• Tidak ada hasil yang ditemukan

7 a novel conversion process for waste residue synthesis of zeolite kel 6

N/A
N/A
Protected

Academic year: 2018

Membagikan "7 a novel conversion process for waste residue synthesis of zeolite kel 6"

Copied!
10
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

A:

Physicochemical

and

Engineering

Aspects

jo u r n al ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f a

A

novel

conversion

process

for

waste

residue:

Synthesis

of

zeolite

from

electrolytic

manganese

residue

and

its

application

to

the

removal

of

heavy

metals

Changxin

Li,

Hong

Zhong

,

Shuai

Wang

,

Jianrong

Xue,

Zhenyu

Zhang

CollegeofChemistryandChemicalEngineering,CentralSouthUniversity,Changsha410083,China

h

i

g

h

l

i

g

h

t

s

A novel conversionprocess forthe

utilizationofEMRwasfirstproposed.

EffectofSi/AlratioontheEMRZ

syn-thesiswasinvestigated.

EMRZshowedgoodadsorption

prop-ertiesforremovalofMn2+andNi2+

ions.

The adsorption mechanism and

kineticsweresystematicallystudied.

Ion exchange was responsible for

metalionsremoval.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1November2014

Receivedinrevisedform29January2015 Accepted2February2015

Availableonline9February2015

Keywords:

Electrolyticmanganeseresidue Zeolite

Heavymetal Removal Kinetics

a

b

s

t

r

a

c

t

Thezeolitematerialwasfirstsynthesizedfromelectrolyticmanganeseresidue(EMRZ),byatwo-step syntheticprocedureusingNaOHandNaAlO2withinashortagingperiod.Basedonthedetailed

analy-sesusingXRD,FT-IR,FE-SEM,XRF,CECandBETsurfaceareameasurement,theproductsynthesizedat Si/Alratio=1.5wasmainlycomposedofNa-Azeolitewithaspecificsurfaceareaof35.38m2g−1.Then,

theremovalcharacteristicsofMn2+andNi2+ionsbyEMRZwereinvestigatedundervariousoperating

variableslikecontacttime,solutionpHandinitialmetalconcentration.Theadsorptionequilibriumfor bothMn2+andNi2+wasbestdescribedbytheLangmuirmodel,confirmingtheapplicabilityofmonolayer

coverageofmetalionsontoEMRZparticles.ThemaximumsorptioncapacitiesforMn2+andNi2+shown

byEMRZwere66.93mgg−1and128.70mgg−1,respectively.ItwasalsofoundthatadsorptionofMn2+

andNi2+byEMRZfollowedsecond-orderkineticsandrateconstantsforMn2+andNi2+sorptionwere

foundtobe0.001091and0.005668gmg−1min−1,respectivelyat30C.Theseresultsindicatethatthe

synthesizedEMRZisapromisingandlow-costadsorbentforremovingheavymetalsfromwastewater duetohigheradsorptioncapacitythanotheradsorbents.

©2015ElsevierB.V.Allrightsreserved.

Correspondingauthors.Tel.:+8673188830654.

E-mailaddresses:zhongh@csu.edu.cn(H.Zhong),wangshuai@csu.edu.cn (S.Wang).

1. Introduction

Rapidindustrializationhasledtoincreaseddisposalofheavy metalsintotheenvironment,causingserioussoilandwater pollu-tion[1].Meanwhile,heavymetalsarenotbiodegradableandtend

(2)

toaccumulatein livingorganisms causing variousdiseases and disorders[2,3].Moreover,heavymetalsareprioritytoxic pollut-antsthatseverelylimitthebeneficialuseofwaterfordomesticor industrialapplications.Thusconsiderableattentionhasbeenpaid tomethodsformetalremovalfromindustrialwastewatersasthe globalinterestsinthisissueincreaseoverthepastdecades[3–5].

To date, numerous processes exist for removing dissolved heavymetals,includingionexchange,precipitation, phytoextrac-tion,ultrafiltration,reverseosmosis,andelectrodialysis[6].Among them,ionexchangetechniquesusingsolidadsorbentshasbeena promisingmethodfortreatingwastewater,owingtoitsadvantages suchasoperationalsimplicity,lowcost,availabilityinlargeamount andabilitytotreatpollutantsinasufficientlylargescaleoperation

[6,7].Activatedcarbonadsorptionisconsideredtobeaparticularly competitiveandeffectiveprocessfortheremovalofheavymetals

[8];however,theuseofactivatedcarbonisnotsuitablein develop-ingcountriesduetothehighcostsassociatedwithproductionand regenerationofspentcarbon.Consequently,theuseofalternative low-costmaterialsaspotentialsorbentsfortheremovalofheavy metalshasbeenemphasizedrecently.

