• Tidak ada hasil yang ditemukan

Pengaruh Hibridisasi Serat Basalt-Serat Karbon Komposit Epoksi dengan Variasi Jumlah Serat dan Posisi Laminasi pada pembebanan Bending.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengaruh Hibridisasi Serat Basalt-Serat Karbon Komposit Epoksi dengan Variasi Jumlah Serat dan Posisi Laminasi pada pembebanan Bending."

Copied!
7
0
0

Teks penuh

(1)

Pengaruh Hibridisasi Serat Basalt-Serat Karbon Komposit Epoksi dengan

Variasi Jumlah Serat dan Posisi Laminasi pada Pembebanan Bending

I.D.G Ary Subagia1), Ketut Adi Atmika1), Wayan Nata Septiadi1), I.M.Parawata1), M.D Budiana1)

1

Teknik Mesin, Fakultas Teknik Universitas Udayana, Bukit Jimbaran - Badung 80361

Telepon (0361) 703321 e-Mail : arsubmt@me.unud.ac.id

Bandung, 3 - 4 November 2015

ABSTRAK

Penelitian ini menganalisa pengaruh laminasi serat basalt pada komposit dengan karbon berdasarkan pada jumlah dan susunan laminasi. Tujuan penelitian adalah untuk mengamati pengaruh laminasi serat basalt terhadap kekuatan dan sifat patahan akibat pembebanan three point bending. Bahan uji adalah berupa variasi jumlah serat basalt dan susunan pada serat karbon yang difabrikasi dengang menggunakan vacuum resin transfer molding (VRTM) proses. Material uji dibentuk berdasarkan standar ASTM D-970 dan diuji bending dengan kecepatan penekanan 1mm/min, untuk beban (load cell) adalah 10 ton. Hasil pengujian diperoleh berupa tegangan (Mpa), regangan (mm/mm) dan modulus of elastisita s (Gpa). Hasil menunjukkan bahwa meningkatnya jumlah fraksi berat serat basalt secara signifikan menurunkan tegangan, sebaliknya meningkatkan regangan patah. Metode hibridisasi dengan mengatur susunan laminasi adalah metode yang baik untuk mempertahankan kualitas kekuatan dan patahan pada komposit. Selain itu, posisi serat karbon pada bagian terluar memberikan tegangan bending yang tinggi tapi regangan patah rendah. Sebaliknya untuk serat basalt pada bagian terluar laminasi.

Kata Kunci : Komposit, hibrid, laminasi, bending, serat basalt, serat karbon

I. PENDAHULUAN

Material komposit dengan penguat serat karbon atau material komposit carbon fiber reinforced polymer (CFRP) telah banyak dikembangkan sejak duapuluh tahun yang lalu. Serat karbon telah dikenal memiliki sifat mekanis yang sangat baik terutama pada tegangan yang tinggi sekitar 700 MPa dengan modulus elastisitas sekitar 60 GPa [1]. Disamping itu, ringan, density rendah. Keunggulan tersebut, menyebabkan komposit dengan serat karbon banyak digunakan pada pesawat terbang [2, 3]. Akan tetapi, material ini adalah getas dengan kata lain bersifat mudah patah karena memiliki regangan yang lebih rendah dari pada serat gelas yaitu tidak lebih dari 1 mm/mm Disamping itu, serat karbon cukup mahal sehingga

tidak dapat dipergunakan pada konstruksi

konstruksi sederhana.

Dalam usaha untuk mengoptimalkan komposit dengan penguat serat karbon sehingga dapat

digunakan pada konstruksi sederhana, metode hibridisasi telah dikembangkan yaitu dengan menggabungkan serat karbon dengan serat gelas dalam matrik tunggal [4, 5]. Banyak penelitian telah dilakukan untuk menguji kualitas material komposit dengan hibridisasi serat gelas dan serat karbon. Seperti telah dilakukan oleh Belingardi et.al [6] mempelajari karakteristik hibridisasi biaxial serat karbon dan biaxial serat basalt terhadap perlakuan fatique. Zhang et.al [7] dan Onal et.al [8] telah dipelajari pengaruh susunan (stacking sequence) antara serat karbon dan serat gelas terhadap kekuatan dan kekakuannya pada pembebanan bending. Penelitian yang sama juga dilakukan oleh [4] yaitu menghibridisasi serat glass S-2 dan serat jkarbon TR30S/epoxy terhadap sifat flexural.

