• Tidak ada hasil yang ditemukan

BAB V SIMULASI HIDRODINAMIKA DAN KINERJA UNIT DAF DENGAN CFD

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB V SIMULASI HIDRODINAMIKA DAN KINERJA UNIT DAF DENGAN CFD"

Copied!
53
0
0

Teks penuh

(1)

BAB V

SIMULASI HIDRODINAMIKA DAN KINERJA

UNIT DAF DENGAN CFD

5.1 Pendahuluan

Meskipun CFD (Computational Fluida Dynamics) telah dipakai secara luas di berbagai bidang ilmu pengetahuan, aplikasi CFD pada tangki DAF belum cukup banyak dibandingkan dengan aplikasi pada bidang lain, seperti aerodinamika dan rekayasa pesawat. Beberapa tahun terakhir para peneliti flotasi mulai menggunakan CFD untuk memodelkan aliran yang terjadi pada tangki flotasi. Aliran yang terjadi pada tangki flotasi merupakan aliran multifasa yang terdiri dari fasa cair, gas dan padat (Koh dkk., 2000).

Desain tangki flotasi secara konvensional mempergunakan model dan persamaan yang diturunkan secara empirik. Dengan pemodelan CFD, desain tangki flotasi dilakukan melalui diskritisasi bidang (dua dimensi, 2D) atau ruang (tiga dimensi, 3D). Diskritisasi bertujuan untuk menghitung parameter aliran lokal. Parameter aliran lokal ini diselesaikan untuk menggambarkan hidrodinamika yang terjadi pada tangki flotasi. Sehingga CFD dapat didefinisikan sebagai simulasi hidrodinamika untuk menggambarkan perilaku aliran yang terjadi. Hidrodinamika yang terjadi pada tangki DAF (Dissolved Air Flotation) dipengaruhi, antara lain oleh jenis dan sifat fasa dalam aliran serta geometri tangki DAF. Perhitungan interaksi antara fasa tergantung pada tinjauan keterkaitan antar fasa. Keterkaitan antar fasa dapat dibagi menjadi keterkaitan satu arah, dua arah dan empat arah. Variasi geometri tangki DAF yang mempengaruhi hidrodinamika meliputi dimensi dan bentuk tangki DAF. Hidrodinamika dan kinetika proses yang terjadi di tangki DAF dapat diperkirakan dengan bantuan CFD.

Desain tangki flotasi dan DAF yang baik membutuhkan pemahaman detail tentang mekanisme aliran yang terjadi dan hubungan antar fasa yang ada dalam tangki flotasi (Koh dan Schwarz, 2003). Hubungan antara fasa dan mekanisme yang terjadi pada unit flotasi diberikan oleh model kinetika flotasi. Peneliti yang pertama kali mengkaitkan hubungan kinetika flotasi dengan CFD adalah Koh dkk.

(2)

(2000, 2003 dan 2006). Hingga saat ini belum diketahui peneliti lain yang mengkaitkan kinetika flotasi dengan DAF (Emmanouli dkk., 2007). Kinetika flotasi yang digunakan oleh Koh dkk. adalah effisiensi tumbukan, penangkapan dan pelepasan. Koh dkk. (2003) melakukan simulasi 3D untuk menguji kinerja tanki flotasi udara terdispersi dengan program CFX 4.1 dan menggunakan model tumbukan turbulen. Model tumbukan yang digunakan oleh Koh dan Schwarz (2003, 2006) adalah model frekuensi tumbukan Saffman-Turner (1956).

Uraian di dalam bab lima disertasi ini merupakan hasil penelitian lebih lanjut dari penerapan konsep kinetika flotasi dengan CFD yang dilakukan oleh Koh dkk. Perbedaan paling mendasar antara penelitian Koh dkk. dengan disertasi ini adalah pada model frekuensi tumbukan yang digunakan. Disertasi ini mempergunakan model frekuensi tumbukan dengan keterkaitan dua arah yang telah diuraikan di dalam bab empat disertasi ini. Model kinetika yang digunakan oleh Koh dkk. adalah model frekuensi tumbukan partikel dengan keterkaitan satu arah. Model frekuensi tumbukan dua arah memperhitungkan pengaruh timbal balik partikel terhadap aliran fasa pembawa, sedangkan pada model satu arah hanya memperhitungkan pengaruh aliran fasa pembawa terhadap partikel terdispersi. Model kinetika flotasi yang dikaitkan dengan CFD ditujukan untuk mengetahui kinerja unit flotasi secara langsung. Model kinetika flotasi dikaitkan dengan CFD melalui koefisien perubahan antar fasa untuk jenis fasa padat-padat. Parameter kecepatan dan tekanan yang diperoleh dari setiap langkah perhitungan CFD digunakan secara iteratif untuk memperkirakan kinetika flotasi. Energi dissipasi unit DAF digunakan sebagai kondisi awal untuk model turbulen CFD. Perhitungan model kinetika pada CFD dilakukan melalui fasilitas User Defined Function (UDF) yang dimiliki CFD. Perkiraan effisiensi didasarkan pada jumlah fasa padat yang berada pada permukaan air di tangki DAF. Dengan asumsi bahwa semua fasa padat yang berada di permukaan air tangki DAF dapat disisihkan dengan sempurna oleh skimmer. Mekanisme penyisihan skimmer tidak ditinjau dalam disertasi ini.

Uraian dalam bab lima ini terdiri dari hasil simulasi CFD yang dikaitkan dengan model kinetika. Perilaku hidrodinamika ditinjau dengan melakukan simulasi

(3)

pada tangki DAF dengan ketinggian baffle yang berbeda-beda. Baffle pada tangki DAF berfungsi untuk memisahkan zone kontak dengan zone effluent. Ketinggian baffle tangki DAF yang disimulasikan adalah pada besaran 12,5 cm; 27,5 cm; 45,0 cm; 60,0 cm dan tanpa baffle. Hasil simulasi CFD yang dikaitkan dengan model kinetika juga diuji dengan validasi dan kalibrasi.

Uraian hasil kalibrasi dan validasi simulasi CFD akan menutup pembahasan pada bab ini. Kalibrasi dan validasi model CFD yang dikaitkan dengan model kinetika dilakukan dengan percobaan kinerja unit DAF pada penyisihan partikel tapioka. Aplikasi unit DAF pada proses produksi tapioka ditujukan untuk mengimplementasikan proses produksi bersih industri tapioka.

5.2 Dasar Teori

5.2.1. Hidrodinamika Tangki DAF

Aplikasi unit DAF yang semakin luas mulai dari bidang teknik lingkungan hingga proses produksi menuntut kinerja unit DAF yang semakin baik. Kinerja DAF dapat ditingkatkan melalui desain tangki DAF dengan hidrodinamika yang mendukung proses dan mekanisme yang terjadi pada tangki DAF.

Proses dan mekanisme yang terjadi pada unit DAF telah dijelaskan dengan baik oleh model kinetika flotasi yang dibangun pada bab empat. Hidrodinamika sebagai pendukung utama proses dan mekanisme pada unit DAF dapat direkayasa untuk meningkatkan kinerja unit DAF. Hidrodinamika yang mendukung kinetika DAF adalah hidrodinamika tangki DAF yang mampu meningkatkan effisiensi penyisihan partikel padat dari fasa cair dan mencegah terjadinya break-through effisiensi penyisihan akibat partikel padat yang berada di permukaan air tangki flotasi terbawa menuju effluen DAF.

Hidrodinamika dapat meningkatkan effisiensi penyisihan partikel padat pada unit DAF dengan cara meningkatkan frekuensi tumbukan antara partikel dan membantu terbentuk agglomerat gelembung-partikel. Frekuensi tumbukan antara partikel dapat ditingkatkan dengan membentuk aliran turbulen pada zone kontak.

(4)

Parameter kinetika flotasi yang mempengaruhi effisiensi penyisihan partikel padat telah diuraikan dengan detail pada bab empat. Parameter tersebut meliputi laju jenis, sifat dan jumlah partikel padat, gelembung, frekuensi tumbukan dan effisiensi pengumpulan. Effisiensi pengumpulan merupakan resultan dari effisiensi tumbukan, stabilitas, gelinciran dan effisiensi kontak tiga fasa.

Desain tangki DAF yang baik akan membentuk hidrodinamika yang menunjang kinetika flotasi tersebut. Hidrodinamika tangki DAF dapat diketahui dan dipahami lebih baik dengan mengunakan perangkat lunak CFD. Kemampuan CFD ini sangat membantu desain tangki DAF karena biaya yang relatif murah dibandingkan dengan percobaan laboratorium untuk mendapatkan hubungan antara parameter DAF secara empirik. Aplikasi CFD sebagai alat bantu desain semakin meningkat akibat perkembangan perangkat keras komputer yang semakin baik. Beberapa peneliti DAF mulai menggunakan CFD untuk desain tangki DAF. Peneliti pertama yang mempergunakan CFD untuk desain tangki DAF adalah Fawcett (1997). Fawcett mempergunakan perangkat lunak CFD program CFX 4 dengan simulasi dua dimensi (2D) untuk mempelajari hidrodinamika dua fasa dari tangki DAF. Hasil simulasi oleh Fawcett dengan variasi parameter dimensi tangki, tinggi baffle, serta debit udara dan air, menunjukkan bahwa parameter desain paling utama untuk pencampuran efektif udara dengan air adalah perbandingan momentum aliran air terhadap udara.