Electrolyticmanganeseresidue(EMR)isapotentiallyharmful industrialsolidwastethatcomesfromtheelectrolyticmanganese industryandhasrarelybeenrecycledinlargequantities[9].Inthe electrolyticmanganesemetal(EMM)industry,about6∼9tonsof EMRisdischargedintotheenvironmentpertonofproducedEMM

[10].ThecommonpracticeinChinaiscollectingtheEMRinopen sitesneartheplants.ItishighlyquestionableiftheEMRgenerated ismanagedproperly.BecauseEMRcontainssomeheavymetal ele-mentsandcompounds,theuntreateddischargecancauseserious pollutionofsurroundingsoilandreceivingwaterbodies[11,12]. Additionally,highvolumeEMRresultingfromlargescale indus-trialactivitieshavelongbeenconsideredtobeaburden,dueto thehighcostsfortheirassociatedpost-treatment,storageand dis-posal[10,11].Owingtoitsmineralcomposition, EMR hasbeen mostlyrecycledashydrauliccement,concreteaggregate,roadbase, brickmakingmaterialsincivilengineeringwork,aswellasforthe productionofchemicalfertilizersinagriculturalwork[13–16].Yet, problems associatedwith abovedisposal,such asthepotential environmentalimpactsandthesevereenvironmentalregulations, maketherecyclingofslagdifficult.Itis,therefore,essentialto con-tinuouslydevelopnewandadvancedrecyclingprocessesofEMR.

Recently, ourresearchgroup foundthat zeolite can be syn-thesizedusingEMRas SiandAlsources.Zeolitesareknownas ion-exchangematerials where theindigenous charge-balancing cations(typicallysodiumandcalcium)arenotrigidlyfixedtothe hydratedaluminosilicate framework and arereadily exchanged withmetalcationsinsolution[6,17].Meanwhile,thefactthat zeo-liteexchangeableionsarerelativelyinnocuous(sodium,calcium, andpotassiumions)makesthemparticularlysuitableforremoving undesirableheavymetalionsfromwastewaters[17,18].Moreover, zeolitescantransferaheavymetalcontaminationproblemofmany thousandsofliterstoafewkilosofeasilyhandledsolid.Thetoxic metalsarefirmlyheldinthecrystalstructureanddonotleach, how-everforultimateenvironmentalprotectionthesolidzeolitecan becementstabilizedorvitrified[2].Giventheseadvantages, zeo-lites(includingnatural,commercial,andchemicallysynthesized zeolites)havebeenintensivelystudiedrecentlyfortheremovalof heavymetals[17–19].Accordingly,makinguseofEMRZtoremove heavymetalscannotonlyreducethecost,butalsocomplywith therequirementofgreeneconomy.

Theobjectiveofthepresentstudywastoproposeanovel con-versionprocessofEMRtozeoliteinordertomakefulluseofthe eco-nomicpotentialofEMR,andtofindoutitspotentialuseaslow-cost adsorbentfortheremovalofheavymetalsfromaqueoussolution. Mn2+andNi2+ionswerechosenasatargetcontaminantto charac-terizetheadsorptivepropertiesofthesynthesizedzeolite.Forthe

presentstudy,theuptakeofheavymetalsonEMRZwasevaluated asafunctionofinitialmetalionsconcentration,pH,andcontact time.Further,modelstofittheadsorptionequilibriumandkinetic datawerepresentedtounderstandtheadsorptionmechanism.

2. Materialsandmethods

2.1. Materials

TheEMR investigatedinthis studywasmainlygeneratedin leachingprocessofthemanganeseore(withpartofresidue gen-eratedin electrolytic cellprocess)atan electrolytic manganese company,situatedinwesternofHunanprovince,China.The chem-icalcompositionofEMRusedinthisstudyislistedinTable1.This chemicalcompositionisfairlycommoninEMRproducedinChina’s EMMindustry.

Stock solutions of Mn2+ and Ni2+ ions with concentration at 1000mgL−1 were prepared by dissolving given amounts of MnSO4·H2OandNi(NO3)2·6H2O,respectively,indistilled water.

Thesolutionsofdifferentconcentrationsusedinvarious experi-mentswereobtainedbydilutionofthestocksolutions.