(2)

rendah dari komposit dengan serat karbon, namun unggul dalam peregangan karena material menjadi lebih ulet (ductile) [9]. Dibalik keunggulan

tersebut, serat gelas dapat mengakibatkan

terjadinya kanker pada manusia karena serat gelas bersifat racun dan tidak ramah lingkungan.

Dengan semakin gencarnya upaya untuk

mengembangkan material yang ramah lingkungan, sejak dua dekade terakhir telah diperkenalkan material baru yaitu serat basalt [10, 11]. Dimana serat basalt ditinjau dari sifat mekanis dan kimianya adalah sangat signifikan digunakan sebagai pengganti serat glass hibridisasi dengan serat karbon [11, 12]. Serat basalt adalah serat yang dihasilkan dari proses pecairan batu gunung berapi (larva) pada temperatur diatas 1300oC [13], sehingga serat basalt memiliki sifat yang tahan panas [14, 15], disamping itu murah [16]. Beberapa penelitian telah dilakukan berkaitan dengan serat basalt sebagai penguat pada material komposit seperti; Lapresto et.al [17] telah

mempelajari karakteristik komposit dengan

penguat serat basalt. sedangkan untuk sifat mekanis serat basalt ditinjau dari ketahanan adhesi untuk matrik prloyproppylene dipelajari oleh Antonio Greco et.al [10]. Selanjutnya, beberapa penelitian tentang karakteristik serat basalt terkait dengan penyerapan energi dari material porous dan microstruktur dari chopped serat basalt sebagai penguat beton masing masing diteliti oleh Luo Xin et.al [18] dan Chaohua Jiang et.al [19].

Penelitian ini, dilakukan dengan menggabungkan serat karbon dan serat basal secara laminasi pada matrik tunggal yaitu epoxy. Material dibuat dengan menggunakan metode injeksi yang dikenal dengan sebutan metode vaccum resin transfer molding. Tujuan dari penelitian adalah untuk menganalisa effek laminasi serat karbon dan serat basalt terhadap perlakuan bending dengan variasi jumlah fraksi berat serat basalt, yang masing - masing diuji sebanyak 5 (lima) spesimen untuk setiap variasi. Analisa scanning electro microscope

(SEM) adalah menguji karakteristik patahan akiabt beben bending.

II. METODE DAN PROSES FABRIKASI

Material

Hibridisasi serat karbon dan serat basalt telah dilakukan dalam penelitian ini. Kedua serat (serat karbon dan basalt) adalah berbentuk anyaman kain

(plin woven fabrics) yang masing-masing

diproduksi oleh perusahaan Hyundai Fiber Co. Ltd. (Korea), dan Seco-Tech. (Korea). Kemudian epoxy diproduksi oleh Jet Korea Industrial Corporation.

Serat basalt sebagai material pendatang baru adalah terbentuk dari pengendapan lahar gunung berapi yang tersusun dari unsur-unsur seperti ditunjukkan pada tabel 1. Dari Tabel 1 terlihat bahwa Silikon oksida (SiO2) merupakan unsur

tertinggi jumlahnya pada basalt yaitu sekitar 52.8% dibanding usur-unsur pembentuk lainnya. Sifat mekanis untuk masing masing serat adalah ditunjukkan seperti Tabel.2.

Table 1 Unsur kimia material Basalt

Chemical

Table 2 Sifat mekanis serat karbon dan serat basalt

Karakteristik Serat Basalt

Serat Karbon

Tegangan putus (Mpa 3000-4840 3500-6000

Modulus elastisitas (GPa) 79.3-93.1 230-600

Breaking Extension (%) 3.1 1.5-2.0

Diameter serat (µm) 6-21 5-15

Temperatur withstand (oC) -260-+700 -50..+700

Table 3 Konfigurasi laminasi hibrid komposit epoxy serat karbon/basalt

(3)

yang presisi, ketebalan merata, dan mudah dalam proses pengerjaan [20]. Proses pencetakan dengan metode VRTM adalah melalui 5 tahapan yaitu; tahap laminasi serat, tahap penyusunan laminasi pada plat cetakan yang ditutup dengan plastik bag, tahap persiapan matrik pengikat dan preparasi cetakan, tahap injeksi pengikat kedalam cetakan dan tahap curing. Untuk masing masing tahapan ditunjukkan seperti pada Gambar 1. Selanjutnya,

variasi laminasi material hibrid komposit

ditunjukkan seperti pada Tabel 3.