Hague dkk. (2000) membandingkan perbedaan simulasi antara model turbulen κ-ε dengan laminer pada hidrodinamika tangki DAF dengan menggunakan program Fluent® 4.5. Hague dkk. mendapatkan bahwa hasil simulasi model turbulen lebih mendekati hasil pengukuran dibandingkan dengan hasil simulasi model laminer. Ta (2000) pada analisa hidrodinamika tangki DAF mendapatkan bahwa aliran air dalam tangki DAF didominasi oleh gerak gelembung jika diameter gelembung cukup kecil (20 – 120 μm) dan fraksi volume udara kurang dari 10%. Ta (2000) melakukan simulasi hidrodinamika tersebut pada tangki DAF yang cukup besar dengan diameter rerata gelembung 50 μm. Simulasi dilakukan untuk aliran tiga fasa dan 3D. Model Euler-Euler digunakan oleh Ta (2000) untuk aliran campuran

(5)

udara – air. Dispersi aliran mempergunakan model Lagrange dengan penjejakan partikel. Hasil simulasi CFD oleh Ta dibandingkan dengan informasi visual yang didapatkan dari hasil fotografi kamera bawah air dan hasil pengukuran kecepatan dengan Accoustic Dopller Velocimeter (ADV). Hasil semua pengukuran aliran dan simulasi CFD oleh Ta (2000) digunakan untuk aliran tunak (steady). Alian tak tunak (unsteady) seperti dispersi kelompok gelembung (bubble clouds) tidak berhasil diperkirakan oleh Ta (2000).

Lundh (2000) meneliti hidrodinamika tangki DAF dengan melakukan pengukuran kecepatan aliran dalam tangki DAF menggunakan alat ukur ADV. Lund menganalisa hidrodinamika tangki DAF dengan stratifikasi aliran dengan menggunakan bilangan Richardson. Penelitian yang dilakukan oleh Lundh dkk. (2000, 2001, 2002, 2005) merupakan penelitian terlengkap dan terbaik yang pernah ada. Lundh mendapatkan bahwa gaya geser yang berasal dari kecepatan lateral yang cukup besar pada aliran yang berada di dekat lapisan hasil penyisihan padatan menyebabkan tererosinya partikel padat oleh aliran effluen. Hal ini menyebabkan terjadinya break-through pada effisiensi DAF.

Desam dkk. (2000) melakukan simulasi tiga dimensi (3D) dengan program Fluent® 5.0 untuk tangki flotasi udara terdispersi yang didesain secara khusus, dan disebut flotasi dengan percepatan gelembung (bubble accelerated flotation – BAF). Desam dkk. mendapatkan bahwa letak titik inlet dan outlet, kecepatan inlet aliran campuran air dan udara berpengaruh signifikan pada effisieni penyisihan. Hasil-hasil penelitian tersebut menunjukkan peranan CFD pada optimasi desain dan operasional tangki DAF. Disertasi ini juga memanfaatkan kemampuan CFD untuk desain dan analisa tangki DAF dengan mengkaitkan dengan model kinetika flotasi yang dibangun sebelumnya. Perangkat lunak CFD yang digunakan pada disertasi ini adalah program Fluent® 6.0. Perangkat lunak ini digunakan untuk simulasi hidrodinamika tangki DAF dan perkiraan effisiensi penyisihan partikel tapioka. Pengkaitan model kinetika flotasi dengan parameter aliran menggunakan fasilitas User Defined Functions (UDF) yang diberikan oleh program Fluent® 6.1. Simulasi yang dilakukan menggunakan model multifasa pencampuran (mixture model) dan model turbulensi κ-ε standar.

(6)

5.2.2 Sistim Aliran Multi Fasa

Aliran berdasarkan fasanya secara umum dapat dibagi menjadi aliran satu fasa, aliran dua fasa dan aliran multi fasa. Aliran multi fasa dapat diklasifikasikan dari berbagai rejim pembentuknya, dan dapat dibagi menjadi empat kategori, yaitu: • Aliran gas-cairan atau aliran cairan-cairan

• Aliran gas-padatan • Aliran cairan-padatan

• Aliran tiga fasa terdiri gas-cairan-padat

Aliran dua fasa dibagi lagi menjadi tiga jenis, yaitu : aliran fasa transient (transient two-phase flow), aliran dua fasa terpisah (separated two-phase flow) aliran dua fasa terdispersi (dispersed two-phase flow) (Sommerfeld, 2000). Contoh beberapa jenis aliran multi fasa diberikan pada gambar 5.1.

Gambar 5.1 Aliran multi fasa

Mengikuti Sommerfield (2000), maka aliran dalam tangki flotasi termasuk dalam aliran tiga fasa, yaitu terdiri dari fasa cair, fasa gas berupa gelembung udara dan fasa padat. Fasa cairan merupakan fasa pembawa kontinu (continuous carrier phase).

Aliran slug Aliran

gelembung, partikel,

droplet

Sedimentasi Fluidaisasi

Aliran terbagi dengan permukaan bebas

Aliran slurry, transpor pneumatic, hydro transpor Sumber : Fluent User Guide, 2003

(7)

Gelembung udara yang berada dalam tangki flotasi dapat diklasifikasikan sebagai fasa terdispersi yang berfungsi sebagai fasa pembawa atau fasa pembawa yang terdispersi (dispersed carrier phase). Klasifikasi ini didasarkan pada data yang diberikan oleh Edzwald (1995) bahwa pada konsentrasi massa udara yang terlarut

3,5 – 10 mg/liter terdapat konsentrasi volume gelembung udara sebanyak 105

gelembung/ml atau lebih besar, dengan asumsi diameter rerata gelembung udara yang berada dalam tangki flotasi unit DAF adalah 40µm. Data konsentrasi volume dan jumlah gelembung udara terhadap jumlah udara terlarut yang lain menurut Edzwald (1995) diberikan pada Tabel 5.1

Tabel 5.1 Konsentrasi volume dan jumlah gelembung udara terhadap konsentrasi udara terlarut dalam cairan, dengan diameter rerata gelembung udara 40µm. Udara terlarut (mg/ml) Konsentrasi volume gelembung udara (ppm) Konsentrasi jumlah gelembung udara (mg/ml) 3,50 2900 8,75 x 104 5,45 4600 1,20 x 105 6,68 5600 1,70 x 105 9,59 8000 2,40 x 105 (Sumber : Edzwald, 1995)

Aliran dua fasa terdispersi berdasarkan mekanisme interaksi antara komponen aliran menurut Elghobashi (1994 dalam Sommerfeld, 2000) dapat diklasifikasikan menjadi dua bagian yaitu aliran dua fasa terdispersi tak padat (dilute dispersed two-phase flow) dan aliran dua fasa terdispersi padat (dense dispersed two-phase flow).

Aliran dua fasa terdispersi tak padat memiliki batas atas nilai volume fraksi partikel (αp) hingga 10-3 (setara L/dp ≈ 8), dengan L adalah jarak antar partikel dan dp adalah diameter partikel, keduanya dalam satuan meter. Pada rejim aliran ini pengaruh fasa partikel terhadap aliran fluida dapat diabaikan hingga nilai αp < 10-6 (setara L/dp ≈ 80). Untuk fraksi volume partikel yang lebih tinggi partikel

(8)

akan mempengaruhi aliran fluida, dan ini sering disebut sebagai keterkaitan dua arah (two-way coupling). Pada aliran dua fasa terdispersi padat (yaitu αp > 10-3) interaksi antar partikel (yaitu tumbukan dan dinamika fluida dari interaksi antar partikel) menjadi sangat penting. Rejim aliran ini disebut sebagai keterkaitan empat arah (four-way coupling). Interpretasi lain yang perlu dipertimbangkan pada pemisahan antara aliran dua fasa tak padat dan padat adalah gaya inersia partikel (Sommerfeld, 2000). Partikel di tangki DAF dengan jejari rerata gelembung udara 35 μm dan diameter partikel tapioka 15 μm, dengan asumsi bahwa jarak antar partikel (L) adalah jumlah jejari gelembung dan partikel maka nilai perbandingan L/dp untuk gelembung adalah 1,42, dan nilai perbandingan L/dp untuk partikel adalah 3,33 (1,42 ≤ L/dp ≤ 3,33). Sehingga disertasi ini mempergunakan keterkaitan dua arah, seperti saat memperkirakan frekuensi tumbukan, yaitu dengan mengaplikasikan model frekuensi tumbukan Wang dkk. (1998).

5.2.3 Pemodelan Multifasa

Pada aliran multi fasa terdapat berbagai pendekatan model untuk menjelaskan perilaku dinamika fluida yang terjadi. Pendekatan yang dilakukan berdasarkan kasus atau tipe multi fasa yang akan dimodelkan. Secara umum pendekatan model untuk aliran multi fasa adalah pendekatan Euler-Langrange dan Euler-Euler. Pemodelan CFD untuk semua pendekatan yang dilakukan terdiri dari tiga tahapan, yaitu :

Pre-Processing, meliputi tahap pendefinisian masalah, pembangunan

persamaan, kondisi batas dan diskretisasi bidang hitung dengan fasilitas meshing. Pada tahap ini perangkat lunak yang digunakan adalah GAMBIT®

Solving, merupakan penyelesaian numerik dari persamaan yang digunakan.

Persamaan yang digunakan terdiri dari persamaan konstitusi massa, momentum, energi dan persamaan penutup (closure equations).

Post-processing menampilkan hasil perhitungan numerik untuk

(9)

Secara skematis struktur pemodelan yang dilakukan diberikan pada gambar 5.2

Gambar 5.2 Struktur pemodelan hidrodinamika dan kinetika flotasi tangki DAF

5.2.3.1 Pendekatan Euler-Lagrange

Pada pendekatan Euler-Lagrange fasa cair diperlakukan sebagai fasa kontinum dengan menggunakan persamaan Navier-Stokes, sementara fasa terdispersi diselesaikan dengan penjejakan (tracking) partikel, gelembung, atau droplet melalui perhitungan aliran yang terjadi. Fasa terdispersi dapat merubah momentum, massa, dan energi pada fasa fluida.

