• Tidak ada hasil yang ditemukan

Paper19-Acta25-2011. 97KB Jun 04 2011 12:03:16 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper19-Acta25-2011. 97KB Jun 04 2011 12:03:16 AM"

Copied!
7
0
0

Teks penuh

(1)

A NEW APPROACH TO INTUITIONISTIC COMPACTNESS

Natarajan Pankajam and Arumugam Pushpaltha

Abstract. The basic concepts of the theory of intuitionistic fuzzy topological spaces are defined by D.Coker and coworkers. In a recent paper, we define the notion of prefilters in intuitionistic fuzzy sets and obtain some of its properties. The purpose of this paper is to introduce a new concept of compactness for intuitionistic fuzzy topological spaces.

2000Mathematics Subject Classification: 03E72, 54A40 . 1.Introduction

The notion of intuitionistic fuzzy set is defined by K.T.Atanassov [1] and the theory has been developed by various authors. In particular D.Coker [4] has defined the intuitionistic fuzzy topological spaces. Blasco Mardones et al [3] introduced a new process of compactification for a fuzzy topological space .In this paper we define prime prefilter and prove some of its relationship with prefilters and ultra filters .Next, we use these ideas to study compactness in intuitionistic fuzzy topological spaces. Here we give a brief review of some preliminaries.

Definition 1.1[1]Let X be a nonempty set. An intuitionistic fuzzy set(IFS for short) A is an object having the form A : {hx, µ(x), ν(x) :x∈Xi} where the functions µA : X → I and νA : X → I denote the degree of membership(namely µA(x) ) and the degree of non membership (namely νA(x) )of each element x∈ X to the set A , respectively, and 0≤µA(x) +νA(x)≤1 for each x∈X .

Definition 1.2[2]Let X be a nonempty set and letA, B be two IFSs ofX.Then (i) A⊆B iffµA(x)≤µA(x) andνA(x)≥νB(x) for each x∈X

(ii) A=B iffA⊆B andB ⊆A

(iii) A ∪ B ={hx, µA(x)∨µB(x), νA(x)∧νB(x)i:x∈X}

(iv) A ∩ B ={hx, µA(x)∧µB(x), νA(x)∨νB(x)i:x∈X}

(2)

Definition 1.3[4]Let {Ai :i∈J} be an arbitrary family of IFSs in X Then (i) T

Ai={hx,V

µAi, W

νAii:x∈X}

(ii) TA

i={hx,WµAi, Vν

Aii:x∈X}

Definition 1.4[4]0∼={hx,0,1)i:x∈X} and 1∼={hx,1,0)i:x∈X} Definition 1.5[4]An intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a familyτ of IFSs in X satisfying the following axioms:

(i) 0∼,1∼∈τ

(ii) A1∩A2 ∈τ for any A1, A2∈τ

(iii) S

Ai∈τ for any arbitrary family{Ai:i∈J}

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS for short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X .

Definition 1.6 [4]An intuitionistic fuzzy topological space is a pair(X, τ)where (X, τ) is an IFTS and each IFS in the form Cα,β = {hx, α, β)i:x∈X} where α, β ∈I are arbitrary and α+β ≤1,belongs to τc.

Definition 1.7 [4]The complementA¯ of an IFOSAin an IFTS (X, τ)is called an intuitionistic fuzzy closed set (IFCS for short) in X .

Definition 1.8 [5]The support of a fuzzy set A is a crisp set that contains all the elements of X that have nonzero membership grades in A .

Definition 1.9 [6]Let (X, τ) be an IFTS.Let F ⊂τc satisfies (i) F 6= 0∼ and 0∼∈ F/

(ii) A1, A2 ∈τ then A1∩A2 ∈τ

(iii) If A∈ F and B ∈τc with A⊆B thenB ∈ F

F is called an IF closed filter or a τc - prefilter on X.

(3)

Theorem 1.11 [6]Every τc prefilter is contained in some intuitionistic fuzzyτc ultra filter.