Gambar 1 Tahapan VRTM pada pembuatan hibrid komposit epoxy laminasi karbon/basalt

Gambar 2 Skematik Laminasi komposit epoxy dengan serat karbon/basalt

Gometri specimen uji bending untuk setiap variasi

laminasi menurut standar ASTM D790

ditunjukkan seperti Gambar 3.

Pembebanan bending untuk masing –masing

variasi material hibrid komposit yang diuji dengan

metode three point bending dihitung untuk kecepatan penekanan bending ditentukan dengan persamaan:

2

6

ZL R

d

(1)

dimana; R adalah Rate of crosshead motion, mm (in.)/min, L adalah panjang titik tumpu, mm (in), d

menyatakan ketebalan spesimen uji (mm) dan Z

adalah kecepatan dari peregangan serat terluar (mm/mm/min) dengan z = 0.01

Gambar 3 Geometri spesimen dan Three point bending test

Tegangan dan modulus elastisitas bending masing-masing ditentukan menurut standar ASTM D 790 adalah sebagai berikut:

2

3 2

f

PL

bd

 

(2)

3

3

4 L m E

bd

(3)

dimana; σf adalah tegangan bending (MPa), L

adalah jarak tunpuan (mm), b mengidentifikasi lebar specimen uji (mm) dan d adalah ketebalan sepecimen uji (mm) serta P adalah beban yang

dikerjakan pada specimen uji (N). E

mengidentifikasi bending modulus elasticity (GPa) dan m menunjukkan slope dari tangen defleksi beban pada curva (N/mm)

Hibridisasi dilakukan adalah untuk memperbaiki kekurangan material baik dari sisi sifat mekanis maupun fisik. Hibridisasi pada penelitian ini

dilakukan adalah untuk memperbaiki atau

meningkatkan sifat perpanjangan (strain) dari komposit dengan penguat karbon. Karakteristik hibridisasi untuk kandungan karbon yang tinggi

ditentukan dengan menggunakan persamaan

sebagai berikut:

H h

c cfVcf cfE VBf Bf

(4)

Kemudian tegangan hibridisasi ditentukan dengan

 adalah tegangan tarik hibrid komposit,

*

menunjukkan fraksi volume untuk serat basalt (gr).

Pengujian bending telah dilakukan untuk setiap variasi specimen uji dengan nilai rata rata masing-masing ditunjukkan seperti pada tabel 4.

Table 4 Rata-rata hasil pengujian bending

Variasi

Table 5 Rata - rata uji bending untuk variasi laminasi berdasarkan metode susunan.

Variasi susunan

Sifat Mekanis Akibat Beban Bending

Tabel 5 dan 6 masing – masing menunjukkan nilai rata-rata pengujian bending bending untuk setiap variasi hibrid komposit menurut jumlah serat basalt diinset kedalam komposit karbon/polymer (CFRP), dan menurut posisi laminasi antara serat basalt dan serat karbon untuk perbandingan fraksi berat 60:40 %wt. Berdasarkan hasil pengujian dilakukan hibridisasi memiliki tegangan diantara tegangan komposit karbon/epoxy dan komposit basalt/epoxy

yaitu tegangan sekitar 700 (MPa). Dalam analisa ini, ditunjukkan semakin besar jumlah basalt terlaminasi pada serat karbon tegangan menurun namun masih jauh lebih tinggi dari komposit dengan serat basalt/epoxy. Demikian pula untuk modulus elastisitas yang dihasilkan dengan rasio laminasi serat 50:50 (%wt) adalah sebesar 44.68 (GPa). Nilai ini menunjukkan bila basalt dihibrid dengan Karbon modulus elastisitasnya meningkat sebesar 43.2%. Menurut hasil penelitian yang telah dilakukan oleh [11, 21] menunjukkan bahwa serat basalt memiliki kopetensi yang baik dihibridisasi dengan serat karbon, dimana regangan dari komposit karbon/epoksi meningkat. Hal yang sama juga disampaikan oleh [10].