2.2. Zeolitesynthesis

ThefabricationprocessofEMRZisshowninFig.1.Basedon ourpreviousrelatedstudies[20],afusionmethod,involving alka-linefusionfollowedbyhydrothermaltreatment,wasadoptedfor thesynthesisofzeoliteinthisresearch.Duringthehydrothermal reactionprocess,variousamountsofsodiumaluminate(NaAlO2) wereaddedintothereactionsystemtoinvestigatetheeffectofthe ratioofSi/Al.Attheendoftheprocessthesolidphasewas col-lectedbyfiltration,washedseveraltimeswithdistilledwater,and thendriedat100◦C.Theobtainedsampleswerelabeledbasedon theirinitialSi/Alratios.Namely,thesampleswithinitialSi/Alratio of1.5,2.0and2.5werelabeledasEMRZ15,EMRZ20andEMRZ25, respectively.

2.3. Adsorptionstudies

Theadsorptionofheavymetalswasperformedbyshaking0.3g ofadsorbentswitha100mLsolutionofknownsolute(Mn2+and Ni2+ions)concentrationrangingfrom100to600mgL−1at200rpm inaconstanttemperatureshakerbath.Aportionofthesolution wascollectedatpredeterminedtimeintervalsforkineticsandat equilibrium time forisotherms. Theresidual concentrationwas centrifugedat5000rpmfor2minandthendeterminedin tripli-cateusingThermoSOLAARatomicabsorptionspectrophotometers (Thermo Electron,USA). Theequilibrium adsorptioncapacity qe (mgg−1)wascalculatedusingthefollowingequation.

qe= (C0−Ce)V

m (1)

whereC0andCe(mgL−1)aretheconcentrationofthetestsolution attheinitialstageandunderequilibriumconditions,respectively. V(L)isthevolumeofthetestsolutionandm(g)isthemassofthe adsorbentused.

Todeterminethe effectof experimentalparameterssuchas pHandcontacttimeonadsorptionprocess,thismethodwasalso appliedbyvaryingthecorrespondingcondition.ThepHofsolution investigatedwaschangedbetween1.0and6.0using0.5mol/LHCl solutions.

2.4. Characterization

(3)

Table1

MajorchemicalcompositioninEMR.

Constituent Na2O SiO2 Al2O3 MgO K2O CaO MnO Fe2O3 TiO2

Mass(wt%) 2.7 24.6 12.2 1.7 2.4 8.6 4.6 7.9 0.4

werecarriedout usinganXRFspectroscopy(Axios,PANalytical, Holland).Themorphologyandparticlesizeofthecrystalswere observedbyfieldemissionscanningelectronmicroscopy(FE-SEM) (Mira3,Tescan, CzechRepublic). Thefurrier transforminfra-red spectra (FT-IR) were recorded on a Thermo Scientific Nicolet 6700FT-IRspectrophotometer.Thespecificsurfacearea(SSA)was determinedbythenitrogenadsorptionmethod.Nitrogensorption experimentscarriedoutat77KusingASAP2020(Micromeritics, USA).TheBETequationwasappliedtodeterminethespecific sur-facearea.Cationexchangecapacity(CEC)ofsynthesizedzeolitewas measuredaccordingtothestudyofZhangetal.[21]andtheCEC wascalculatedanddenotedasmeqpergramofadsorbents.The pHvalueofsolutionswasmeasuredbyapHmeter(pHS-3C,Leici, China)withacombinationelectrode(E-201-C,Leici,China).

3. Resultsanddiscussion

3.1. SyntheticprocedureofEMRZanditscharacterization

3.1.1. Mineralogicalcomposition

Inpresentstudy,effectofSi/Alratiosonzeolitesynthesiswas investigatedbychangingtheSi/Alratioofstartingmixturefrom 1.5to2.5inthethreesynthesizedsamplesofEMRZ15∼EMRZ25.

Fig.2showstheXRDpatternsofsynthesizedzeolites,togetherwith leachingresidueasasilicasourceofzeolites.AsshowninFig.2, theXRD patterns of synthesized samplesof EMRZ15∼EMRZ25,

exhibitseveralsharpdiffractionpeaks,whicharedifferentfrom thosepresentintheuntreatedleachingresidue.AlthoughEMRZ15 showedadetectablediffractionpeakforzeoliteP(seeFig.2),no otherzeoliticphases,quartzorhydroxysodalitewithlow poros-itywereidentified.Thatistosay,thezeolitesynthesizedatSi/Al ratio=1.5,namelyEMRZ15,wasmainlycomposedofNa-Azeolite. Generally,zeolitewithlowerSi/Alratio,i.e.largerAl2O3content, showshigherCECandadsorptioncapacityduetothepresenceof exchangeablecations,whicharetrappedatthetetrahedral alu-minumsitesforchargecompensation.Forthisreason,zeoliteA, whoseSi/Alratioisinherentlyquitelow, hasbeenwidelyused asusefulcation-exchangersandadsorbents[22–24].Ontheother hand,theEMRZ15synthesized fromleaching residue exhibited remarkablediffractionpeaksattributabletoA-typezeolite,proving thattheleachingresidueisavailableenoughasasilicasourceon

zeolitiesynthesis.Thesepatternsfurtherindicatedthatthe crys-tallinityandphase purityof synthesizedsamplesaredecreased withincreasingSi/Alratiofrom1.5to2.5.

