌ TG) defl

Gab G

(7)

in which L is extended to (Λ∧G)× by means of the canonical surjection

(Λ∧G)× ։ K1(Λ∧G) and a∧ = ker(Λ∧G → Λ∧Gab). The diagram yields a v∈(Λ∧G)× withL(v) = ˜x, simply because deflG

ab

G x˜= 0. Combining diagrams

(HD), (LD) and (TD), we arrive at

L′(resGG′(Detv)) = ResG

G(L(Detv)) = ResG

G(TrL(v)) = Tr′(ResG

Gx˜) = 0

and, with resG′

G replaced by deflG

ab

G , at

Lab(deflGGab(Detv)) = deflG

ab

G (L(Detv)) =

= deflGGab(TrL(v)) = Trab(deflG

ab

G x˜) = 0,

sinceLand Tr commute with deflation.

The first displayed formula in [3, p.46] now implies that resG′

G(Detv)

and deflGGab(Detv) are torsion elements in HOM(RlG′,(Λc∧Γk′)×) and

HOM(Rl(Gab),(Λc∧Γk)×), respectively. Moreover, the first paragraph of

the proof of [5, Proposition 3.2] therefore shows that Detv itself is a torsion element in HOM(RlG,(Λc∧Γk)×). Consequently, for some natural number m,

(Detv)lm

= 1, so lmL(Detv) = 0 =lmTr(Lv) = Tr(lmx˜) , and ˜x= 0 follows,

as has been claimed.

We now introduce the commutative diagram

τ(a) ֌ TG) ։ ΛGab=TGab)

Res↓ ResGG′ ↓ Res↓

b′=τ(b′) ֌ΛG=TG) ։ Λ(G/[G, G]) =T(G/[G, G]))

with exact rows (of which the upper one has already appeared in the diagram shown in the proof of the preceding lemma). The images of all vertical maps are fixed elementwise byAbecause of Lemma 3. Thus we can turn the diagram into

(D)

τ(a) ֌ TG) ։ ΛGab

Res↓ ResGG′ ↓ Res↓

b′A ֌ G)A (G/[G, G]))A

ˇ ↓ˇ ˇ↓

ˆ

H0(A,b

∧) → Hˆ0(A,Λ∧G′) → Hˆ0(A,Λ∧(G′/[G, G]))

with exact rows and canonical lower vertical maps.

Lemma 5. In (D), the left vertical column is exact and the left bottom hori-zontal map is injective.

Proof. The ideala is (additively) generated by the elementsg(c1) with

g∈G, c∈[G, G] ; those withg∈G′generateb′. We compute ResGGτ(g(c1)),

(8)

1. ifg ∈G′, ResG′

the dotted equality sign, ˙=, results from the equation

[bg′

4 and the theorem will have been confirmed. The above change is possible if, and only if,x′

1∈Res

This is seen as follows. From [5,§1] we recall the existence of

pseu-domeasures λKab/k, λK/k′ in K1(Λ∧G

where ‘ver’ is the map induced from the transfer homomorphismGabG.

(9)

(see the proof of [5, Proposition 3.2]). Moreover,y′1 +b

∧. Now,x1def= L(y) has ResGG′x1= ResG

GL(y) =tK/k′+x′1withx′1

def

= L′(y′), andx

1∈b′∧because

of the commutativity of

1 +b′ ֌ G)× ։ (G/[G, G]))×

L′ ↓ L′ ↓ L′

b′ ֌ ΛG։ Λ(G/[G, G]) .

Hence, the proposition (and therefore the theorem) will be proved, if

x′1=L′(y′)∈ T′. However, Lemma 5 gives

y′∈(1 +b′A)(1 +T) = 1 + (b′A∩ T) = 1 + trAb′

and asL′(y′) = 1

l log y′l

Ψ(y′) (compare [3, p.39]), we see that

(1) L′(y′)∈ Tif y′l

Ψ(y′) ≡1 modlT

.

So it suffices to show this last congruence. Writey′ = 1 + tr

Aβ′ withβ′ ∈b′∧. Since (1 + trAβ′)l ≡1 + (trAβ′)l modlT′,

the congruence in (1) is equivalent to

(2) (trAβ′)l≡Ψ(trAβ′) mod lT′.

