• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
8
0
0

Teks penuh

(1)

ON THE ABSOLUTE SUMMABILITY OF SERIES WITH RESPECT TO BLOCK-ORTHONORMAL SYSTEMS

G. NADIBAIDZE

Abstract. Theorems determining Weyl’s multipliers for the summa-bility almost everywhere by the|c,1|method of the series with respect to block-orthonormal systems are proved. In particular, it is stated that if the sequence{ω(n)}is the Weyl multiplier for the summability almost everywhere by the|c,1|method of all orthogonal series, then there exists a sequence{Nk}such that{ω(n)}will be the Weyl mul-tiplier for the summability almost everywhere by the|c,1|method of all series with respect to the ∆k-orthonormal systems.

The present paper deals with the summability almost everywhere (a.e.) by the |c, α| method of series with respect to block-orthonormal systems. Under the summability by the|c, α|method of the series

∞ X

n=1 an

is understood the convergence of the series

∞ X

n=1 Œ Œσ

(α)

n+1−σn(α)

Œ Œ,

where

σn(α)=

1

Aα n

∞ X

k=1

Aαnkak

are the Ces`aro (c, α)-means.

The problem of the summability a.e. by the|c, α| method of orthogonal series was considered by P.L. Ul’yanov [1]. In particular, he proved that if

1991Mathematics Subject Classification. 42C20.

Key words and phrases. Block-orthonormal systems, Weyl multiplier, series with re-spect to block-orthonormal systems, summability almost everywhere by the|c,1|method.

83

(2)

the condition

∞ X

n=1

1

n ω(n) <∞, (1)

is fulfilled for a positive nondecreasing sequence {ω(n)}, then the conver-gence of the series

∞ X

n=1

a2nω(n)

guarantees the summability a.e. on (0,1) by the |c, α|method (α > 12) of the series

∞ X

n=1

anϕn(x) (2)

for every orthonormal system fromL2(0,1).

If however

∞ X

n=1

1

n ω(n) =∞,

then there exists an even functionf(x)∈ ∩

p1L

p[0,2π] such that its Fourier

series

f(x)∼

∞ X

n=1

cncosnx

converges a.e. on [0,2π] and for every fixed α > 0 is not|c, α| summable a.e. on [0,2π] though

∞ X

n=1

c2n ω(n)<∞.

Definition 1 (see [2]). Let{Nk}be an increasing sequence of natural

numbers, ∆k = (Nk, Nk+1],k= 1,2, . . ., and{ϕn}be a system of functions

from L2(0,1). The system {ϕ

n} will be called a ∆k-orthonormal system

(∆k-ONS) if:

(1)kϕnk2= 1,n= 1,2, . . .;

(2) (ϕi, ϕj) = 0 fori, j∈∆k,i6=j, k≥1.

Definition 2 (see [1]). A positive nondecreasing sequence{ω(n)} will be called the Weyl multiplier for the summability a.e. of series with respect to the ∆k-ONS{ϕn} if the condition

∞ X

n=1

(3)

guarantees the summability a.e. by the |c, α| method of the corresponding series (2).

Below we shall quote the theorem showing that if the sequence {ω(n)} is the Weyl multiplier for the summability a.e. by the |c,1| method of all orthogonal series (2), then it will be the Weyl multiplier for the summability a.e. by the |c,1| method of all series (2) with respect to the ∆k-ONS for

the increasing sequence of natural numbers{Nk}.

Theorem 1. If a positive nondecreasing sequence {ω(n)} is the Weyl multiplier for the summability a.e. by the |c,1| method of all orthonormal series(2), then there exists an increasing sequence of natural numbers{Nk} such that{ω(n)}is the Weyl multiplier for the summability a.e. by the|c,1|

method of all series (2)with respect to the∆k = (Nk, Nk+1]-ONS.

Proof. We prove this theorem by the Wang–Ul’yanov’s scheme (see [1]) modifying it accordingly. Let the positive nondecreasing sequence {ω(n)} be the Weyl multiplier for the summability a.e. by the |c,1| method of all orthogonal series (2). Then condition (1) is fulfilled.

As is known (see [1]), for the positive nondecreasing on [n0,+∞) function

ω(x) the series

∞ X

m=n0 1

m ω(m) and

∞ X

m=n2 0

1

m ω(√m)

converge or diverge simultaneously. Therefore, taking into account (1), we have

∞ X

n=1

1

n ω(√4n) <∞.

Then

∞ X

n=1 R(n)

n ω(√4n) <∞, (4)

where

R(n) =

 ∞ P

k=2 1

k ω(√4k) ‘12

 ∞

P

k=n+1 1

k ω(√4k) ‘12

.

Obviously,R(1) = 1,R(n)< R(n+ 1) and limn→∞R(n) = +∞.

Define the sequencek(n) by the recursion formula

k(1) = 0, k(n+ 1) =

(

k(n) + 1 if R(n+ 1)≥k(n) + 1,

(4)

Thus we obtain the nondecreasing sequence of nonnegative integers for which

k(n)≤R(n), n= 1,2, . . . . (5)

Note that for the sequencek(n) there exists an increasing sequence of natu-ral numbers {Nk} (it is assumed that N0 = 0) which is defined by the

formula

k(n) = max{k:Nk< n}.