Karakteristik mekanis bending untuk hibrid komposit dengan variasi susunan laminasi antara serat basalt dan serat karbon (lihat Tabel 6) menunjukkan pengaruh yang signifikan terhadap tegangan dan modulus elastisitas. Tand panah yang tertera pada tabel menunjukkan arah pembebanan pada hibrid komposit. Pada pengujian ini, diperoleh bahwa dengan serat karbon terletak pada bagian tekan (compress) memiliki nilai tegangan bending yang tinggi yaitu diatas 700Mpa namun masih lebih rendah dibanding dengan CFRP. Perilaku ini disebabkan karena serat karbon memiliki sifat tegangan bending yang tinggi, akan tetapi lebih panjang nilai regangan yang terjadi untuk serat basalt pada posisi tarik (tension area). Pendapat yang sama juga disampaikan oleh Dong et.al [4, 5, 22].

Pengaruh susunan laminasi antara serat karbon dan serat basalt (C/B/C/B/C) menunjukkan hasil modulus elastisitas yang relatif tinggi yaitu sebesar 46.4 (GPa), namun tegangan yang dihasilkan lebih rendah dari komposisi C/B/C/B.

(5)

Sifat Patahan Bending

Patahan akibat pembebanan bending telah diamati seperti ditampilkan pada Gambar 4. Pada

pembebanan bending specimen uji dapat

mengalami dua perilaku patahan yaitu patahan karena tekan (compression) dan patahan karena tarik (tension). Sebagaimana dihasilkan untuk patahan spesimen uji dengan posisi serat karbon berada pada lapisan terluar memiliki tegangan dan modulus yang tinggi (lihat Tabel 5 dan 6), masing-masing. Akan tetapi, karakteristik patahan yang terjadi adalah sangat getas (brittle) seperti ditunjukkan oleh tanda panah pada gambar 4.

Sebaliknya, serat basalt menunjukkan patahan yang lebih ulet (ductile) dimana terlihat adanya deformasi plastis baik pada daerah tekan maupun daerah tarik. Sifat ini ditunjukkan pula dengan besarnya tegangan dan modulus elastisitas bending yang rendah.

Gambar 5 Karakteristik patahan bending spesimen uji C/B/C dan B/C/B pada SEM analisis

Gambar 5 menunjukkan karaktersitik patahan setelah pembebanan bending untuk specimen uji C/B/C dan B/C/B yang dianalisa menggunakan SEM pada megnifikasi rendah. Patahan yang terjadi teramati (ditunjukkan dengan tanda panah), baik patahan C/B/C dan B/C/B terjadi putus tarikan (pull out) ke arah warp maupun weft. Patahan C/B/C lebih rata dibandingkan dengan B/C/B yang patahannya sembarang (rupture). Kondisi ini menunjukkan bahwa komposit dengan

serat karbon pada bagian sisi memiliki

karakteristik patahan yang lebih getas dibanding dengan serat basalt tersusun pada bagian luar. Disamping itu, delaminasi pada arah weft menjadi karakteristik patahan dari komposit dengan penguat sarat karbon.

Pengaruh hibridisasi terhadap beban lentur

Hibridisasi merupakan satu pendekatan untuk memperbaiki sifat mekanis atau fisis dari material dengan berbasis komposit, yang mana salah satu kerugian material ditingkatkan dengan keunggulan material lainnya dalam satu ikatan tertentu [12]. Hasil penelitian hibridisasi laminasi antara serat karbon dan serat basalt adalah sangat signifikan dampaknya terhadap sifat mekanis material dan juga menurunkan nilai ekonomis serat karbon sehingga dapat diaplikasikan pada produk-produk menengah [23]. Secara teknis effek hibridisasi ditunjukkan seperti pada Gambar 6.