3.1.2. Chemicalcomposition

Meanwhile,adetailedanalysisofchemicalcompositionofEMRZ sampleswasperformedbyXRFmeasurementandtheresultsare summarizedinTable2.AsshowninTable2,smallamountsof impu-rityelements,suchasMg,FeandMn,werecommonlydetectedin thezeolitessynthesizedfromtheleachingresidue.Asnodetectable peaksattributabletoFe,MgandMncompoundswereobservedin theXRDpatterns,itisspeculatedthatthoseminormetalionsare uniformlydispersedwithinthestructureofEMRZbyreplacingthe Na+sites[23,25].Meanwhile,theinitialSi/Alratiosof1.5,2.0and 2.5affordedEMRZ15withSi/Al=1.01,EMRZ20withSi/Al=1.09and EMRZ25withSi/Al=1.17respectively.Itisintriguingtonotethat theSi/Alratioofthefinalproductislessthanthatofthestarting reactionmixture.Andtheexplanationisdisplayedasbelow.Inthe experimentalconditionsadoptedinthiswork,thezeoliteAand PwithlowSi/Alratiowassynthesizedfromleachingresidue(see

Fig.2).Hence,thelowerSi/Alratioofthefinalproductcompared tothestartingreactionmixturewasduetotheformationofAlrich zeolite(zeoliteAorP).Namely,afterthenucleationofzeoliteAorP, AlspecieswereconsumedmorerapidlythanSiinthesolution[26]. ItiswellknownthatAlisthecontrollingspeciesinthesynthesisof zeolites.AndalmostallAlwasdepletedduringthesynthesisof zeo-lites,however,theextrawater-solublesilicatesextractedfromthe startingreactionmixtureswassweptawaybydistilledwaterinthe zeolitesynthesisprocess[27].Moreover,increasingofNa2O con-tentofthefinalproductupto18.7%(takingEMRZ15forexample), incomparisontotheleachingresidue,whichwasonly0.1%,isavery clearandpromisingevidenceofCECimprovementinthefinal prod-uct.TheremarkablechangesinNa2Ocontentcanbeconsidered anotherevidenceofsuccessfulconversion[28].

3.1.3. ResultsofBETsurfaceareameasurements

BETsurfaceareameasurementwasadoptedtodeterminethe SSAofthesynthesizedEMRZ.AndtheresultswereshowninTable3. AsshowninTable3,theSSAofEMRZ15∼EMRZ25wereestimated

tobe35.38, 28.64and 24.13m2g−1,respectively. Althoughthe zeolitizationprocessledtoanincreasein SSAandporevolume

(4)

Fig.2.XRDpatternsofsamplesEMRZ15,EMRZ20,EMRZ25andleachingresidue.

Table2

Theresultsofelementalanalysisofzeolitessynthesizedfromleachingresidue.

Sample Si/Alratio(startingreactionmixture) Chemicalcomposition/wt% Si/Alratio(finalproduct)

SiO2 Al2O3 Na2O Fe2O3 MgO MnO

EMRZ15 1.5 35.1 29.5 18.7 0.76 0.24 0.13 1.01

EMRZ20 2.0 35.4 27.5 16.8 0.87 0.27 0.15 1.09

EMRZ25 2.5 35.5 25.7 15.1 0.92 0.25 0.17 1.17

Leachingresidue 3.6 66.4 15.8 0.10 1.1 0.7 0.3 3.60

overthestartingmaterial,particularlyforEMRZ15obtainedbythe fusionmethod,theobtainedvalues ofSSAofEMRZ weremuch lowerthanthoseofcommercialortraditionalzeolitereportedin literaturesasexpected.However,theefficientutilizationofEMRas ingredientsofothermaterialsmaybeadvantageousinreductionof notonlywastegenerationbutalsomanufacturingcosts.Andlow SSAofthezeolitesynthesizedfromEMRmaybeattributedtothe lowcrystallinityofthesamples[29].Ontheotherhand,in partic-ular,thecationsor/andimpuritiesintheleachingresidue(e.g.Mg, Mn,Fe,etc.)ledtoalowersurfaceareathanalkalimetals(K,Li)did. Theseresultsmaycorrelatewithporefillingbylargecationsor par-tialfusionofthecationcompoundsduringthethermaltreatment

[30,31].