Asumsi yang mendasar pada penggunaan model ini adalah fasa terdispersi merupakan fasa kedua yang mempunyai fraksi volume yang rendah, walaupun beban massa mpartikel ≥ mfluida. Lintasan dan arah partikel atau droplet diselesaikan secara individual pada interval yang spesifik selama perhitungan fasa cair.

5.2.3.2 Pendekatan Euler-Euler

Pada pendekatan Euler-Euler, berbagai fasa yang berbeda diperlakukan secara numerik sebagai fasa kontinum yang saling mempengaruhi. Penggunaan fraksi

UDF

(10)

volume diasumsikan sebagai fungsi ruang dan waktu kontinu dengan jumlah fraksi volume keseluruhan satu. Persamaan kekekalan energi untuk tiap fasa diperoleh dari hasil pembangunan persamaan untuk semua fasa. Terdapat tiga pendekatan dalam model Euler-Euler

• Model volume fluida (Volume of Fluida - VOF)

Model VOF adalah teknik penjajakan permukaan yang digunakan pada meshing eulerian yang tetap (tidak berubah). VOF digunakan untuk dua atau lebih fluida terendam yang memiliki hubungan anta muka. Pada model VOF, persamaan momentum dibagi untul setiap fasa fluida, dan fraksi volume untuk tiap fluida pada perhitungan diamati melalui seluruh bidang asal. Aplikasi untuk model VOF adalah meliputi aliran terbagi, aliran pengisian (filling), pergerakan gelembung makro dalam fluida, prediksi pada jet breakup.

• Model campuran (mixture)

Model campuran digunakan pada dua atau lebih fasa (cairan atau partikel). Semua fasa diperlakukan sebagai satu kesatuan yang kontinum. Penyelesaian persamaan momentum pada model campuran didasarkan pada kecepatan relatif untuk menggambarkan fasa terdispersi. Aplikasi untuk model campuran meliputi aliran partikel, aliran gelembung, sedimentasi, dan aliran pada siklon (cyclone separators).

• Model Eulerian

Model Eulerian menyelesaikan persamaan momentum dan kontinuitas untuk setiap fasa. Hubungan antar fasa didapatkan melalui koefisien tekanan di setiap fasa. Pada aliran cairan-padatan digunakan aliran granular. Pada aliran granular sifat-sifat fasa didapatkan dari teori kinetik. Perubahan atau pertukaran momentum diantara fasa tergantung dari tipe percampuran yang akan dimodelkan. Aplikasi untuk model Eulerian meliputi aliran kolam bergelembung, aliran partikel tersuspensi dan aliran unggun tetap (fluidaized beds) dan flotasi.

(11)

5.2.4 Model Eulerian

Model multi fasa Eulerian yang digunakan Fluent merupakan pemodelan dengan penyelesain persamaan yang terpisah untuk tiap fasa, sehingga dapat diperhitungkan interaksi antara fasa. Persamaan pembangun model, yang meliputi persamaan momentum, kontinuitas dan energi diselesaikan pada setiap fasa baik fasa pembawa maupun fasa terdispersi. Jumlah fasa yang diperhitungkan pada model Eulerian dibatasi hanya oleh kemampuan memori dan perangkat keras dan sifat konvergen.

Pembangunan model Eulerian dapat dilakukan dengan mengubah model fasa tunggal menjadi model multi fasa. Pengubahan dilakukan dengan menambahkan satu kelompok persamaan konservasi untuk momentum, kontinuitas dan energi. Penyelesaian persamaan energi dilakukan jika tinjauan terhadap perubahan energi diperlukan. Persamaan konservasi yang digunakan untuk mengubah model satu fasa menjadi model multi fasa pada Eulerian menggunakan fraksi volume. Besaran fraksi volume digunakan pada mekanisme perubahan momentum, energi dan perubahan massa antar fasa. Fraksi volume didefinisikan sebagai perbandingan volume fasa terhadap volume total. Persamaaan yang digunakan untuk model Eulerian diuraikan pada sub bab berikut.

5.2.4.1 Fraksi Volume

Konsep fraksi volume (αq) pada model multi fasa digunakan untuk menyatakan penetrasi antar fasa sehingga dapat berlaku secara kontinu dalam satu kesatuan. Fraksi volume juga menyatakan ruang yang dibutuhkan setiap fasa. Persamaan konservasi massa dan momentum diselesaikan pada setiap fasa. Penurunan persamaan konservasi dilakukan dengan mereratakan kesetimbangan sesaat lokal untuk setiap fasa (Anderson and Jackson, 1967) atau dengan menggunakan pendekatan teori pencampuran (Bowen, 1976).

Volume fasa q, Vq didefinisikan sebagai berikut :

q q

V

V =

α dV...(5.1) dengan,

(12)

1 1 n q q α = =

...(5.2) Massa jenis effektif fasa q adalah ˆρq =α ρq. q, dengan ρq massa jenis fasa q

5.2.4.2 Persamaan Konservasi

Persamaan pembangun model yang digunakan meliputi persamaan kontinuitas

massa, kontinuitas momentum dan persamaan penutup (closure equation).

Persamaan penutup yang digunakan untuk hidrodinamika meliputi koefisien perubahan antar fasa dan persamaan fraksi antar fasa. Persamaan penutup untuk analisa effisiensi penyisihan partikel padat mempergunakan persamaan kinetika flotasi yang dibangun pada bab empat.

A. Persamaan Konservasi Massa

Persamaan konservasi massa untuk fasa q adalah,

(

) (

)

1 . n q q q q q pq p v m t α ρ α ρ = ∂ + ∇ =

r & ...(5.3) dengan, pq

m& adalah transfer massa dari fasa p ke fasa q. Dari konservasi massa dapat diperoleh,

pq pq

m& = −m& dan m&pp =0...(5.4) B. Persamaan Konservasi Momentum

Persamaan momentum untuk fasa fluida q yaitu :

(

) (

)

(

)

(

, ,

)

1 . . q q q q q q q q q q q n pq pq pq q q q lift q vm q p v v v p t R m v F F F α ρ α ρ α τ α ρ α ρ = ∂ + ∇ = − ∇ + ∇ + ∂ +

+ + + + r r r r r r r r r & g ... (5.5) dengan, q

F = gaya luar (external body force),

,

lift q

F = gaya angkat,

,

vm q

(13)

q

τ = tensor regangan - tegangan (stress –strain tensor) fasa q th

(

)

2 . 3 T q q q vq vq q q q v Iq τ =α μ ∇ + ∇ +α λ⎛ − μ ⎞∇ ⎝ ⎠ r r r ... (5.6) q μ = gaya geser q

λ = bulk viscosity dari fasa q,

pq

R = gaya interaksi antara fasa p = tekanan yang terbagi antar fasa

pq

vr = kecepatan relatif antar fasa.

Jika 0m&pq> (bila fasa p berubah menjadi fasa q) maka vrpq =vr ; q Jika m&pq <0 (bila fasa q berubah menjadi fasa p), vrpq =vr dan q

pq qp

vr =vr

Persamaan 5.5 harus mendekati gaya antar fasa R . Gaya ini tergantung pada pq friksi, tekanan, kohesi, untuk mencapai kondisi Rpq = −Rqpdan Rqq = 0

Fluent menggunakan suku interaksi, sebagai berikut :

(

)

1 1 n n pq pq p q p p R K v v = = = −

r

r r ...(5.7)

denganKpq

(

=Kqp

)

adalah koefisien perubahan momentum antar fasa. Gaya Angkat

Gaya angkat (lift force) yang diperhitungkan pada aliran multi fasa adalah gaya angkat yang bekerja pada partikel akibat dari gradien kecepatan yang berada pada fasa primer. Gaya angkat lebih berperan pada partikel yang lebih besar. Gaya angkat yang bekerja pada fasa sekunder p yang berada di dalam fasa primer q dapat diperkirakan dengan persamaan :

(

) (

)

0,5

lift q p q p q

Fr = − ⋅ρ α⋅ ⋅ vr −vr × ∇×vr ...(5.8) Gaya angkat Frliftyang ditambahkan sisi kanan persamaan momentum untuk kedua fasa

(

Frlift q, = −Frlift p,

)

. Pada beberapa keadaan gaya angkat tidak berperan dibandingkan dengan gaya geser. Jika gaya angkat cukup berpengaruh, misalnya

(14)

pada penyisihan fasa yang cepat maka suku persamaan yang ditambahkan harus mencakup gaya angkat. Gaya dan koeffisien angkat dapat berbeda-beda untuk tiap fasa.

Gaya Massa Virtual

Gaya massa virtual (virtual mass force) diperhitungkan pada aliran multi fasa saat fasa sekunder p menggalami percepatan realtif terhadap fasa primer q. Gaya inersia dari massa fasa primer diseimbangkan oleh percepatan partikel (gelembung atau padat ) menggunakan gaya massa virtual pada partikel (Beyond dan Kent, 1986) : 0,5 q q p p vm p q d v d v F dt dt α ρ ⎛ ⎞ = ⋅ ⋅ ⎝ ⎠ r r r ...(5.9) Suku dq

dt menyatakan perubahan material fasa terhadap waktu, yang diberikan

oleh persamaan berikut ini :

( )

( )

(

)

q q d v dt t Φ ∂ Φ = + ⋅∇ Φ ∂ r ...(5.10)

Gaya massa virtual Frvm ditambahkan pada sisi kanan persamaan momentum

untuk kedua fasa

(

Frvm q, = −Frvm p,

)

.

Pengaruh massa virtual menjadi penting saat massa jenis fasa sekunder lebih kecil dibandingkan massa jenis fasa primer, misalnya pada aliran di kolom bergelembung.