Gambar 6 Pengaruh jumlah laminasi serat basalt hibridisasi pada serat karbon

VI.KESIMPULAN

Pada penelitian ini, sifat mekanis akibat pembebanan bending untuk hibrid komposit epoxy dengan variasi susunan laminasi dan jumlah basalt telah dipelajari. Dengan sukses dihasilkan material hibrid melalui proses pencetakan menggunakan metode vakum resin injeksion (VRTM).

Pengujian bending dilakukan untuk setiap variasi hibrid komposit Dihasilkan sebakin tinggi fraksi berat serat basalt tegangan menurun sengan perbedaan modulus elastisitas 43.2% terhadap komposit dengan serat karbon/epoxy.

(6)

terluar. Serat basalt merupakan serat yang potensial untuk menggantikan serat glass karena memiliki sifat yang ramah lingkungan, murah dan memiliki sifat mekanis yang lebih baik dari serat glas.

UCAPANTERIMAKASIH

Terimakasi penulis ucapkan kepada pihak

Kementrian riset dan teknologi melalui hibah ristek Isinas 2015, sehingga dihasilkan karya tulis.

DAFTAR PUSTAKA

[1] Chensong Dong, Sudarisman, and a.I.J. Davies, (2012), "Flexural properties of e glass and tr50s carbon fiber reinforced epoxy hybrid composites," Journal of Materials Engineering and Performance, No.

[2] Y. Nishi, K. Inoue, and M. Salvia, (2006), "Improvement of charpy impact of carbon fiber reinforced polymer by low energy sheet electron beam irradiation," Materials Transactions, vol. 47, No 11, pp. 2846-2851. [3] M. Thomas, N. Boyard, L. Perez, Y. Jarny,

and D. Delaunay, (2008), "Representative volume element of anisotropic unidirectional carbon–epoxy composite with high-fibre volume fraction," Composites Science and Technology, vol. 68, No 15-16, pp. 3184-3192.

[4] C.S. Dong, J. Duong, and I.J. Davies, (2012, May), "Flexural properties of s-2 glass and tr30s carbon fiber-reinforced epoxy hybrid composites," Polymer Composites, vol. 33, No 5, pp. 773-781.

[5] Kedar S. Pandya, Ch. Veerraju, and N.K. Naik, (2011, 1 March 2011), "Hybrid composites made of carbon and glass woven fabrics under quasi-static loading," Materials and Design, vol. 32 No, pp. 4094–4099. [6] G. Belingardi, M.P. Cavatorta, and C. Frasca,

(2006), "Bending fatigue behavior of glass– carbon/epoxy hybrid composites," Composites Science and Technology, vol. 66, No 2, pp. 222-232.

[7] J. Zhang, K. Chaisombat, S. He, and C.H. Wang, (2012), "Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures," Materials & Design, vol. 36, No -, pp. 75-80.

[8] LEVENT ONAL and S. ADANUR, (2002), "Effect of stacking sequence on the mechanical properties of glass–carbon hybrid

composites before and after impact," JOURNAL OF INDUSTRIAL TEXTILES, vol. 31, No. 4, No, pp. 255-271.

[9] V.M. Drakonakis, C.N. Velisaris, J.C. Seferis, C.C. Doumanidis, B.L. Wardle, and G.C. Papanicolaou, (2010), "Matrix hybridization in the interlayer for carbon fiber reinforced composites," Polymer Composites, vol. 31, No 11, pp. 1965-1976.

[10] A. Greco, A. Maffezzoli, G. Casciaro, and F. Caretto, (2014), "Mechanical properties of

basalt fibers and their adhesion to

polypropylene matrices," Composites Part B: Engineering, vol. 67, No -, pp. 233-238. and D. Hui, (2015), "A short review on basalt fiber reinforced polymer composites," Composites Part B: Engineering, vol. 73, No, pp. 166-180.

[13] J. Sim, C. Park, and D.Y. Moon, (2005), "Characteristics of basalt fiber as a

strengthening material for concrete

structures," Composites Part B: Engineering, vol. 36, No 6-7, pp. 504-512.

[14] S.E. Vannan, S.P. Vizhian, and R.