3.1.4. Resultsofcationexchangecapacity(CEC)

In order to evaluatethe ion exchange capability of the as-synthesizedzeolitesamples,CECsofthezeolitesweremeasured. InTable4,theCECsofthepreparedzeolitesarecomparedwiththe

Table3

Theresultofstructuralparametersofzeolitessynthesizedfromleachingresidue.

Sample Structuralparameters

SSA/m2g−1 V

BET/cm3g−1

EMRZ15 35.38 0.23

EMRZ20 28.64 0.21

EMRZ25 24.13 0.18

Leachingresidue 0.28 0.023

leachingresidue,andsomeotherrelevantzeolitesintheliteratures

[21,32–35].Theresultsobtainedrevealedthattheapplied zeoliti-zationprocessincreasedtheCECoftheEMRZ15∼EMRZ25to2.15,

1.84and1.38meq/g,respectively.Incomparisontozeolitereported intheliteratures,EMRZ15hadahigherCEC.Thismaybecausedby factthatlowSi/AlratioandhighphasepurityofEMRZ15is syn-thesizedonthebasisoffusion method.Moreover,thehighCEC valueofEMRZ15wasanevidenceofhighpotentialforremoving ammoniumandheavymetalsfromaqueoussolutions[32–35].

Therefore,giventheaboveanalysisincludingXRD,XRF,BETand CECs,aprecisecontrolofthesynthesisSi/Alratiointhisprocess drasticallyaltersthecomposition,typeandpropertyofthefinal product,andthatthemostsuitableSi/Alratioforthesynthesisof EMRZfromleachingresidueis1.5.Therefore,thezeolite synthe-sizedatSi/Alratio=1.5wasemployedintheheavymetalremoval processasshowninSection3.2.

3.1.5. FT-IRspectrometryanalysis

Furriertransforminfra-redspectroscopy(FT-IR)isapowerful technique for structural characterization of organic and inor-ganicmaterials.Hence,FT-IRanalysiswasdeterminedforsample EMRZ15,asbeingthebestsampleofthisresearchshowninFig.3. TheIRbandat870cm−1,whichcanbeassignedtoT–OHbondin theamorphousprecursorofzeoliteA,wasnotobservedinFig.3

(5)

Table4

Cationexchangecapacity(CEC)oftheas-synthesizedzeolitesincomparisontosomerelatedtypicalzeolites.

Adsorbent Rawmaterial CEC/(meq/g) Reference

EMRZ15 LeachingresiduefromEMR 2.75 Thiswork

EMRZ20 LeachingresiduefromEMR 2.04 Thiswork

EMRZ25 LeachingresiduefromEMR 1.38 Thiswork

Leachingresidue EMR 0.015 Thiswork

ZeoliteX Coalflyash 2.79 [21]

ZeoliteA(Na) Coalflyash 0.87∼1.05 [32]

Na-P1 Coalflyash 0.99∼1.31 [33]

NaturalTurkishclinoptilolite Naturalzeolite 0.95∼1.40 [34]

NaturalChinese(Chende)zeolite Naturalzeolite 0.82 [35]

400 800 1200 1600 2000 2400 2800 3200 3600 4000 0 20 40 60 80 100

Tran

smi

tance(%

)

Wave

numbers

/cm

-1

34

20

1649

1001

6

64

556 462

Fig.3.FT-IRspectraofEMRZ15inthewavenumberrangeof400∼4000cm−1.

theamorphousmaterialwastransformedintocrystallinezeoliteA. Thebandat556cm−1isrelatedtothepresenceofthedoublering (D4R)thatischaracteristicinthezeoliteA[37,38].TheIRbandsat 462and664cm−1areassignedtotheinternallinkagevibrationsof theTO4tetrahedraandtotheasymmetricstretching,respectively, ofzeoliteA.Thebandat1640cm−1hasbeenassociatedwiththe characteristicH–Obendingmodeofwatermolecules.Moreover, theobservedsinglestrongbandat3420cm−1wasascribedtothe presenceofhydroxylsinthesodalitecagesasthebuildingblocks ofzeoliteA.Ultimately,theintensitiesoftheseadsorptionbands areproportionatetopurityofsamplesandareinagreementwith theinterpretationofobtainedXRDresults.

3.1.6. SEManalysis

ThemorphologyandparticlesizeofEMRZsynthesizedunder optimalconditions(atSi/Alratio1.5)wereobservedbyFE-SEM (Fig.4).Thecubicparticleswithachamferedshape,alongwitha smallfractionofroundcrystalswereobservedintheFig.4a.And thecubicandroundcrystalscorrespondedtozeoliteAandzeoliteP, respectively[21,36],whichalsoconfirmedbytheXRDdatainFig.2. Meanwhile,thecrystalmorphologyofEMRZ15withanaveragesize of1␮mapproximatelywasmoreclearlyshowninFig.4b.Besides, itisworthtonotethatnoaggregateswereobservedintheSEM pictureswhichindicatethatthisshapetransformationcanprovide largesurfaceareawithtinypores.