Then, taking into account (4) and (5), we find that

∞ X

n=1 k(n)

n ω(√4n) <∞. (6)

Let {ϕn} be a block-orthonormal system with ∆k = (Nk, Nk+1] and

condition (3) be fulfilled. Then for the corresponding series (2) we have

σn(x)−σn1(x) =

1

n(n−1)

∞ X

i=1

ai(i−1)ϕi(x), n≥2.

Denoting byc the absolute positive constants which, generally speaking, may have different values in different inequalities and using (6), we find that ∞ X n=2 1 Z 0 Œ

Œσn(x)−σn1(x)ŒŒdx≤ ∞ X n=2  1 Z 0 Œ

Œσn(x)−σn1(x)ŒŒ 2 dx‘ 1 2 ≤ ≤c ∞ X n=2 1 n2 ’Z1

0 Œ Œ Œ n X i=1

ai(i−1)ϕi(x)

Œ Œ Œ 2

dx “12

≤ ≤c ∞ X n=1 1 n2 ’Z1

0 Œ Œ Œ

Nk(n)

X

i=1

ai(i−1)ϕi(x)

Œ Œ Œ 2 + 1 Z 0 Œ Œ Œ n X

i=Nk(n)+1

ai(i−1)ϕi(x)

Œ Œ Œ 2

dx “12

≤ ≤c ∞ X n=1 1 n2 

k(n)

Nk(n)

X

i=1 a2ii2+

n

X

i=Nk(n)+1

a2ii2

‘12 ≤ ≤c ∞ X n=1 1 n2 

k(n)

n

X

i=1 i2a2i

‘12 ≤c

∞ X

n=1 p

k(n)

n2 ”

 [√4n]

X

i=1 i2a2i

‘12 +

n

X

i=[√4n]+1

i2a2i

‘12• ≤c

’ ∞

X

n=1 p

k(n)(√n√4n)12

(5)

+

∞ X

n=1 p

k(n)

n2

nω(√4n))12

nω(√4n))12

 Xn

i=[√4n]+1

i2a2i

‘12“ ≤ ≤ ’ ∞ X n=1 1

n98 +

∞ X

n=1 ω(√4n)

n3

n

X

i=[√4n]+1

i2a2i

‘12X∞

n=1 k(n)

kω(√4n)

‘12“ ≤

≤c+c

∞ X n=1 1 n3 ∞ X i=1

i2a2iω(i)

‘12

≤c+c

∞ X

i=1 a2iω(i)

‘12

<,

whence by Levy’s theorem

∞ X

n=2 Œ

Œσn(x)−σn1(x) Œ

Œ<∞ a.e. on (0,1).

The theorem below makes it possible to determine the Weyl multipliers for the summability a.e. of the series (2) with respect to the ∆k-ONS for

regularly increasing sequences{Nk}.

Theorem 2. Let an increasing sequence of natural numbers {Nk} be given, for which the condition

∞ X

k=n

1

N2

k

=O n N2

n

‘

(n→ ∞) (7)

is fulfilled, and let

k(n) = max{k:Nk< n}.

If for the positive nondecreasing sequence{ω(n)}condition(1)is fulfilled, then for every ∆k-ONS {ϕn} the condition

∞ X

n=1

a2nω(n)k(n)<∞ (8)

guarantees the summability a.e. by the |c,1| method of the corresponding series(2).

Proof. Let conditions (1), (7) and (8) be fulfilled. Then for the corre-sponding series (2) we have

∞ X n=2 1 Z 0 Œ

Œσn(x)−σn1(x) Œ Œdx≤

∞ X n=2  1 Z 0 Œ

Œσn(x)−σn1(x) Œ Œ 2 dx‘ 1 2 ≤ ≤c ∞ X n=1 1 n2 ’Z1

0 Œ Œ Œ

Nk(n)

X

i=1

ai(i−1)ϕi(x)

Œ Œ Œ 2 dx+ 1 Z 0 Œ Œ Œ n X

i=Nk(n)+1

ai(i−1)ϕi(x)

Œ Œ Œ 2

dx “12

(6)

≤c ∞ X n=1 1 n2 

k(n)

∞ X

i=1 i2a2i‘

1 2 ≤c ∞ X n=1 p

k(n)

n2 ”[

4

n] X

i=n

i2a2i

‘12 +

n

X

i=[√4n]+1

i2a2i

‘12• ≤c

’ ∞ X

n=1 p

k(n)n38

n2 +

+

∞ X

n=1 p

k(n)

n2

(nω(√4n))12 (nω(√4n))12

 Xn

i=[√4n]+1

i2a2i

‘12“ ≤

≤c+c

∞ X

n=1 k(n)

n3

∞ X

i=1

i2a2iω(i)

‘12X∞

n=1

1

nω(√4n)

‘12 ≤

≤c+c

∞ X

i=1

i2a2iω(i) ∞ X

i=1 k(n)

n3 ‘12

=

=c+c ’ ∞

X

i=1

i2a2iω(i)

’Nk(i)+1

X

n=i

k(i)

n3 +

∞ X

j=k(i)+1 j

Nj+1

X

n=Nj+1

1

n3 ““12

≤c+c ’ ∞

X

i=1

i2a2iω(i)

’k(i)

i2 + (k(i) + 1)

∞ X

n=Nk(i)+1+1 1

n3 +

+

∞ X

j=k(i)+1

1

N2

j

““12

≤c+c

∞ X

i=1

i2a2iω(i)k(i)

‘12

<∞,

whence by Levy’s theorem

∞ X

n=2 Œ

Œσn(x)−σn1(x) Œ

Œ<∞ a.e. on (0,1).