Karthigeyan, (2014), "Investigation on the influence of basalt fiber on thermal properties

of al7075/ basalt fiber metal matrix

composites," Procedia Engineering, vol. 97, No, pp. 432-438.

[15] Reza Eslami-Farsani, S. Mohammad Reza Khalili, Ziba Hedayatnasab, and N. Soleimani, (2014), "Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene – clay nano composites," Materials & Design, vol. 53, No -, pp. 540-549.

[16] C. Colombo, L. Vergani, and M. Burman, (2012), "Static and fatigue characterisation of new basalt fibre reinforced composites," Composite Structures, vol. 94, No 3, pp. 1165-1174.

[17] V. Lopresto, C. Leone, and I. De Iorio, (2011), "Mechanical characterisation of basalt fibre reinforced plastic," Composites Part B: Engineering, vol. 42, No 4, pp. 717-723. [18] Luo Xin, Xu Jin-yu, Bai Er-lei, and L.

(7)

Building Materials, vol. 68, No -, pp. 384-390.

[19] C. Jiang, K. Fan, F. Wu, and D. Chen, (2014), "Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete," Materials & Design, vol. 58, No, pp. 187-193.

[20] D. Bender, J. Schuster, and D. Heider, (2006, Oct), "Flow rate control during vacuum-assisted resin transfer molding (vartm) processing," Composites Science and Technology, vol. 66, No 13, pp. 2265-2271. [21] L. Wei-dong, C. Hai-lin, Chen Guo-rong, and

S. Peng-fei, (2010), "Mechanical properties of phenolic-resin composites reinforced with cf/bf interlayer hybrid fibers," Journal of Beijing Institute of Technology, vol. 19, No 4, pp. 471-475.

[22] C.S. Dong and I.J. Davies, (2012, May), "Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites," Materials & Design, vol. 37, No, pp. 450-457.

Gambar

Table 1 Unsur kimia material Basalt Chemical
Gambar 2 Skematik Laminasi komposit epoxy  dengan serat karbon/basalt
Tabel 5 dan 6 masing – masing menunjukkan nilai rata-rata pengujian bending bending untuk setiap variasi hibrid komposit menurut jumlah serat basalt diinset kedalam komposit karbon/polymer (CFRP), dan menurut posisi laminasi antara serat basalt dan serat k
Gambar 5 Karakteristik patahan bending spesimen uji C/B/C dan B/C/B pada SEM analisis

Referensi

Dokumen terkait

Penelitian komposit serat batang kulit waru ini bertujuan untuk mendiskripsikan sifat fisis dan mekanis komposit serat batang kulit waru akibat variasi sudut dan

Pengaruh Variasi Panjang Serat Terhadap Kekuatan Tarik, Bending, dan Sifat Termal Komposit Agave Cantula Roxb-HDPE.. TESIS: Pembimbing

Tujuan penelitian ini adalah menyelidiki pengaruh ketebalan core, arah serat dan perlakuan alkali serat kenaf terhadap peningkatan kekuatan bending komposit

Berdasarkan analisis yang dihitung dengan standar ASTM D 393, komposit sandwich hibrid yang diperkuat serat kenaf tanpa perlakuan alkali juga memiliki kekuatan bending skin

PENGARUH VARIASI PANJANG SERAT TERHADAP KEKUATAN TARIK, BENDING, DAN SIFAT TERMALi. KOMPOSIT AGAVE CANTULA ROXB

Berdasarkan analisis yang dihitung dengan standar ASTM D 393, komposit sandwich hibrid yang diperkuat serat kenaf tanpa perlakuan alkali juga memiliki kekuatan bending skin

Bambang Sri Prihatin, PENGARUH VARIASI KETEBALAN CORE TERHADAP KARAKTERISTIK BENDING KOMPOSIT SANDWICH SERAT CANTULA DENGAN CORE HONEYCOMB KARDUS TIPE A-FLUTE.. Fakultas

SKRIPSI ANALISIS PEMBEBANAN BENDING BALOK PENDEK PAPAN SERBUK KAYU JATI SKJ/ SERAT GELAS GF/ POLIESTER TAK JENUH UP DENGAN VARIASI RASIO HIBRID Ditujukan untuk memenuhi