• Tidak ada hasil yang ditemukan

About Two Manners Of Use Weighted Least Squares Approach In Fuzzy Statistics.

N/A
N/A
Protected

Academic year: 2017

Membagikan "About Two Manners Of Use Weighted Least Squares Approach In Fuzzy Statistics."

Copied!
9
0
0

Teks penuh

(1)

ABOUT TWO MANNERS OF USE WEIGHTED LEAST SQUARES APPROACH IN FUZZY STATISTICS

1Ciprian Costin POPESCU,2Supian SUDRADJAT

1Department of Mathematics, Academy of Economic Studies Bucharest Calea Doroban¸tilor, nr. 15-17, Sector 1, Bucharest, Romania

e-mail: cippx@yahoo.com

2Faculty of Mathematics and Natural Sciences, Padjanjaran University, Bandung, Indonesia

e-mail: adjat03@yahoo.com

Abstract

Two fuzzy statistical models are generalized and extended to the weighted models. The new regression problems are solved and compared with the origi-nals.

Key Words:fuzzy number; regression; weighted distance; weighted least squares.

1. INTRODUCTION

This work tackles the parameter estimation for regression problems with fuzzy data. Generally, the estimation problems consist in choosing and mini-mizing an objective function (see Arthanary and Dodge [1]). One of the most used methods in this domain is fuzzy least squares (Diamond [5,6,7] and Coppi [4] for triangular fuzzy numbers; Ming, Friedman and Kandel [11] in a more gen-eral case). This paper brings together two models, consequently two approaches for this subject: …rst, proposed by Coppi et al. [4] and the second, given by Ming et al. [11]. We generalize the two norms in each case and obtain the weighted models. This kind of weighted models describes with more accuracy various phenomenons (for example a lot of economic models). The estimations for parameters and the regression lines in each distinct situation are given.

2. THE WEIGHTED COPPI MODEL

We generalize and test the viability of the algorithm developed by R. Coppi et al. [4] for estimation problems which implies fuzzy data.

Let the input fuzzy variablesX1; :::; Xm and a fuzzy output variable,Y, on

a size n sample [4]. The data will be denoted by (yi; xie ), i = 1; :::; n, where xT

(2)

(y) =

L m y

l ; y m; (l >0)

R y m

u ; y m; (u >0) .

We consider the theoretical values , L, U and the errors","L, "U. Thus we may write

m= +"

m l= L +"L m+u= u+ U +"U (2.1) or, after a reparametrization:

=F

L= L +"L1 U = U +"U1 (2.2)

where F is a matrix, whose rows have the form fT

i = [f1(xi); :::; fp(xi)].

Thus the theoretical values of the output variable are yie = i; Li; Ui

LR, i= 1; n.

De…nition 2.1.

We introduce the following weighted distance which is a generalization of a metric proposed by Coppi and d’Urso [4]: for w= (w1; w2; w3)we have

d2

(w;ey;ye ) =d2

w; (m; l; u)LR; ; L; U LR = 2

LR(w; ) = =w1km k

2

+w2 (m l) L

2

+ +w3 (m+ u) + U

2

.

Theorem 2.1.

The following relation holds: d2

(w;ey;ye ) = (w1+w2+w3)

h

(m )T(m )i 2w2 (m )T l L +w2

2

l L T

l L + +2w3 (m )T u U +w3

2

u U T

u U . Proof:

d2

(w;ey;ye ) = 2

LR(w; ) =w1km k 2

+w2 (m ) l L

2

+

+w3 (m ) + u U

2

= =w1(m )

T

(m ) +

+hw2(m )T(m ) 2w2 (m )T l L +

+w2 2

l L T

l L i

+

+hw3(m )T(m ) + 2w3 (m )T u U + +w3 2 u U

T

u U i

=

= (w1+w2+w3)

h

(m )T(m )i 2w2 (m )T l L +w2

2

l L T

(3)

+2w3 (m )T u U +w3 2

u U T

u U .

For particular casew1=w2=w3= 1we obtain the results from Coppi and

d’Urso [4].

Remark 2.1.

The algorithm for …nding , L, U, L, U is reducing to minimizing the weighted distance d2

w between the experimental measurements of the response variableyi,e i= 1; nand the theoretical values yie .

In other words, we have to solve the problem: min

; L; U; L; U 2

LR w; ; L; U; L; U .

Theorem 2.2. The problem min

; L; U;L;U 2

LR w; ; L; U; L; U admitts local solutions (local minimum) which may be improved using an iterative estimation algorithm.