Theorem 1.12 [6] Let F be τc prefilter on X.The following statements are equivalent:

(i) F is an intuitionistic fuzzy τc ultra filter (ii) If A is an element of τc such thatAB 6= 0

∼ for each B ∈ F thenA∈ F.

(ii) IfA∈τc andA /∈ F, then there isB ∈ F such thatSupp(B)⊆X−Supp(A).

Definition 1.13 [4] Let (X, τ) be IFTs.

(i) If a family {hx, µGi, νGii:i∈J} of IFOSs in X satisfies the condition S{h

x, µGi, νGii:i∈J}= 1∼ then it is called a fuzzy open cover ofX. A finite

subfamily of a fuzzy open cover {hx, µGi, νGii:i∈J} of X , which is also a

fuzzy open cover of X, is called a finite sub cover of {hx, µGi, νGii:i∈J}.

(ii) A family {hx, µki, νkii:i∈J} of IFCSs in X satisfies the finite intersection

property iff every finite sub family {hx, µki, νkii:i= 1,2, ..n}of the family

sat-isfies the condition T{h

x, µki, νkii:i= 1,2, ..n} 6= 0∼.

Definition 1.14 [4]An IFTS(X, τ) is called fuzzy compact iff every fuzzy open cover of X has a finite subcover.

Theorem 1.15 [4] An IFTS(X, τ) is fuzzy compact iff every family

{hx, µki, νkii:i∈J} of IFCS’s in X having the finite intersection property has a

non empty intersection.

2.Intuitionistic Compactness

In this section, intuitionistic prime prefilter is introduced and its relationship with prefilters and ultra filters are studied.

Definition 2.1Let F be aτc prefilter on X. F is said to be intuitionistic prime τc if givenA, Bτc such that AB ∈ F,thenA∈ F or B ∈ F.

(4)

Proof.LetA, B ∈ τc be such thatA ∪B ∈ U. Suppose bothA, B /∈ U. Therefore U is an intuitionistic prime τc prefilter.

Theorem 2.3Let F be a prefilter.Let P(F) be the family of all prime prefilters which contain F.Then F = T

Let U be a maximal element in S. Next we prove U is an intuionistic prime τc prefilter.

(5)

(ii) U ⊂ L

Take B ∈ U. B⊂(B∪D2) we get B∪D2 ∈ U.By definition B ∈ L.Therefore

U ⊂ L. (iii) U 6=L

Since D1∈ Land D1∈ U/ we get U 6=L.

Let K={D∈τc :A∪D∈U}

(iv) K is prefilter

Since A∪1∼= 1∼ ∈ U,we get 1∼∈ K.Therefore K 6= 0∼. Since U ∈ S, A /∈ U ⇒A∪0∼∈ U ⇒/ 0∼∈ K/ Take D1, D2∈ K.

Then A∪D1 ∈ U and A∪D2 ∈ U.

⇒(A∪D1)∩(A∪D2)∈ U.⇒A∪(D1∩D2)∈ U.⇒(D1∪D2)∈ U

Take D∈ K and B ∈τc be such thatDB

Consider (A∪D) ⊂ (A∪B) ∈ U.Since A∪D ∈ U,U is a prefilter A∪B ∈ U.Therefore B ∈ K.

(v) F ⊂ K

Take D∈ U.SinceD⊂A∪D∈ U we getD∈ K.HenceU ⊂ K. Since F ∈ S and U is a maximal element in S,F ⊂ U.

Combining both the inclusions we getF ⊂ K. (vi) A /∈ K

Since A∪A=A /∈ U, A /∈ K

By (iv), (v), (vi) we get K ∈ S. Hence K ⊂ U.But U ⊂ K. This implies U =K

Claim 1:A /∈ L

Suppose not,then A∪D2 ∈ U.By definition of K this implies that D2 ∈ K=U.

This is a contradiction.

Claim 2:F ⊂ L Since F ∈ S,F ⊂ U.By (ii)U ⊂ L.Hence F ⊂ L. By claims 1 and 2 we getL ∈ S.Therefore L ⊂ U.