Remark 1. In Theorem 2, the Weyl multipliers defined by conditions (1) and (8) can be assumed to be exact on the set of sequences {Nk} with

condition (7) in the sense that if condition (1) is violated, then one can construct a sequence{Nk}for which condition (7) is fulfilled and also there

exists a trigonometric series

∞ X

n=1

bncosnx,

which is nonsummable by the |c, α| method for almost all x[0,2π] (for every fixedα >0) though

∞ X

n=1

(7)

Indeed, let the condition

∞ X

n=1

1

n ω(n)=∞

be fulfilled for the sequence{ω(n)}.

We construct an increasing sequence of natural numbers{Nk}in such a

way that the condition

k=O

Nk

X

n=1

1

n ω(n)

‘β

, 0< β≤ 1 2,

be fulfilled and the sequence Nk

k be increasing.

Clearly, condition (7) is fulfilled (see [3], Remark 2). Take

sk = k

X

n=1

1

n ω(n), k= 1,2, . . . ,

and

cm=

1 √

m ω(m) (sm)β+

1 2

m= 1,2, . . . .

Then for arbitraryεm=±1 we have

∞ X

m=1

(εmcm)2ω(m)k(m) = ∞ X

m=1

k(m)

m ω(m)(sm)2β+1

=

=

∞ X

k=0

Nk+1

X

m=Nk+1

k(m)

m ω(m)(sm)2β+1 ≤

c

∞ X

k=0

Nk+1

X

m=Nk+1

(sNk) β

m ω(m)(sm)2β+1 ≤

≤c

∞ X

k=0

Nk+1

X

m=Nk+1

1

m ω(m)(sm)1+β ≤

c

∞ X

m=1

1

m ω(m)(sm)1+β

<.

On the other hand,

∞ X

n=0

š 2n+1 X

m=2n+1

c2m

›12 ≥

∞ X

n=0

š 2n+1 X

m=2n+1

1

m(ω(m))2(s

m)1+2β

›12 ≥

≥ 1 2

∞ X

n=1

1

ω(2n)(s2n)12+β =∞.

Therefore by Billard’s theorem [1], for almost all choices of εk = ±1 the

series

∞ X

m=1

(8)

is|c, α|-nonsummable (α >0) at almost every pointx[0,2π] though

∞ X

n=1

b2nω(n)k(n)<∞,

wherebn=εncn.

Remark 2. The above theorems remain also valid for|c, α|methods with

cα > 12.

References

1. P. L. Ul’yanov, Solved and unsolved problems of the theory of trigono-metric and orthogonal series. (Russian)Uspekhi Mat. Nauk 19(1964), No. 1, 3–69.

2. V. F. Gaposhkin, Series of block-orthogonal and block-independent systems. (Russian)Izv. Vyssh. Uchebn. Zaved. Mat. 1990, No. 5, 12–18;

English translation: Soviet Math. (Iz. VUZ),34(1990), No. 5, 13–20. 3. G. G. Nadibaidze, On some problems connected with series with respect to ∆k-ONS. Bull. Acad. Sci. Georgia144(1991), No. 2, 233–236.

(Received 15.05.1997)

Author’s address:

Referensi

Dokumen terkait

Unit Layanan Pengadaan Dinas Perhubungan, Komunikasi dan lnormatika Kota Batu pengadaan memutuskan nama-nama perusahaan di bawah ini sebagai Calon Pemenang dan Calon

[r]

Apabila dari peserta merasa keberatan atas Pengumuman Pemenang Pelelangan Umum ini, dapat menyampaikan sanggahan secara elektronik melalui aplikasi SPSE kepada

Dari pemaparan tersebut “the heaviest storage” adalah simbol yang merepresentasikan pikiran sadar dari para awak kapal karena hal ini menyerupai. pengertian pikiran

BNPT tidak bisa melakukan sendiri bagaimana melawan pemikiran Aman Abdurrahman melalui media online yang mereka kembangkan, tetapi lebih penting lagi peran sarjana, ulama

Selanjutnya  panitia  akan  mengadakan  penilaian  /  evaluasi  administrasi  dan  teknis  terhadap  surat  penawaran  yang  memenuhi  syarat  /  lengkap,  dan 

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Sehubungan dengan Pengumuman Pelelangan Sederhana Dengan Pascakualifikasi Nomor: 002/CS/KR.VIII/III/2011 tanggal 4 Maret 2011, Pekerjaan Jasa Kebersihan Gedung Badan