5.2.4.3 Penyelesaian Persamaan oleh Fluent®.

Persamaan untuk aliran multi fasa fluida-fluida dan granular diselesaikan oleh perangkat lunak CFD Fluent® sebagai aliran yang terdiri dari sejumlah n fasa. Penyelesaian yang dilakukan oleh Fluent® untuk persamaan kontinuitas massa dan momentum diuraikan sebagai berikut.

A. Persamaan Kontinuitas

Fraksi volume dari tiap fasa dihitung dalam bentuk persamaan kontinuitas sebagi berikut,

(15)

( ) (

)

1 1 . n q q q q q pq q p q d v m t dt ρ α α α ρ = ⎛ ⎞ ∂ + ∇ = ⎜ ⎟ ∂ r

& ...(5.11)

Hasil penyelesaian persamaan ini untuk fasa sekunder digunakan untuk menyelesaikan fraksi volume fasa utama dengan menggunakan jumlah fraksi volume sama dengan satu (persamaan 5.2). Penyelesaian ini umum digunakan pada aliran cairan-cairan dan granular.

B. Persamaan Momentum

• Persamaan Momentum Fluida-Fluida

Persamaan momentum untuk fasa fluida q yaitu :

(

) (

)

(

, ,

)

(

(

)

)

1 . . q q q q q q q q q q q q q q lift q vm q pq p q pq pq p v v v p t F F F K v v m v α ρ α ρ α τ α ρ α ρ = ∂ + ∇ = − ∇ + ∇ + + ∂ + + +

− + r r r r r r r r r r & g ... (5.12)

dengan τq, Frq, Frlift q, dan Frvm q, seperti yang didefinisikan pada persamaan 5.5

• Persamaan Momentum Fluida-Padatan

Fluent® mempergunakan model granular multi-fluida untuk menggambarkan

perilaku dari campuran fluida-padatan. Tegangan pada fasa padat diturunkan dengan menggunakan analogi antara gerak acak partikel yang disebabkan oleh tumbukan antar partikel-partikel dan gerak molekul yang disebabkan oleh energi panas di dalam gas, untuk memperhitungkan ketidakelastisan fasa granular. Pada fasa gas, intensitas fluktuasi kecepatan partikel ditentukan oleh tegangan, viskositas dan tekanan dari fasa padat. Gabungan energi kinetik dan fluktuasi kecepatan partikel tersebut disebut sebagai pseudothermal.

Pseudothermal menyatakan suhu granular sebanding dengan akar kuadrat

kecepatan acak partikel.

Konservasi momentum untuk fasa fluida sama dengan persamaan 5.12, dan untuk fasa padat sth adalah :

(16)

(

)

(

)

(

, ,

)

(

(

)

)

1 . . s s s s s s s s s s s s N s s s lift s vm s ls l s ls ls l v v v p p t F F F K v v m v α ρ α ρ α τ α ρ α ρ = ∂ + ∇ = − ∇ − ∇ + ∇ + + ∂ + + +

− + r r r r r r r r r r & g ... (5.13) dengan,

ρs = adalah tekanan fasa padat sth

Kls = Ksl adalah koeffisien perubahan momentum antara fluida atau fasa

padat l dan fasa padat s. N = adalah jumlah banyaknya fasa,

q

Fr , Flift q,

r

dan Fvm q,

r

seperti yang didefinisikan pada persamaan 5.5

5.2.4.4. Koefisien Perubahan Antar Fasa

Persamaan 5.12 dan 5.13 yang diberikan sebelumnya menunjukkan bahwa koefisien perubahan momentum antar fasa didasarkan pada nilai koefisien perubahan fluida-fluida (Kpq) dan untuk aliran granular, didasarkan pada koefisien

perubahan fluida-padatan dan padatan-padatan (Kls).

A. Koefisien Perubahan Fluida-Fluida

Pada aliran fluida-fluida, setiap fasa kedua diasumsikan sebagai droplet atau gelembung. Hal ini berakibat pada bagaimana tiap fluida dianggap sebagai fasa partikulat. Koefisien perubahan untuk aliran campuran bergelembung, cair-cair atau gas-cair diberikan oleh persamaan berikut,

q p p pq p f K α α ρ τ = ...………..……...…….(5.14) dengan,

f = fungsi hambatan (drag)

p

τ = waktu relaksasi partikel (particulate relaxation time), dan didefinisikan sebagai berikut 2 18 p p p q d ρ τ μ = …………. ... ………..….(5.15) dengan

(17)

dp = diameter gelembung atau droplet dari fasa p.

Fungsi hambatan mencakup semua fungsi f, termasuk koefisien hambatan (CD)

yang didasarkan pada bilangan Reynolds relatif (Re). Fungsi hambatan tergantung

dari model koefisien perubahan. Untuk semua keadaan tersebut koefisien Kpq

cenderung bernilai nol saat fasa primer tidak berada dalam domain. Untuk mendorong kecenderungan ini, fungsi hambatan f selalu dikalikan dengan fraksi volume fasa primer, seperti diberikan pada persamaan 5.14. Beberapa jenis fungsi hambatan yang terdapat dalam Fluent adalah.

• Model Schiller dan Nauman

Re 24 D C f = ...(5.16) dengan

(

0.687

)

24 1 0.15 Re / Re Re 1000 Re 1000 0.44 D C = ⎨⎧⎪ + ≤ > ⎪⎩ ...(5.17)

Bilangan Reynolds relatif fasa primer q terhadap fasa sekunder p diberikan oleh persamaan : Re q p q p q v v d ρ μ − = r r ...(5.18) Bilangan Reynolds relatif untuk fasa sekunder p dan r dapat dihitung dengan persamaan berikut ini :

Re rp r p rp r p v v d ρ μ − = r r ...(5.19) dengan, rp p p r r

μ

=

α μ

+

α μ

adalah viskositas campuran dari fasa p dan r • Model Morsi dan Alexander

Re 24

D

C

(18)

dengan 3 2 1 Re Re2 D a a C = +a + ...(5.21)

Bilangan Reynolds didapatkan dari persamaan 5.18 dan 5.19 dan tetapan a didapatkan dari persamaan berikut :

1 2 3 0,18, 0 0 Re 0.1 3.690, 22.73,0.0903 0.1 Re 1 1.222, 29.1667, 3.8889 1 Re 10 0.6167, 46.50, 116.67 10 Re 100 , , 0.3644,98.33, 2778 1 0.357,,148.62, 47500 0.46, 490.546,578700 0.5191, 1662.5,5416700 a a a < < ⎧ ⎪ < < ⎪ ⎪ − < < ⎪ < < ⎪ = ⎨ ⎪ ⎪ ⎪ − ⎪ ⎪ ⎩ 00 Re 1000 1000 Re 5000 5000 Re 10000 Re 10000 < < < < < < ≥ ... (5.22)

Model fungsi hambatan Morsi dan Alexander adalah model yang paling kompleks. Model ini paling tidak stabil dibandingkan dengan model hambatan yang lain.

• Model Simetri

Model simetri digunakan untuk aliran fasa sekunder atau terdispersi pada suatu daerah dan menjadi fasa primer atau kontinu pada bagian aliran yang lain. Misalnya udara yang diinjeksikan pada bagian bawah kolom yang berisi air setengahnya. Pada bagian bawah kolom udara adalah fasa terdispersi, sedangkan pada bagian atas kolom udara menjadi fasa kontinyu. Model simetri juga dapat digunakan interaksi antara fasa sekunder.

(

)

p p p p q pq pq f K α α ρ α ρ τ + = ...(5.23) dengan

(

)

(

)

2 2 18 p q p p q q pq p p q q d d α ρ α ρ τ α μ α μ + ⎛ ⎞ + ⎝ ⎠ = + ...(5.24) dan

(19)

Re 24 D C f = ...(5.25) dengan

(

0.687

)

24 1 0.15Re / Re Re 1000 Re 1000 0.44 D C = ⎨⎧⎪ + ≤ > ⎪⎩ ...(5.26)

Bilangan Re didapatkan dari persamaan 5.18 dan 5.19. B. Koefisien Perubahan Fluida-Padatan

Koefisien perubahan fluida-padatan Ksl dituliskan sebagai berikut :

s s sl s f K α ρ τ = ...(5.27) dengan 2 18 s s s l d ρ τ μ = …………. ... ………..….(5.28)

Semua definisi fungsi hambatan, f, termasuk koefisien hambatan (CD) didasarkan

pada bilangan Reynolds relatif (Res). Fungsi hambatan ini berbeda-beda

tergantung pada model koefisien perubahan yang digunakan. • Model Syamlal-O’Brien (1989) 2 , Re 24 D s l r s C f v α = ⋅ ...(5.29) dengan fungsi hambatan yang diturunkan oleh Valle (1948),

2 , 4,8 0, 63 Re D s r s C v ⎛ ⎞ ⎜ ⎟ = + ⎜ ⎟ ⎝ ⎠ ...(5.30) Model ini didasarkan pada pengukuran kecepatan terminal partikel pada fluidaisasi atau pengendapan, yang merupakan fungsi dari fraksi volume dan bilangan Reynolds relatif untuk fasa padat.