Proof: We have:

2

LR w; ; L; U; L; U = = (w1+w2+w3)

h

m F T m F i

2w2 m F

T

1 F L 1 L +

+w2 2

1 F L 1 L T 1 F L 1 L +

+2w3 m F

T

u F U 1 U + +w3

2

u F U 1 U T u F U 1 U = = (w1+w2+w3) mTm 2mTF + TFTF

2w2 mTl mTF L mT1 L TFTl+ TFTF L+ TFT1 L +

+w2 2

lTl 2lTF

L 2lT1 L+ TFTF

2

L+ 2 TFT1 L L+n

2

L + +2w3 mTu mTF U mT1 U TFTu+ TFTF U+ TFT1 U +

+w3 2

uTu 2uTF

U 2uT1 U+ TFTF

2

U + 2 TFT1 U U+n

2

U .

We equate to zero the partial derivatives of 2

LR w; L; U; L; U; :

w2 TFTm TFTF TFTl TFTF L TFT1 L = 0(2.1)

w3 TFTm+ TFTF TFTu TFTF U TFT1 U = 0(2.2)

w2 TFT1 mT1 + lT1 TFT1 L n L = 0 (2.3)

w3 TFT1 mT1 uT1 TFT1 U n U = 0(2.4)

FTF T (w

1+w2+w3) 2w2 L+w2 2 2

L+ 2w3 U +w3 2 2

U = = (w1+w2+w3)FTm w2 FTm L+FTl FT1 L +

+w2 2

FTl

L FT1 L L +w3 FTm U +FTu FT1 U +

(4)

An iterative solution is given by relations (2.6)-(2.10):

L=

1 T

FTF 1 TFTl TFT1

L TFTm TFTF (2.6)

U =

1 T

FTF 1 TFTu TFT1 U + + TFTm TFTF (2.7)

L= (n )

1

1T l F

L 1T m F (2.8)

U = (n )

1

1T u F

U + 1T m F (2.9) = [(w1+w2+w3) w2 L(2 L) +w3 U(2 + U)]

1

FTF 1FT

(w1+w2+w3)m w2 (m L+l 1 L) +w2 2

(l L 1 L L) + +w3 (m U+u 1 U) +w3 2(u U 1 U U) (2.10)

We don’t have the certainty that the equations (2.6)-(2.10) give a global solution. It’s necessary to resort to an iterative algorithm. The routine for …nding the iterative solution with help of a computer is available in literature (see Coppi et al.).

Remark 2.2.

After some calculation, we observe that the properties of the solution obtained from the weighted model are the same as in the Coppi’s nonweighted model (see Coppi et al. [4],Proposition 1,2,3):

i)w11T(m b) = 0;w21T l cL = 0;w31T u cU = 0;

ii)w1(m b)Tb= 0;

iii) l cL T

cL = 0, u cU T

cU = 0;

where b d, L,dU are the iterative solutions obtained from the normal equa-tions system(2.6)-(2.10).

3. AN EXTENSION FOR THE MING APPROACH

In this section, a weighted model especially based on Ming approach in the …eld of fuzzy optimization, is developed.

De…nition 3.1.

We consider a fuzzy space F1

as a function space with the following proper-ties [2,11]:

i)the elements of F1

are the functions f :R![0;1],which are called fuzzy numbers;

ii)f(x0) = 1for somex02R;

iii)f( x+ (1 )y) minff(x); f(y)g; x; y2R; 2[0;1] ; iv)lim sup

x!t f(x) =f(t); t2R;

(5)

De…nition 3.2. Iff; g2F1

, 2R,r2[0;1]we may introduce[10,12]: [f]r = ft=f(t) rg;0< r 1

ft=f(t)>0g; r= 0 ; consequently, the operations with fuzzy numbers are:

i)[f]r+ [g]r=fa+b=a2[f]r; b2[g]rg; ii) [f]r=f a=a2[f]rg.

Remark 3.1.

[f]r= f(r); f(r) is a closed interval and [8,11]:

i)f(r)is a bounded left continuous nondecreasing function over[0;1] ; ii)f(r)is a bounded left continuous nonincreasing function over [0;1] ; iii)f(r) f(r);for allr2[0;1] ;

iv)the functions f(r); f(r)de…ne a unique fuzzy number f 2F1

:

Remark 3.2.

SinceXi = Xi(r); Xi(r) 2F1

then the triangular form for Xi is: Xi = xi; ui; ui whereXi(r) =xi ui+uirandXi(r) =xi+ui uir[11].

De…nition 3.3.

Now we consider a generalization of metricD2[2,3,8,9,11],in fact a weighted

metric:

forf; g; w2F1

we de…ne the weighted distance betweenf andg as follows:

D2

(w;f; g) =R01w(r) f(r) g(r) 2

dr+R01w(r) f(r) g(r) 2

dr:

For Xi= Xi(r); Xi(r) 2F1

input independent variables, Yi= Yi(r); Yi(r) 2F1

response variables and wi= wi(r); wi(r) 2F1

, i= 1; nwe have:

Xi = xi; ui; ui ,Yi= yi; vi; vi ,wi= zi; ti; ti where Xi(r) =xi ui+uir,Xi(r) =xi+ui uir,

Yi(r) =yi vi+vir,Yi(r) =yi+vi vir, wi(r) =zi ti+tir,wi(r) =zi+ti tir.