By (ii)U ⊂ L.This implies U =L.

But by (iii)U 6=L.Hence we get a contradiction .

Therfore our assumption that both D1, D2 does not belong toU is wrong.

Therefore U is an intuionistic prime τc,F ⊂ U and A /∈ U. That is U ∈ P(F) and A /∈ U.HenceA /∈ T

G∈P(F)

G. Therefore T

G∈P(F)

(6)

Combining both the inclusions we get F= T

G∈P(F)

G

Theorem 2.4The following are equivalent for an intuitionistic fuzzy topological space (X, τ):

(i) (X, τ) is is intuitionistic fuzzy compact (ii) Everyτc prefilter F satisfies T

A∈F

A6= 0∼ (iii) Every primeτc prefilter F satisfies T

A∈F

A6= 0∼ (iv) Every τc ultra filter U satisfies T

A∈U

SinceAc ∈τ and (X, τ) is intuitionistic fuzzy compact, there is a finite sub collection

{Ac1, Ac2, ...Acn} such that 1∼ = (Ac1)∪(Ac1)∪...∪(Acn).

(iv) ⇒(i) Let K be a family of intuitionistic fuzzy closed sets on X having finite intersection property.

For each B∈ F defineGB={A∈τc :B ⊂A}. Obviously B ∈ GB. Let G = S

B∈K

GB. Since K has the finite intersection property, we get that G also has the finite intersection property. Hence there exists an intu-itionistic fuzzy τc ultra filterU such thatG ⊂ U. Hence K has a non empty intersection.

(7)

References

[1] K.T.Atanassov,Intuitionistic Fuzzy Sets,in: VII ITKR’s Session, Sofia, (1983). [2] K.T.Atanassov,Review and New Results on Intuitionistic Fuzzy Sets,Preprint IM-MFAIS- Sofia,(1988), 1-88.

[3] N.Blasco Mardones, M.Macho Stadler, and M.A. De Prada Vicente,On fuzzy compactifications, Fuzzy Sets and Systems, 43, (1991), 189-197.

[4] D.Coker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems, 88, (1997), 81-89.

[5] George J.Klir., and Bo Yuan,Fuzzy sets and fuzzy logic: Theory and Applica-tions, Prentice hall of India Private Limited, New Delhi, 2008.

[6] N.Pankajam,τc Prefilters in Intuitionistic Fuzzy Sets, Applied Mathematical Sciences, 43,3,(2009), 2107 - 2112.

Natarajan Pankajam

Department of Mathematics

Dr.Mahalingam College of Engineering and technology email:pankajam [email protected]

Arumugam Pushpalatha Department of Mathematics Government Arts College

Referensi

Dokumen terkait

[r]

2 Kendaraan operasional roda empat untuk surveilans dan monitoring penyakit hewan Rp305,000,000 e-procurement. XIV PERALATAN PENUNJANG

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Meja Bhs Jepang Nada Isu Bhs Indonesia Dini Gomibako Bhs Inggris Daniel Randosēru Bhs Inggris Etienne Kabin Bhs Inggris Nobita Karend ā Bhs Jawa Sugiman.. Pencil case (box) Bhs

Instansi : Dinas Perumahan, Tata Ruang dan Pengawasan Bangunan Kota Banjarbaru Kegiatan : Pembangunan Prasarana, Sarana dan Utilitas Rumah Sederhana Sehat Pekerjaan :

Hal itu juga terlihat dari kegiatan perusahaan dimana perusahaan menerima retur barang yang diberikan konsumen dan kemudian mengganti barang tersebut dengan

Yang perlu dicermati dari rantai pembeli ini adalah PT. Belirang Kalisari tidak langsung menawarkan jasa pada konsumen tingkat akhir. Jika dilihat prosesnya,

Ada beberapa teori motivasi kerja yang dikemukakan oleh para ahli, salah satunya adalah Teori kebutuhan yang dikemukakan oleh Clayton Alderfer yang dikenal dengan