3.2. RemovalofheavymetalbyEMRZmaterial

3.2.1. Effectofcontacttime

Beforeperformingthebatchuptakeequilibriumexperiments,it wasnecessarytodeterminethecontacttimerequiredfor adsorp-tion equilibrium. The adsorption of Mn2+ and Ni2+ onto EMRZ synthesizedunderoptimalconditions,namelyEMRZ15,asa func-tionofcontacttimewasstudiedat30◦Cbyvaryingthecontact timefrom20to300minwhilekeepingallotherparameters con-stant.TheresultsareshowninFig.5.FromtheFig.5,itisshownthat theadsorptionofthestudiedheavymetalionsisincreasedfirstly andthenkeptincreasinggraduallyuntiltheequilibriumisreached andremainedconstant.Namely,theremovalratesforbothcations wereobviouslyfasteratinitialstage.Thefastremovalrateatthe initialstagewasduetothefactthat,initially,alladsorbentsites werevacantandthesoluteconcentrationgradientwashigh[21]. OverEMRZ15,Ni2+adsorptionimmediatelytookplacewithinthe first60min,andthenreachedadsorptionequilibrium, demonstrat-ingthattheEMRZ15hasastrongabilityforbindingNi2+cations. UnlikethecaseofNi2+adsorption,EMRZ15stillexhibited mod-estincreasesintheMn2+uptakeevenafter60min,suggestinga

(6)

300 250 200 150 100 50 0 30 40 50 60 70 80 90 100

Mn Ni

q(

m

g

·g

t

-1 )

Contact time (min)

Fig. 5.Effect of contact time on heavy metal adsorption(initial metal ions concentration=300mgL−1;adsorbentdose=0.3g/100mL;pHvalue=6.0;

temper-ature=30◦C).

sloweradsorptionratethanthatforNi2+adsorption.Thiscouldbe attributedtothelargerionicradiusofMn2+thatwillpasswith dif-ficultythroughthechannelsforzeolite[2,39].And180minafter initialreaction,theuptakeamountofMn2+becamealmoststable at30◦C.Thus,acontacttimeof180minwasfoundtobesufficient forallmetalstudiedtoachieveuptakeequilibrium,andthecontact timewasfixedat180minforthefollowingbatchexperiments.

3.2.2. Effectofinitialconcentration

Theeffectoftheinitialconcentrationontheretentionofmetal ions,atconcentrationlevelsrangingfrom100to600mgL−1,was studiedat30◦Cwhilekeepingallotherparametersconstant.The resultsareshowninFig.6.AscanbeseenfromFig.6,itisevident thattheadsorptioncapacityincreasedwithanincreaseinthe ini-tialconcentration.Theincreasesofheavymetaladsorptionwith anincreasinginitialconcentrationhavebeenwidelyobservedin manystudies[3,40].Andthefigurealsoshowsthatthe adsorp-tionoftheheavymetalionsatdifferentconcentrationsisincreased firstlyandthenkeptincreasinggraduallyuntiltheequilibriumis reachedandremainedconstant.Thisbehaviorcanbeexplainedby

thefactthatunderhigherinitialconcentration,moremetalions areleftun-adsorbedinsolutionduetothesaturationofbinding sites[40].Theseresultsindicatethatenergeticallylessfavorable sitesbecomeinvolvedwhentheconcentrationofmetalin solu-tionincreases[8,40,41].Theheavymetaluptakeisattributedto differentmechanismsofion-exchangeprocessesaswellastothe adsorptionprocess.Inthiscase,ICPanalysesofthetestsolution recoveredaftertheequilibriumadsorptionrevealedthatthe leach-ingamountofNa+waspredominatelyenhancedinthatcase.This resultunambiguouslyindicatesthattheuptakeofmetalions pro-ceedsvia anion-exchangemechanism, i.e.,theweaklybonded, network-modifyingNa+ionsarereleasedtothesolutionsoasto replacewithheavymetalions.Duringtheionexchangeprocess, diffusionwasfasterthroughtheporesandwasretardedwhenthe ionsmovedthroughthesmallerdiameterchannels.