On picking a central subgroup Γ (≃Zl) ofGand writing β′=Pg′,cβg,cg′(c−

1) with elements βg′,c∈ΛΓ, g′∈G′, c∈[G, G], we obtain

(a)

(trAβ′)l=

P

g′,cβg,ctrA(g′(c−1))

l

≡P

g′,c(βg′,c)l

trA(g′(c−1)) l

≡P

g′,cΨ(βg′,c)

(trA(g′c))l−(trAg′)l

modlT′

and

(b) Ψ(trAβ′) =Pg′,cΨ(βg,c)

trA((g′c)l)−trA(g′l)

as Ψ and trA commute. Thus congruence (2) will result from Lemma 6 below,

since then subtracting (b) from (a) yields the sum

P

g′,cΨ(βg,c)

(trA(g′c))l−trA((g′c)l)−(trAg′)l+ trA(g′l)

P

g′,cΨ(βg′,c)

−l(g′c)+lg′Aˆ ≡

P

g′,c(−l)Ψ(βg′,c)g′

ˆ

A

(cAˆ1)0 modlT,

(10)

Lemma 6. (trAg′)l−trA(g′l)≡ −lg′

We compute the subsums ofP

min which mis constrained to an ˜A-orbit.

stabilizer different from {(0,1)} must be cyclic of order l and different from

{(0, ai) : 0il1}and therefore =h(1, aj)ifor a uniquej modl.

One now checks that for each j there is exactly one ˜A-orbit with stabilizer

h(1, aj)i and that it is represented by m

This finishes the proof of Lemma 6.

3 .

Appendix

Proof of Proposition A :

We start from the formula χ(g) = P mH

G(gt)=1χ

(glt) which appeared in the

justification of the definition in§1 (now with H =G

). It implies χ(glr−1

(11)

˙

On the other hand, ifh∈H, the same calculation on theH-level gives

(TrHτH(h))(χ′) = trace(h|Vχ′) =χ′(h)h ,

Since these formulae agree for all characters χ′ of H (with open kernel) it

follows that ResHGτG(g) = τH(Pt

(t−1gt)lmHG(t−1gt)

lmHG(t−1gt) ) by the uniqueness of this element, proving 1. of Proposition A.

(12)

Then, accordingly,

The proof of Proposition A is complete.

References

[1] Oliver, R. and Taylor, L.R., Logarithmic descriptions of White-head groups and class groups for p-groups.Memoirs of the AMS (1988), vol. 76, no. 392

[2-6] Ritter, J. and Weiss, A. ,

2.Towards equivariant Iwasawa theory, II.Indag. Mathemat.15 (2004), 549-572

3.· · ·, III.Math. Ann.336(2006), 27-49

4.· · ·, IV.Homology, Homotopy and Applications7(2005),

155-171

5.Non-abelian pseudomeasures and congruences between abelian IwasawaL-functions.Pure and Applied Math. Quarterly4(2008), 1085-1106

6. Congruences between abelian pseudomeasures. To appear in Math.Res. Lett. 15(2008)

[7] Wang, S., On the commutator group of a simple algebra.

(13)

J¨urgen Ritter

Institut f¨ur Mathematik Universit¨at Augsburg 86135 Augsburg Germany

Alfred Weiss

(14)

Referensi

Dokumen terkait

Koreksi aritmatika telah dilakukan terhadap perusahaan yang kelengkapan dokumen administrasi dan teknisnya telah memenuhi syarat, dengn hasil sebagai berikut:. N0

Pada hari ini Rabu Tanggal Lima Bulan Agustus Tahun Dua Ribu Lima Belas pukul 08.00 s/d 09.00 WIB telah dilaksanakan Rapat Penjelasan Pekerjaan (Aanwijzing) Pemilihan

Hal ini sangat relevan jika di lihat dari permasalahan yang ditemukan di UKM tersebut yaitukurangnya pemahaman dan ketrampilan yang berkaitan dengan teknologi Informasi

Agar mesin pembersih biji-bijian pakan burung olahan sistem blower hasil rancangbangun tersebut mencapai kualitas yang maksimal sesuai dengan kapasitas yang dihasilkan, maka

Pembangunan daerah yang bertujuan untuk meningkatkan kesejahteraan rakyat, dan meningkatkan peran serta masyarakat dalam proses pembangunan di daerahnya. Penerapan

Supervisi Pembangunan Fasilitas Pelabuhan Teluk Dalam Tahun Anggaran 2017 pada Satuan Kerja Kantor UPT Teluk Dalam Nias, maka dengan ini diharapkan kehadirannya pada

Kriteria subyek yang meliputi umur, berat badan , tinggi badan setelah dianalisis untuk dibandingkan antara kelompok laki – laki dan perempuan ternyata tidak berbeda bermakna P

Hasil analisis statistik pada Tabel 2 menunjukkan pada tingkat signifikansi (p) dapat diketahui bahwa ukuran diameter tubulus seminiferi masing-masing kelompok perlakuan