Koefisien perubahan untuk fluida- padatan diberikan oleh persamaan berikut :

2 , , 3 Re 4 s l l s sl s l r s s r s K v v v d v α α ρ ⎛ ⎞ ⋅ ⋅ ⋅ = ⎜ − ⋅ ⋅ r r ...(5.31)

(20)

dengan,

vr,s adalah kecepatan terminal fasa padat, yang diberikan oleh persamaan

berikut ini (Garside dan Al-Dibouni, 1977) :

(

)

2

(

)

2 , 0,5 0, 06 Re 0,06 Re 0,12 Re 2 r s s s s v = ⎜⎛A− ⋅ + ⋅ + ⋅ B A− +A ⎞⎟ ...(5.32) dengan, 4.14 l A=α 1,28 0,8 l B= ⋅

α

untuk αl ≤ 0,85 2,65 l B=α untuk αl > 0,85 • Model Wen dan Yu (1966)

Koefisien perubahan fluida-padatan menurut model Wen dan Yu (1966) adalah : 2,65 3 4 s l l s l sl D l s v v K C d α α ρ α− ⋅ ⋅ − = r r ...(5.33) dengan,

(

)

0,687 24 1 0,15 Re Re D l s l s C α α ⎡ ⎤ = + ⋅ ⋅ ...(5.34)

Model Wen dan Yu diaplikasikan pada sistem aliran terdilusi. Model Wen dan Yu ini diaplikasikan pada fluidaized beds dengan mengkombinasikan dengan persamaan Ergun oleh Gidaspow dkk. (1992).

C. Koefisien Perubahan Padatan-Padatan

Koefisien perubahan padatan-padatan Ksl diberikan oleh persamaan berikut

(Syamlal, 1987):

(

)

(

)

(

)

2 2 , 0, 3 3 3 1 2 8 2 ls fr ls s s l l l s ls ls l s l l s s e C d d g K v v d d π π α ρ α ρ π ρ ρ ⎛ ⎞ + + ⋅ ⋅ ⋅ ⋅ + ⎝ ⎠ = − ⋅ + ⋅ r r .(5.35) dengan,

(21)

els adalah koeffisien restitusi

Cfr, ls adalah koeffisien gesek antara fasa, untuk partikel fasa solid (Cfr, ls = 0)

dl adalah diameter partikel padat

go,ls adalah koefisien distribusi radial

5.2.5 Persamaan Kinetika Flotasi

Persamaan kinetika flotasi yang dibangun pada bab empat digunakan sebagai persamaan penutup pada penyelesaian perhitungan mempergunakan CFD. Aplikasi kinetika flotasi pada CFD belum banyak dilakukan. Hasil studi pustaka yang dilakukan untuk pembangunan model yang mengkaitkan antara model kinetika flotasi dengan CFD hanya dilakukan oleh Koh dkk. (2000), Koh dan Schwarz (2003, 2006). Pada penelitian tersebut Koh dkk (2000) mengembangkan simulasi CFD untuk tumbukan gelembung dan partikel pada sel flotasi untuk pengolahan mineral.

Model kinetika flotasi yang digunakan Koh dan Schwarz (2003, 2006) pada simulasi penyisihan partikel padat adalah model kinetika flotasi yang dikembangkan oleh Bloom dan Heindel (1997). Model Bloom dan Heindel menggunakan jumlah gelembung dan partikel padat untuk menghitung penyisihan partikel padat pada tangki flotasi. Model kinetika yang dibangun pada disertasi ini mempergunakan konsentrasi gelembung dan patikel padat untuk mengukur kinerja unit DAF.

Simulasi effisiensi penangkapan partikel-gelembung dengan mengkaitkan bersama CFD, sebagai kelanjutan atas penelitian pengakitan effisiensi tumbukan dengan CFD dilakukan Koh dan Schwarz (2003). Pemodelan CFD untuk laju tumbukan dan effisiensi dari sel flotasi sebagai hasil akhir dari dua penelitian sebelumnya diberikan oleh Koh dan Schwarz (2006).

Menuliskan kembali persamaan-persamaaan yang berhasil dikembangkan dan dibangun pada bab empat, sebagi berikut.

• Persamaan energi dissipasi DAF

n. .g inDAF ...(4.27) DAF EP DAF P Q C α ε ρ − Δ =

(22)

• Persamaan frekuensi tumbukan (z)

(

)

(

)

1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 1 15 2 1 1 15 2 2 2 1 1 15 1 8 f p f p f p R z R R g ε υ ρ ε τ τ ε π ρ υ π ρ τ τ ε π ρ υ ρ π τ τ ρ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛ ⎞ ⎥ + − − ⎢ ⎜ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎛ ⎞ ⎛ ⎞ + ⎜ − ⎟ ⎢ ⎜ ⎜ ⎟⎝ ⎠ ⎥ ⎢ ⎝ ⎠ ⎥ ⎢ ⎥ ⎛ ⎞ ⎢ ⎥ + − × −⎜ ⎟ ⎢ ⎥ ⎢ ⎝ ⎠ ⎥ ⎣ ⎦ ... (4.18)

• Persamaan Effisiensi Pengumpulan (Пcoll)

Пcoll = Πc. Πasl. Πtpc. Πstab... (2.69) dengan,

Effisiensi kontak tiga fasa (Пtpc) = 1

(

)

(

)

3 2 3 3 2 * 4 1 2 3 2 1 1 1 2 Re 1 2 1 p p b b p b pb c pb p p pb b b b p b r r r r r r G G r r G r r r r ⎧ ⎡ ⎛ ⎞ ⎛ ⎞ ⎤⎫ ⎪ ⎢ ⎜ ⎟ + ⎜ ⎟ ⎥⎪ ⎪ ⎡ + ⎤ ⎢ ⎝ ⎠ ⎝ ⎠ ⎥⎪ ⎪ ⎣ ⎦ ⎪ Π = + + ⎛ ⎞ ⎛ ⎞ + ⎢ ⎥ + + ⎪ ⎜ ⎟ ⎜ ⎟ ⎪ ⎢ ⎥ ⎡ + ⎤ ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ ⎩ ⎭ ... (2.60)

( )

( )

0 exp 2 p 1 asl b b p kritik r g r G h C r r k r G h β ⎧ ⎛ ⎞⎛ ⎞ ⎡ − ⎤⎛ ⎞⎫ ⎪ ⎪ Π = ⎨ ⎜− ⎟⎜ +×⎢ ⎥⎜ − ⎟⎬ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎪ ⎝ ⎠ ⎣ ⎦ ⎪ ⎩ ⎭ ...(2.63) 1 1 exp 1 ' stab Bo ⎛ ⎞ Π = − ⎝ ⎠... (2.67)

(

)

(

) (

)

(

)

(

)

(

) (

)

1 2 2 3 3 2 4 1,9 ' 6 sin 2 sin 2 3 2 2 sin 2 6 sin 2 sin 2 p p p p b p b b l r g r r Bo r r r g ρ ρ ε σ π θ π θ σ ρ π θ σ π θ π θ ⎛Δ + + ⎞ ⎜ ⎟ ⎝ ⎠ = + − + − − − + ...(2.68a)

(23)

• Persamaan laju flotasi 2 1 . . . rdaf

.

z Cb coll t p p

C

=

C e

− Π ... (4.21) • Persamaan effisiensi penyisihan

. . . rdaf

1

e

z Cb coll t

η

= −

− ∏ ... (4.23) 5.2.6. Persamaan Turbulensi

Turbulensi aliran mempergunakan model κ-ε standar. Energi kinetik turbulen (κ) dan energi dissipasi (ε) didapatkan dari persamaan transport yang diberikan oleh persamaan berikut ini,

( )

(

)

t i b i j j u G G S t x x κ x κ κ μ κ ρκ ρκ μ ρε σ ⎡⎛ ⎞ ⎤ ∂ +=++ + + ⎢⎜ ⎟ ⎥ ∂ ∂ ∂ ...(5.36) dan

( )

(

i

)

t 1

(

3 b

)

k 2 2 i j k j u C G C G G C S t x x x ε κ ε ε ε μ ε ε ε ρε ρε μ ρ σ κ κ ⎡⎛ ⎞ ⎤ ∂ +=++ + + ⎢⎜ ⎟ ⎥ ∂ ∂ ∂ ...(5.37) dengan

Gκ = energi kinetik yang dihasilkan dari gradien kecepatan rerata

' ' j i j i u u u x ρ ∂ = − ∂

Gκ = energi kinetik turbulen yang dihasilkan dari gradien kecepatan rerata Gb = energi kinetik turbulen yang disebabkan oleh gaya apung

μt = vikositas turbulen 2 Cμκ ρ ε =

Konstanta yang digunakan model turbulen κ-ε standar didapatkan dari percobaan turbulensi aliran udara dan air. Percobaan turbulen tersebut dilakukan pada aliran geser turbulen (shear flow) homogen dan isotropik. Besaran nilai konstanta yang digunakan pada disertasi ini adalah C1ε = 1,44; C2ε = 1,92; Cμ = 0,09; σκ = 1,0 dan σκ = 1,0 (Fluent User Guide, 1993).

(24)

5.3 Metodologi Penelitian 5.3.1. Pendahuluan

Metodologi dan tahapan yang digunakan disesuaikan dengan tujuan yang akan dicapai. Tujuan penelitian adalah mengkaitkan model kinetika penyisihan padatan pada unit DAF dengan hidrodinamika untuk mendapatkan desain tangki DAF yang paling optimal..

Model kinetika penyisihan yang digunakan adalah model yang telah dikembangkan pada bab empat. Metode CFD yang digunakan adalah metoda eulerian tiga fasa yaitu fasa cair, fasa padat dan fasa gas. Model hidrodinamika disimulasikan perangkat lunak Fluent®. Perangkat lunak Fluent® memiliki fasiltas user defined function (UDF). Melalui fasilitas UDF model kinetika yang dikembangkan diintegrasikan dengan model hidrodinamika yang digunakan.