We assume that the dependence betweenX andY is given byY =a+bX; a, b are unknown real parameters and b 6= 0. It is necessary to estimate a, b using weighted least squares method.

Thus we must minimize the sum of squared deviations between theoretical and experimental values:

S(a; b) = Pn i=1

D2

(wi;a+bXi; Yi).

Theorem 3.1.

(6)

Proof:

We approximateR01f(r)dr'

f(0) +f(1)

2 (see [6,11]). Ifb >0 we have

S1(a; b) =

n P i=1

hR1

0 wi(r) a+bXi(r) Yi(r) 2

dr+

+R01wi(r) a+bXi(r) Yi(r) 2

dri= =

n P i=1

hR1

0 zi ti+ti a+b xi ui+uir yi+vi vir 2

dri+ +Pn

i=1

hR1

0 zi+ti tir [a+b(xi+ui uir) yi vi+vir] 2

dri' ' 1

2

n P i=1

n

zi ti a+b xi ui yi vi

2

+

+ zi+ti [a+b(xi+ui) (yi+vi)]2+ +2zi(a+bxi yi)2o.

Ifb <0 we obtain S2(a; b) =

n P i=1

hR1

0 wi(r) a+bXi(r) Yi(r) 2

dr+

+R01wi(r) a+bXi(r) Yi(r) 2

dri= = Pn

i=1

hR1

0 zi ti+ti a+b(xi+ui uir) yi+vi vir 2

dri+

+ n P i=1

hR1

0 zi+ti tir a+b xi ui+uir yi vi+vir 2

dri' ' 1

2

n P i=1

n

zi ti a+b(xi+ui) yi vi 2+

+ zi+ti a+b xi ui (yi+vi) 2+ + 2zi(a+bxi yi)2o.

In conclusion, if b > 0 then S(a; b) = S1(a; b); if b < 0 then S(a; b) =

S2(a; b).

Theorem 3.2. The problem min

a2R;b2R S(a; b) has a unique solution a; b . Consequently, there exists a single line, the best line Y = a+bX which …t the given data (Xi; Yi).

Proof:

We have the problem

min

a2R;b2R S(a; b).

Accordingly to Theorem 3.1 we must discuss two possibilites:

1)b >0. After equate with zero the partial derivatives ofS(a; b)we obtain the system:

a n P i=1

(7)

+bPn i=1

zi ti xi ui + zi+ti (xi+ui) + 2zixi =

= n P i=1

zi ti yi vi + zi+ti (yi+vi) + 2ziyi

aPn i=1

zi ti xi ui + zi+ti (xi+ui) + 2zixi +

+bPn i=1

h

zi ti xi ui 2+ zi+ti (xi+ui)2+ 2zix2

i i = = n P i=1

zi ti xi ui yi vi +

+ zi+ti (xi+ui) (yi+vi) + 2zixiyi The determinant is:

1=

n P i=1

zi ti + zi+ti + 2zi

n P i=1

h

zi ti xi ui 2+ zi+ti (xi+ui)2+ 2zix2

i i

n P i=1

zi ti xi ui + zi+ti (xi+ui) + 2zixi

2

0;from

Cauchy-Schwarz inequality. We may choose 1 >0 (becauseXi are independent

vari-ables), and obtain a unique minimization point(a1; b1)forS1(a; b):

a1= a 1 1

,b1= b 1 1

where

a1=

n P i=1

zi ti yi vi + zi+ti (yi+vi) + 2ziyi

n P i=1

h

zi ti xi ui

2

+ zi+ti (xi+ui)

2

+ 2zix

2 i i n P i=1

zi ti xi ui yi vi +

+ zi+ti (xi+ui) (yi+vi) + 2zixiyi n

P i=1

zi ti xi ui + zi+ti (xi+ui) + 2zixi and

b1=

n P i=1

4zi+ti ti

n P i=1

zi ti xi ui yi vi +

+ zi+ti (xi+ui) (yi+vi) + 2zixiyi n

P i=1

zi ti xi ui + zi+ti (xi+ui) + 2zixi

n P i=1

zi ti yi vi + zi+ti (yi+vi) + 2ziyi .