3.2.3. EffectofpH

The pHof theaqueoussolution is animportant operational parameterintheadsorptionprocessbecauseitaffectsthesolubility ofthemetalions,concentrationofthecounterionsonthe func-tionalgroupsoftheadsorbentandthedegreeofionizationofthe adsorbateduringreaction[40,42].Asweknow,atpHvaluehigher than6.0,mostoftheheavymetalionstendtoformprecipitationas hydroxides.Andthe“true”adsorptioncapacityofEMRZ15couldbe maskedbyprecipitation[43].Thus,theadsorptionofheavymetal ontoEMRZ15atpHvaluerangingfrom1.0to6.0wasstudiedas showninFig.7.FromFig.7,anincreaseinpHcorrespondstoan increasein adsorption,reachingthemaximumcapacityata pH ofabout6.0.TheloweradsorptionofheavymetalatacidicpHis probablyduetothefollowingreasons.AtlowerpHvalues,where theconcentrationofH+ ishigh,thecompetitionbythenegative sitesonthezeolitesurfaceisenhancedandthemetalsorptionis reducedaccordingly[40,44].Inaddition,zeolitecrystalsbeginto collapseordissolvewithdecreasingpHinaqueoussolutions, par-ticularlywhenthepHisbelow4.0[21].Meanwhile,theseresults areinagreementwiththeresultspreviouslyreported[40,43,44].

3.2.4. Adsorptionkinetics

Thekineticsofsorption ofmetalionsbyEMRZ15was stud-ied for its possible importance in treatment of metal-bearing industrialeffluents.Inthepresentstudy,pseudo-first-orderand

600 500

400 300

200 100

20 40 60 80 100 120 140

Mn Ni

q(

m

g

·g

t

-1

)

Initi

al metal ions concen

trati

on / (mg·L

-1

)

(7)

6 5 4 3 2 1 20 30 40 50 60 70 80 90 100

Mn Ni

q(

m

g

·g

t

-1 )

pH

Fig.7.Effectof pHvalueonheavy metaladsorption(initialmetalions con-centration=300mgL−1; contact time=180min; adsorbent dose=0.3g/100mL;

temperature=30◦C).

pseudo-second-orderkineticmodelswereemployedtotestthe experimental data [4,21]. The pseudo-first-order and pseudo-second-ordermodelsarerespectivelydescribedinthefollowing equations:

ln(qe−qt)=lnqe−k1t (2)

t qt

= 1

k2q2e

+ t

qe

(3)

whereqe and qt aretheamountsofadsorbate adsorbedonthe adsorbents(mgg−1)atequilibriumandattimet,respectively.k

1 (min−1)andk

2 (gmg−1min−1)aretherateconstantsof pseudo-first-orderandpseudo-second-ordermodels,respectively.

Thekineticdatawerelinearizedusingthepseudo-first-order andpseudo-second-ordermodels,andplottedbetweenln(qeqt) versustandt/qtversust,respectively.Theconstantswere calcu-latedfromtheslopeandtheinterceptoftheplots,andaregivenin

Table5andFig.8.TheresultsgiveninTable5showthat,forboth Mn2+andNi2+,theR2values(R2=0.8616and0.2901)for pseudo-firstordermodelweremuchlowerthanthoseobtainedusingthe pseudo-second-ordermodel(R2=0.9979and0.9998).Besides,the qevaluepredictedfromthesecond-ordermodelismuchmore com-parabletotheexperimentalqevaluethanthatfromthefirst-order model.Thus,thepseudo-second-ordermodelexplainsthekinetic processesbetter.

3.2.5. Adsorptionisotherm

Inthiswork,twoofthemostcommonlyusedequilibrium mod-els,theLangmuirandFreundlichisotherms,werefittedwiththe experimentaldatatofindthemostsuitablemodel[5,21].

Langmuir’s isotherm model suggests that uptake occurs on homogeneoussurfacebymonolayersorptionwithoutinteraction betweensorbedmolecules.ThelinearformofLangmuir’sisotherm modelisgivenbythefollowingequation:

Ce qe

= 1

q0KL

+Ce

q0

(4)

whereKListheadsorptionequilibriumconstant(Lmg−1),q0isthe maximummonolayeradsorptioncapacity,andqe istheamount adsorbedonaunitmassoftheadsorbent(mgg−1)whenthe equi-libriumconcentrationisCe (mgL−1).Theisothermexperimental data,whichwerecollectedatdifferentinitialmetalion concentra-tions,wereplotted betweenCe/qe versusCe (Fig.9a).Asseenin