5.3.2. Tahapan Penelitian

Pada penelitian ini tahapan yang dilakukan adalah,

1. Integrasi model kinetika penyisihan partikel yang dibangun pada bab empat dengan perangkat lunak hidrodinamika

2. Pengukuran dimensi gelembung udara

3. Pengukuran kecepatan partikel, gelembung udara dan air 4. Pengukuran fraksi volume udara dan padatan

5. Pengukuran kinerja unit DAF melalui efisiensi penyisihan partikel padatan dengan parameter TSS (Total Suspended Solid)

6. Validasi dan kalibrasi hasil simulasi model kinetika dari UDF Fluent® dengan hasil percobaan efisiensi unit DAF.

5.3.3 Metodologi Keterkaitan Kinetika DAF dengan Hidrodinamika

Aplikasi model kinetika DAF yang dibangun pada bab empat pada CFD dengan perangkat lunak Fluent dilakukan pada tiga tahapan, yaitu :

1. Aplikasi persamaan energi dissipasi unit DAF (persamaan 4.27) sebagai kondisi awal energi dissipasi CFD

(25)

2. Aplikasi persamaan laju kinetika flotasi pada CFD. Aplikasi laju kinetika flotasi dilakukan dengan fasiltas UDF sebagai substitusi besaran koeffisien perubahan fasa padatan-padatan (Kls – persamaan 5.35).

3. Aplikasi laju kinetika dan effisiensi penyisihan partikel padat untuk unit DAF Pengembangan CFD dilakukan untuk unit DAF dalam skala laboratorium digunakan untuk dimodelkan dalam analisis numerik. Model yang dibuat menggunakan piranti lunak Gambit® 1.1 sebagai Pre-Processing dan Fluent® 6.0 sebagai solver dan post-processing.

Perangkat keras yang dipergunakan untuk perhitungan model aliran tiga dimensi (3D) dan tiga fasa adalah komputer dengan spesifikasi sebagai berikut :

Processor AMD Trialthon 2,6GHz, Front Side Bus (FSB) 800, Chace

Memory 512 kb

Random Acces Memory (RAM) 2 Gigabytes

Graphics Processor Unit (GPU) 64 Megabytes

5.3.4 Perangkat Lunak Fluent®

Fluent® memberikan fleksibilitas pada proses meshing dari model yang dibuat.

Berbagai bentuk pemodelan aliran 2D dan 3D dapat dipecahkan oleh Fluent®

dengan bentuk grid triangular - tetrahedral, quadrilateral - heksahedral, atau gabungan keduanya (hybrid), baik dengan bentuk yang terstruktur maupun tidak

terstruktur. Keunggulan lain yang dimiliki Fluent® dibandingkan dengan

perangkat lunak lainnya adalah kemampuannya mensimulasikan campuran dan reaksi pada spesies-spesies kimia dan juga pemodelan aliran multi fasa. Diagram aliran pemodelan dengan Gambit®. dan Fluent® diberikan pada gambar 5.3

5.3.4.1 Persiapan Penghitungan (Pre-Processor)

Tahapan persiapan perhitungan (pre-proccessor) untuk Fluent® bertujuan untuk

pembentukan bidang hitung. Perangkat lunak persiapan penghitungan (

pre-processing) mempergunaka Gambit®. Pembuatan model, pembentukan mesh/grid dan penentuan kondisi batas (sesuai dengan solver yang dipilih) dapat dilakukan

(26)

di dalam lingkungan perangkat lunak Gambit®.. Model yang akan dibuat adalah bentuk fluida yang mengisi ruang-ruang yang ada pada unit DAF.

Pembangunan ruang pada Gambit® dapat dilakukan melalui 4 cara, yaitu : 1. Menyatukan permukaan (face) yang telah dibuat sebelumnya.

2. Menggerakkan permukaan (face) melalui jalur tertentu berupa garis hubung (edge) atau vektor.

3. Memutar permukaan pada suatu sumbu putar.

4. Membentuk volume dari sekumpulan garis hubung (wireframe)

a. Proses di Gambit® b. Proses di Fluent®

Gambar 5.3. Flowchart Pemodelan dalam Fluent® Bentuk elemen yang dapat dipilih pada Gambit® adalah :

• Hex ; mesh hanya terbentuk dari elemen heksahedral

Mulai

Data Geometri Unit DAF

Membuat Geometri Model

Meshing Model

Menentukan Solver

Menentukan Tipe Zona : Zona Kondisi Batas

Zona Kontinum

Mengekspor file mesh

Selesai Menentukan Persaman-persamaan solver model

Mengatur parameter Kontrol Solusi: Faktor Under Relaksasi Persamaan yang Akan Dihitung

Diskritisasi

Inisialisasi Iterasi Penentuan Residu Mengimpor file mesh

Data Sifat-sifat Material Data Kondisi Batas

Iterasi Perhitungan

Menyimpan Hasil Perhitungan

A

(27)

• Hex/Wedge ; mesh tersusun dari elemen utama heksahedral tetapi bisa disispi oleh elemen wedge jika memungkinkan

• Tet/Hybrid ; mesh tersusun dari elemen utama tetrahedral tetapi bisa disispi oleh elemen pyramidal, heksahedral dan wedge jika memungkinkan

Setiap jenis elemen mempunyai pilihan tipe meshing volume yang tertentu,

beberapa tipe meshing volume yang bisa dipilih adalah :

• Map adalah membuat garis-garis elemen heksahedral yang teratur dan terstruktur

• Submap yaitu membagi volume yang tidak bisa terpetakan (unmapable region) menjadi bagian-bagian yang dapat terpetakan.

• Tet Primitive yaitu membagi volume yang mempunyai empat sisi yang berbentuk segitiga) ke dalam empat bagian heksahedral.

• Cooper adalah teknik menyusur (sweeps) pola titik mesh dari permukaan “sumber” yang ditentukan ke seluruh volume

• Tgrid merupakan mesh dengan susunan elemen meshing tetrahedral dengan heksahedral, pyramidal dan wedge.

G

(28)

Setelah proses meshing dilakukan penentuan kondisi batas dengan menentukan karakteristik daerah-daerah yang berupa permukaan (sebagai inlet, outlet, wall, dll) dan menentukan karakteristik daerah-daerah yang berupa volume (sebagai solid, fluida atau porous zone). Pada pemodelan unit DAF ini, pembagian daerah yang dilakukan ditunjukkan pada gambar 5.5. Hasilnya disimpan sebagai berkas mesh untuk solver Fluent® dengan ekstensi *.cas.

Gambar 5.5 Pembagian daerah kondisi batas pada unit DAF

5.3.4.2 Perhitungan (Solver)

Tahapan perhitungan merupakan ini merupakan tahapan inti dari pemodelan dengan proses iterasi dan penentuan parameter-parameter pemodelan dilakukan untuk mendapatkan data-data yang akan dianalisis. Langkah-langkah yang dilakukan pada tahapan ini dijelaskan pada sub bab berikut.

A. Persiapan Data Model

Langkah awal yang dilakukan pada lingkungan perangkat lunak penghitungan

(solver) adalah mengambil data model yang sebelumnya telah dibuat pada

perangkat lunak persiapan penghitungan (pre-processor). Dalam hal ini dilakukan proses import dari perangkat lunak Gambit® ke dalam lingkungan perangkat lunak Fluent®. Berkas yang terlibat dalam proses ini adalah berkas dengan ekstensi *.cas (Fluent®Case File).

(29)

Berkas tersebut mengandung informasi mengenai koordinat setiap titik, informasi perhubungan yang menyatakan bagaimana titik-titik tersebut berhubungan untuk membentuk permukaan dan sel, juga tipe daerah dan jumlah dari permukaannya. Informasi lain yang terkandung di dalam berkas ini adalah keadaan kondisi batas seperti material, input, output, dinding.

Gambar 5.6 Tampilan jendela pada proses import data

B. Metode Iterasi

Perangkat lunak Fluent® memberikan tiga pilihan metode iterasi, yaitu • Segregated

• Coupled implicit • Coupled explicit.

Ketiga formula di atas memberikan hasil keakuratan yang hampir sama untuk analisis aliran. Pendekatan segregasi dan couple berbeda dalam cara pemecahan persamaaan kontinuitas, momentum, dan energi. Pada penyelesaian dengan pendekatan couple, semua persamaan diselesaikan secara bersamaan, sedangkan

pada metode segregated pendekatan dilakukan secara terpisah dengan

(30)

Updates properties.

Penyelesaian Persamaan Momentum

Penyelesaian persamaan koreksi tekanan dan kontinuitas. Update tekanan, laju aliran massa

permukaan.

Penyelesaian persamaan species, turbulensi dan persamaan skalar

Konvergen ?

Selesai Tidak

Metode iterasi yang dipergunakan pada disertasi ini untuk iterasi adalah metode perhitungan segresi. Diagaram aliran metode iterasi sewgresi diberikan pada gambar 5.7.

Gambar 5.7 Langkah perhitungan dengan metode segregasi

Dalam pendekatan segregasi, Fluent® menggunakan teknik berbasis volume

kontrol untuk membangun suatu persamaan aljabar yang dipecahkan secara numerik. Diskretisasi dari persamaan yang dibangun dapat diilustrasikan dengan menganggap persamaan konservasi berada pada kondisi tunak untuk besaran

skalar ∅, yang dapat dituliskan dalam bentuk integral dari persamaan volume

kontrol sebagai berikut.

...………...(5.38) dengan ρ

= kerapatan massa

+ ⋅ ∇ Γ = ⋅ V S dV dA dA v φ φ φ ρφ

(31)

v = vektor kecepatan

A = vektor luas permukaan

ΓΦ = koefisien difusi untuk Φ

∇Φ = gradien untuk Φ pada model 2D adalah (∂ ∂ + ∂ ∂

φ

/ x)i (

φ

/ y)j

SΦ = source dari Φ untuk setiap unit volume

Persamaan ini digunakan untuk masing-masing kontrol volume dalam domain perhitungan. Gambar sel triangular untuk 2D seperti gambar 5.8 merupakan contoh dari suatu kontrol volume.