2)b <0. We have:

aPn i=1

4zi+ti ti +

+bPn i=1

(8)

= Pn i=1

zi ti yi vi + zi+ti (yi+vi) + 2ziyi

a n P i=1

zi ti (xi+ui) + zi+ti xi ui + 2zixi +

+bPn i=1

h

zi ti (xi+ui)2+ zi+ti xi ui 2+ 2zix2

i i

=

= Pn i=1

zi ti (xi+ui) yi vi +

+ zi+ti xi ui (yi+vi) + 2zixiyi

Now, 2=

n P i=1

4zi+ti ti

n P i=1

h

zi ti (xi+ui)2+ zi+ti xi ui 2+ 2zix2

i i

n P i=1

zi ti (xi+ui) + zi+ti xi ui + 2zixi

2

0.

As in above case we obtain that this system has a unique minimization point (a2; b2).

IfS(a1; b1)< S(a2; b2)then a; b = (a1; b1).

IfS(a1; b1)> S(a2; b2)then a; b = (a2; b2).

Thus we obtain a unique solution for our estimation problem. The theorem was proved.

References

[1] T. S. Arthanari and Yadolah Dodge, Mathematical Programming in Sta-tistics, John Wiley and Sons, New York, 1980.

[2] Wu Cong-Xin and Ma Ming, Embedding problem of fuzzy number space: Part I,Fuzzy Sets and Systems 44 (1991) 33-38.

[3] Wu Cong-Xin and Ma Ming, Embedding problem of fuzzy number space: Part III,Fuzzy Sets and Systems 46 (1992) 281-286.

[4] Renato Coppi, Pierpaolo D’Urso, Paolo Giordani, Adriana Santoro, Least squares estimation of a linear regression model with LR fuzzy response, Com-putational Statistics and Data Analysis 51 (2006), 267-286.

[5] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets,Fuzzy Sets and Systems 35 (1990) 241-249.

[6] P. Diamond, Fuzzy least squares, Inform. Sci. 46 (1988) 141-157. [7] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Corrigendum, Fuzzy Sets and Systems 45 (1992) 123.

[8] R. Goetschel, W. Voxman, Elementary Calculus,Fuzzy Sets and Systems 18 (1986) 31-43.

[9] I.M. Hammerbacher and R. R. Yager, Predicting television revenues using fuzzy subsets,TIMS Stud. Management Sci. 20 (1984) 469-477.

(9)

[11] Ma Ming, M. Friedman, A. Kandel, General fuzzy least squares,Fuzzy Sets and Systems88 (1997) 107-118.

[12] C. V. Negoi¸t¼a and D. A. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Wiley, New York, 1975.

[13] H. Prade, Operations research with fuzzy data, in: P. P. Wang and S. K. Chang, Eds., Fuzzy sets: Theory and Application to Policy Analysis and Information Systems (plenum, New York, 1980) 115-169.

[14] V. Preda and V. Craiu,Inferen¸t¼a statistic¼a pentru valori medii condi¸tion-ate, Editura Universit¼a¸tii Bucure¸sti (1992).

[15] M. L. Puri and D. A. Ralescu, Di¤erentials for fuzzy functions,J. Math. Anal. Appl. 91 (1983) 552-558.

[16] H. Tanaka, H. Isibuchi and S. Yoshikawa, Exponential possibility regres-sion analysis,Fuzzy Sets and Systems 69 (1995) 305-318.

[17] H. Tanaka, S. Uejima and K. Asai, Linear regression analysis with fuzzy model,IEEE Trans. Systems Man Cybernet. SMC-12 (1982) 903-907.

[18] H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions,Fuzzy Sets and Systems 1 (1978) 45-55.

Referensi

Dokumen terkait

BALAI PENGJIAN DAN SERTIFIKASI MUTU BARANG PROVINSI KALlMANTAN SELATAN TAHUN ANGGARAN 2013.

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peserta/Penyedia barang/jasa berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara

Sehubungan dengan pengadaan Jasa Konsultansi paket Pengawasan Pembangunan Jalan poros Anggolohipo Amolame pada Dinas Pekerjaan Umum Kabupaten Konawe Utara, dengan ini kami

Dimana penelitian ini bertujuan untuk mengetahui: (1) Untuk mengetahui apakah pendekatan active learning melalui strategi inkuiri terhadap pemahaman konsep matematika

Since she makes 20 bridge crossings, then she visits 21 islands in total, so the sequence contains 21 letters.. If Maya is on island A or on island C , then the next island that

Hasil identifikasi molekuler virus penyebab daun keriting pada tanaman melon dalam penelitian ini menunjukkan bahwa virus tersebut berkerabat dekat dengan PYLCIDV (AB267834)

Yang menjadi kajian dalam penelitian Tindakan kelas ini adalah rendahnya hasil belajar siswa dalam pembelajaran matematika sub pokok bahasan penjumlahan pecahan.. Hal

(2) Dalam melaksanakan tugasnya sebagaimana dimaksud pada ayat (1), penyelenggara satuan pendidikan yang didirikan masyarakat menyelenggarakan satuan dan/atau program pendidikan