Gambar 5.8 Sel triangular dua dimensi (2D)

Diskretisasi dari persamaan di atas untuk sel yang diberikan adalah sebagai berikut :

………...(5.39) dengan

Nfaces = jumlah permukaan yang membentuk sel

Φf = nilai dari Φ yang dikonveksikan melalui permukaan f

vf = fluks massa yang melalui permukaan f

Af = luas permukaan f, |A| ( |Axi + Ayj| pada model 2 dimensi)

(∇Φ)n = besar dan arah (magnitude) dari ∇Φ normal terhadap permukaan f

V = volume sel

Persamaan ini dipecahkan oleh Fluent® dari bentuk umum persamaan sebelumnya

dan digunakan juga untuk kasus multi dimensi lainnya. Fluent® menyimpan nilai diskret dari skalar ∅ pada pusat sel (antara c0 dan c1 pada gambar 5.8). Dari

faces =NfacesΓ ∇ + f f n N f f f f A A SV v φ φ( φ) φ

(32)

persamaan umum di atas, diskretisasi dari persamaan momentum dan kontinuitas dalam kondisi tunak dapat diturunkan dalam bentuk integral

... (5.26)

...(5.27) dengan I adalah matriks identitas, τ adalah stress tensor, dan F adalah vektor

gaya.

C. Penetapan Model Fisik

Fluent® mempunyai kemampuan pemodelan untuk berbagai masalah aliran fluida, baik untuk aliran termampatkan, tak termampatkan, aliran laminar, turbulen.

Fluent® juga mengkombinasikan model matematik untuk fenomena pengangkutan

seperti perpindahan panas dan reaksi kimia untuk geometri yang kompleks. Pada disertasi ini, fluida yang mengalir di dalam unit DAF diasumsikan sebagai fluida tak termampatkan, dengan pendekatan eulerian tiga fasa, yaitu fasa cair, fasa padat dan fasa gas.

Pemodelan aliran turbulen di dalam unit DAF ini mempergunakan model turbulen κ-ε standar. Perhitungan aliran pada model turbulen κ-ε standar didasarkan pada persamaan transport energi kinetik turbulen (κ) dan laju dissipasinya (ε). Pemodelan standard k-epsilon merupakan pemodelan turbulen dengan persamaan yang cukup lengkap dan paling sederhana. Model turbulensi ini telah menjadi trend dalam perhitungan aliran semenjak diperkenalkan oleh Jones dan Launder (1973).

Karakterisasi fluida berdasrakan sifat-sifat fisiknya mencakup massa jenis, berat molekul, viskositas, koefisien difusi massa, dan juga parameter-parameter teori kinetik. Dalam pemodelan ini digunakan fluida air sebagai fasa primer dan fasa sekunder adalah udara dan partikel tapioka.

D. Penentuan Kondisi Batas

Kondisi batas menentukan aliran dari model fisik yang dibuat. Penentuan kondisi batas ini merupakan tahapan kritis dan penting dari simulasi Fluent®. Fluent® mempunyai pilihan kondisi batas yang diklasifikasikan sebagai berikut :

ρvdA=0

⋅ =−

⋅ +

⋅ +

VFdV dA dA pI dA v v τ ρ

(33)

• Flow inlet and outlet boundaries : pressure inlet, velocity inlet, mass flow inlet, inlet vent, intake fan, pressure outlet, pressure farfield, outflow, outlet vent, exhaust fan.

• Wall, repeating, and pole boundaries : wall, symmetry, periodic, axis. • Internal cell zones : fluida, solid (porous is a type of fluida zone). • Internal face boundaries : fan, radiator, porous jump, wall, interior.

Panel boundary conditions memberikan kemudahan bagi kita untuk mengubah

jenis kondisi batas yang ingin diberikan dan membuka panel lain untuk mengatur parameter kondisi batas dari masing-masing zona.

Kondisi batas yang dipakai pada pemodelan aliran di dalam unit DAF ini adalah sebagai berikut :

• Velocity inlet untuk sisi masuk semua fluida ke dalam tngki flotasi • outflow untuk sisi keluar dari tangki flotasi

• Wall untuk permukaan tangki flotasi, baffle selain sisi masuk dan sisi keluar

ƒ Velocity Inlet

Kondisi batas kecepatan masuk digunakan untuk mendefinisikan kecepatan fluida pada aliran masuk. Kondisi batas ini cocok digunakan baik untuk perhitungan aliran inkompresibel maupun kompresibel. Kondisi batas ini

digunakan ketika kecepatan masuk diketahui. Pada pemodelan ini kecepatan

masuk disesuaikan dengan hasil pengukuran mass loading masuk pada saat pengujian. Pada kondisi multi fasa maka kecepatan masing-masing fasa dimasukkan secara terpisah sesuai dengan kecepatan yang ddefinisikan terlebih dahulu.

ƒ Outflow

Outflow Boundary Conditions digunakan untuk mendefinisikan posisi outlet dari aliran. Selain digunakan sebagai kondisi batas pada aliran keluar, kondisi batas ini juga memberikan hasil yang lebih baik pada laju konvergensi untuk aliran balik (backflow).

(34)

ƒ Wall Boundary Conditions

Wall boundary conditions berfungsi sebagai pengikat antara daerah cairan dan daerah benda padat Pada aliran viscous, kondisi batas dimana kecepatan pada dinding sama dengan nol merupakan kondisi dasar yang diberikan oleh Fluent®, tetapi dapat juga didefinisikan komponen kecepatan tangensial dalam bentuk gerakan translasi atau rotasi dari batas dinding, atau memodelkan

dinding “slip” dengan menentukan geseran (shear). Tegangan geser dan

perpindahan panas antara cairan dan dinding dihitung berdasarkan detail aliran pada medan aliran setempat.

E. Kontrol Solusi

Pada langkah ini perlu dilakukan pengaturan terhadap parameter-parameter solusi yang ada selama proses perhitungan atau iterasi untuk mendapatkan hasil iterasi yang konvergen. Kondisi awal yang diberikan sangat berpengaruh terhadap hasil simulasi. Pada penetapan kondisi awal dimungkinkan untuk membuat skala prioritas pada persamaan-persamaan yang ingin digunakan dalam perhitungan aliran dari model yang dianalisis, misalnya dengan mengaktifkan persamaan kontinuitas, kecepatan, dan menon-aktifkan terlebih dahulu persamaan dan turbulensi.

Dengan panel ini, kita dapat mengatur jumlah iterasi yang kita inginkan atau membiarkan iterasi berhenti secara otomatis ketika iterasi telah mencapai hasil yang konvergen. Selama proses iterasi berlangsung, kita dapat mengamati proses konvergensi dari perhitungan atau iterasi secara dinamik. Kita dapat melihat tampilan grafik dari lift, drag, moment coefficients, surface intregations, dan residuals dari variabel solusi. Pada komputer dengan kemampuan tak terbatas, residual ini akan bernilai nol ketika iterasi konvergen. Sedangkan pada umumnya,

komputer dengan perhitungan single precision, akan menghasilkan residual

hingga tingkat ketelitian 6 angka di belakang koma sebelum iterasi mencapai konvergen. Contoh dari grafik residual diperlihatkan pada gambar 5.9

(35)

Gambar 5.9 Grafik residual

5.3.4.3 Pengolahan Hasil Penghitungan (Post-Processor)

Tampilan-tampilan grafis yang ada di Fluent® memungkinkan kita untuk

mendapatkan informasi secara lengkap dari solusi yang diperoleh. Disini kita dapat membuat grafik yang menampilkan grid, kontur, profil, vektor kecepatan,

dan pathline, di samping informasi-informasi lain yang secara mudah dan cepat

bisa kita peroleh melalui panel-panel yang ada di Fluent®. Dengan begitu kita dapat secara langsung menganalisis hasil pemodelan yang telah kita buat. Tampilan grafis yang ditampilkan bisa diatur sesuai dengan keinginan pengguna (user) dan dapat diubah (customize).

(36)

5.3.5 Simulasi Hidrodinamika

Simulasi hidrodinamika tangki DAF dilakukan dengan melakukan variasi ketinggian baffle yaitu tanpa baffle, dengan baffle pada ketinggian (H) 12,5 cm; 27,5 cm; 45,0 cm dan 60,0 cm. Gambar 5.11 menunjukan ketinggian variasi baffle tersebut. Variasi waktu tinggal dalam tangki DAF adalah 63; 206; 195 dan 369 detik. Sedangkan kecepatan input yang divariasikan adalah sebesar 0,25; 0,5; 0,75 dan 1,0 m.detik-1. Hasil simulasi kecepatan input selengkapnya diberikan untuk diberikan pada lampiran 1.

Variasi percobaan dengan ketinggian baffle dilakukan karena dari hasil penelitian

sebelumnya menunjukkan bahwa ketinggian baffle mempengaruhi kinerja unit

DAF pada penyisihan limbah kelapa sawit (Wisjnuprapto dan Utomo, 1994)

Tinggi baffle sebagai bagian dari geometri tangki DAF memiliki pengaruh

terhadap hidrodinamika tangki DAF. Sehingga untuk ketinggian baffle yang

berbeda akan terjadi hidrodinamika aliran yang berbeda. Hidrodinamika yang ditinjau adalah hidrodinamika aliran tiga fasa, yaitu fasa cair, fasa gas dan fasa padat.

Visualiasi untuk menggambarkan kondisi aliran yang terjadi dalam tanki flotasi

mengalami kesulitan disebabkan oleh dense cloud yang terbentuk dari

gelembung-gelembung yang dilepaskan oleh nozzle. Visualisasi dengan

menggunakan sonic probe dan kamera bawah air banyak digunakan oleh para

peneliti untuk melihat pola aliran yang terjadi dalam tanki flotasi Pengukuran

aliran menggunakan acoustic dopller velocimeter sering dilakukan untuk

mengukur kecepatan aliran. Pada umumnya alat yang digunakan untuk percobaan tersebut sangat mahal (Biggs, 2003)

Dalam penelitian ini model skala laboratorium dipakai untuk visualisasi pola aliran yang terjadi dalam tanki flotasi udara terlarut dengan menggunakan kamera untuk menangkap gambar dari pola aliran yang terjadi sebenarnya. Spesifikasi alat yang digunakan adalah :

• Kamera CCD (Charge-Coupled Device) merk JVC tipe C-1310 TK • Satu unit Komputer untuk menyimpan hasil gambar

(37)

Tujuan pengamatan dengan kamera ini adalah untuk membandingkan simulasi yang dilakukan oleh Fluent® pada unit komputer dengan simulasi hidrodinamika pada unit DAF yang disimulasikan. Untuk menggambarkan pola aliran tersebut digunakan tracer dengan zat warna untuk melihat pergerakan aliran yang terjadi di dalam tangki unit DAF. Tracer tersebut diinjeksikan kedalam nozzle sehingga mengikuti aliran yang dipengaruhi aliran air dan udara yang terjadi dalam tangki flotasi. Skema unit pengambilan gambar diberikan pada gambar 5.11.

Gambar 5.11 Skema pengambilan gambar dengan kamera CCD di tangki DAF

5.4. Hasil dan Pembahasan

Aliran pada tangki DAF merupakan aliran yang terdiri dari tiga fasa. Untuk

mengetahui pengaruh tinggi baffle terhadap penyisihan fasa padat dilakukan

simulasi dengan ketinggian baffle yang berbeda. Simulasi yang dilakukkan adalah simulasi CFD dengan tiga fasa dan tiga dimensi. Ketiga fasa tersebut adalah fasa cair, gas dan padat, masing-masing adalah air, gelembung dan partikel padat. Partikel padatan yang digunakan pada pengujian ini adalah partikel tapioka. Penggunaan partikel tapioka pada disertasi ini berkaitan dengan penerapan teknologi bersih pada industri tapioka. Aplikasi unit DAF pada proses produksi tapioka dapat meminimalkan kuantitas limbah cair dari industri tapioka dan meningkatkan effisiensi proses produksi tapioka. Hasil simulasi tiga fasa tersebut dikalibrasi dengan percobaan penyisihan partikel tapioka sebagai TSS. Parameter yang dipergunakan pada simulasi diberikan pada tabel 5.2.

(38)

Tabel 5.2. Parameter simulasi CFD yang digunakan

No Parameter Keterangan

1 Metode perhitungan Euler-Euler

2 Model turbulensi Model standar κ-ε

3 Tekanan operasional 60 psi

4 Kondisi batas

Inflow kecepatan input

Permukaan Tangki DAF permukaan bebas

Dinding permukaan halus

5 Lama waktu simulasi 60, 146, 195 dan 369 detik

6 Fasa primer (air)

Massa jenis 998,2 kg.m-3

Viskositas 0,001003 kg.m-1.det -1

7 Fasa sekunder pertama (udara)

Diameter gelembung 35,0 μm

Massa jenis 1,225 kg.m-3

Viskositas 1,7894.10-5 kg.m-1.det -1

8 Fasa sekunder kedua (tapioka)

Diameter partikel tapioka 4,0 μm

Massa jenis 1550,0 kg.m-3

Viskositas 0,00162 kg.m-1.det -1 9 Koefisien perubahan antar fasa

Fluida – fluida Model Schiller dan Nauman

Fluida – padatan Model Syamlal-O’Brien

Padatan – padatan Model kinetika DAF

Model kinetika DAF digunakan sebagai subsitusi dari koefisien perubahan antar

fasa untuk padatan-padatan. Perangkat lunak Fluent® mempergunakan model

Syamlal (1987) yang diberikan pada persamaan 5.35. Pada model Syamlal koefisien restitusi (esl) merupakan fungsi dari tumbukan antar partikel sedangkan koefisien distribusi radial (go,ls) menunjukkan distribusi partikel dalam ruang. Menganologikan fungsi kedua koefisien dalam model Syamlal dengan model kinetika yang dikembangkan, maka model kinetika DAF yang dibangun sebelumnya pada bab empat dapat digunakan untuk menggantikan koefisien perubahan antar fasa padatan-padatan. Asumsi yang digunakan pada aplikasi model kinetika DAF adalah :

• Partikel gelembung dan tapioka diasumsikan berbentuk bola pejal dengan dimensi yang tetap

(39)

• Sling effect akibat tumbukan diabaikan

Fungsi koefisien restitusi (esl) pada model Syamlal (1987) adalah sama dengan frekuensi tumbukan (z) yang diberikan pada persamaan 4.18. Koefisien perubahan antar fasa model Syamlal adalah sama dengan koefisien laju flotasi (Z) yang diberikan oleh persamaan 4.21. Model Syamlal dikembangkan untuk koefisien perubahan antar fasa padat pada proses fluidaized bed. Perangkat lunak CFD yang digunakan menggunakan model Syamlal (1987) untuk koefisien perubahan fasa padat-padat. Dengan menggunakan persamaan kinetika DAF yang dibangun sebelumnya, hasil simulasi penyisihan partikel diberikan pada sub bab berikut ini.

5.4.1 Simulasi Hidrodinamika untuk Penyisihan Partikel Padat dengan Berbagai Tinggi Baffle

Tinggi baffle memiliki pengaruh terhadap kinerja unit DAF (Wisjnuprapto dan

Utomo, 1994). Tinggi baffle mempengaruhi hidrodinamika tangki DAF dan

menentukan daerah kontak dan daerah penyisihan pada tangki DAF. Disertasi ini

melakukan simulasi CFD dengan ketinggian baffle yang berbeda untuk

mengetahui hidrodinamika yang terjadi pada tangki DAF dan pengaruhnya terhadap penyisihan partikel tapioka.

Pengaruh tinggi baffle terhadap pola aliran tangki DAF diberikan pada sub bagian berikut ini. Simulasi CFD yang dilakukan dengan kecepatan input yang sama untuk ketiga fasa, yaitu sebesar 0,40 m.detik-1 dan waktu tinggal dalam tangki DAF adalah 63 detik. Parameter simulasi CFD yang digunakan seperti diberikan pada tabel 5.2.

5.4.1.1 Tanpa Baffle (H = 0,0 cm)

Pola aliran yang terjadi pada tangki DAF tanpa baffle adalah terjadi aliran short-cut dari aliran yang keluar dari lubang pipa input menuju daerah keluaran. Partikel tapioka yang berada pada aliran yang berasal dari pipa input akan mengikuti aliran air sebagai fasa pembawa menuju daerah pengeluaran tanpa sempat mengalami

(40)

aliran yang terjadi pada hidrodinamika tangki DAF tanpa baffle tidak memberikan kinerja yang baik pada penyisihan partikel tapioka dari air dengan menggunakan gelembung.

Gambar 5.12 Pola aliran ketiga fasa untuk simulasi 63 detik tanpa baffle (H = 0,0 cm)

5.4.1.2 Ketinggian Baffle (H) = 12,5 cm

Hidrodinamika tangki DAF dengan tinggi baffle (H) 12,5 cm tidak menunjukkan adanya aliran short-cut seperti yang terjadi pada simulasi aliran tangki DAF tanpa baffle. Meskipun demikian aliran dengan ketinggian baffle 12,5 cm ini membentuk pusaran aliran dari lubang pipa keluaran menuju permukaan air dan kemudian aliran berbalik menuju daerah keluaran, seperti diperlihatkan pada gambar 5.13. Kecepatan aliran saat mencapai permukaan air, yaitu ruang tempat berkumpulnya agglomerat gelembung – partikel padat (tapioka), kecepatan aliran mencapai besar 0,08 m.det-1. Kecepatan ini cukup tinggi untuk dapat menganggu

Gambar

Gambar 5.1. Contoh Aliran Multifasa
Tabel 5.1  Konsentrasi volume dan jumlah gelembung udara terhadap konsentrasi  udara terlarut dalam cairan, dengan diameter rerata gelembung udara  40µm
Gambar 5.2 Struktur pemodelan hidrodinamika dan kinetika flotasi tangki DAF
Gambar 5.4. Contoh tampilan setelah proses meshing berhasil dilakukan
+7

Referensi

Dokumen terkait

Ampul dibuat dari bahan gelas tidak berwarna akan tetapi untuk bahan obat yang peka terhadap cahaya, dapat digunakan ampul yang terbuat dari bahan gelas

Dari hasil penelitian menggambarkan bahwa dengan menggunakan metode pembelajaran bervariasi dapat meningkatkan aktivitas belajar siswa.Penerapan suatu metode pembelajaran

Dengan menerapkan metode pembelajaran yang terintegrasi dengan teknologi komputer (seperti SPC) akan memberikan suatu model yang berbasis unjuk kerja, hal ini

 Dalam welfare state, hak kepemilikan diserahkan kepada swasta sepanjang hal tersebut memberikan insentif ekonomi bagi pelakunya dan tidak merugikan secara sosial,

sistem yang telah dilakukan, diperoleh hasil sebagai berikut; 1) Lama proses pelabelan objek pada citra digital dengan resolusi 500 x 500 pixel menggunakan tiga

Buton Utara surat izin belajar/pernyataan mengikuti studi lanjut 365 15201002710242 DARWIS SDN 5 Wakorumba Utara Kab... Peserta Nama Peserta

4.. Diagnosis Laboratorium dalam menegakkan diagnosa demam tifoid sangat penting dilakukan karena dapat membantu dalam menentukan hasil pemeriksaan. Sampai saat ini masih

Mohon kehadiran seluruh Pengurus Lengkap Pelkat PKLU dalam rapat yang akan dilaksanakan pada hari Senin, tanggal 04 September 2017 pukul 11.00 WIB bertempat di