Fig.9a,alinearplotisobtainedwhenCe/qe isplottedagainstCe overtheentireconcentrationrangeofmetalionsinvestigated.The Langmuirmodelparametersandthestatisticalfitsofthesorption datatothisequationaregiveninTable6.Regressionvalues(R2) presentedinTable6indicatedthattheadsorptiondataforheavy metalionsremovalfittedwelltheLangmuirisotherm.Meanwhile, theextremelyhighvalueofcorrelationcoefficient(R2>0.99)forthe Langmuirisothermpredictsthemonolayercoverageofmetalions onEMRZ15particles.Ascanbeseenfromtheq0results(Table2), Ni2+adsorptionwashigherthanMn2+adsorptionforEMRZ15.The adsorptioncapacityofzeolitesgenerallydependson:(1)thecharge densityofcations,(2)theexchangeablesitesandporesizeonthe zeoliteframework,(3)theequilibriumtemperature[45–47].Since theionexchangewasconductedatthesameconditionforeach heavymetalspecies,thedifferentadsorptioncapacityofcations wasascribedtothedifferentchargedensityofcations.Thecharges ofthemetalcationarethesame(+2);thereforechargedensityfor Ni2+ionsishigherthanforthatofMn2+,sinceNi2+haslowerionic radiusthanthatofMn2+.ThisdifferenceleadsNi2+tobeattracted tothesurfaceofzeolitemorestronglythanMn2+[46,47].

OneoftheessentialcharacteristicsoftheLangmuirequation couldbeexpressedintermsofadimensionlessseparationfactor (RL).AndRLisdefinedasfollows[48]:

RL= 1

(1+KLC0)

(5)

whereC0isthehighestinitialsoluteconcentration(mgL−1),KLis theLangmuir’sadsorptionconstant(Lmg−1).TheR

Lvalueimplies theadsorptiontobeunfavorable(RL>1),linear(RL=1),favorable (0<RL<1)orirreversible(RL=0).ForC0from50to250mgL−1used inthepresentstudy,thevaluesofRLrangefrom0.036to0.29for Mn2+and0.023to0.11forNi2+.TheadsorptionofMn2+andNi2+ ontoEMRZ15canthusbeconsideredfavorable.Inotherwords,the preparedEMRZ15isasuitablesorbentforbothMn2+andNi2+.

Meanwhile,theresultsofmetalionsorptionontoEMRZ15were alsoanalyzedusingtheFreundlichmodeltoevaluateparameters associatedtothesorptionbehavior.TheFreundlichisothermisan empiricalequationemployedtodescribeheterogeneoussystems. ThelinearformofFreundlich’sisothermmodelisexpressedbythe followingequation:

ln(qe)=1

nln(Ce)+ln(KF) (6)

where KF ((mgg−1)(Lg−1)n) and 1/n are Freundlich constants relatedtosorptioncapacityandsorptionintensityofadsorbents. CeandqearesametothoseintheLangmuirisothermmodel.

FreundlichisothermalplotsarepresentedinFig.9b,andthe FreundlichconstantsarealsolistedinTable6.Ascanbeseenin

Fig.9bandTable6,theFreundlichmodeldoesnotfitthedataofboth Mn2+andNi2+,asindicatedbythevaluesofR2of0.8293and0.7583 forMn2+andNi2+,respectively.Namely,theLangmuirisotherm

Table5

Theconstantsandcorrelationcoefficientsofpseudo-firstorderandpseudo-secondorderkineticmodelsforadsorptionofheavymetalontoEMRZ15.

Metal C0/mgL−1 qe(exp)a/mgg−1 Pseudo-first-ordermodel Pseudo-second-ordermodel

qea/mgg−1 k1/min−1 R2 qea/mgg−1 k2/gmg−1min−1 R2

Mn2+ 300 55.03 64.23 0.03293 0.8616 58.62 0.001091 0.9979

Ni2+ 300 92.91 0.7213 0.01966 0.2901 93.73 0.005668 0.9998

aqe(exp)andq

(8)

300 250 200 150 100 50 0 -5 -4 -3 -2 -1 0 1 2 3

4

(a) Pseudo-f

irst-ord

er model

Mn Ni

ln

(q

e-q

t)

t (min)

300 250 200 150 100 50 0

0 1 2 3 4 5

6

(b) Ps

eudo-s

econ

d-o

rder

mode

l

Mn Ni

t/

qt

t (min)

Fig.8.PlotsofkineticsofheavymetalremovalbytheEMRZ15(initialmetalionsconcentration=300mgL−1;adsorbentdose=0.3g/100mL;pHvalue=6.0;

tempera-ture=30◦ C).

500 400

300 200

100 0

0 1 2 3 4 5 6 7 8

(a)

Mn Ni

Ce /qe

(g·

L

-1 )

Ce (mg·L-1)

6 5

4 3

2 1

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

(b)

Mn Ni

ln

qe

lnCe

Fig.9. (a)Langmuirand(b)FreundlichisothermadsorptionmodeloftheMn2+orNi2+ontoEMRZ15(adsorbentdose=0.3g/100mL;contacttime=180min;pHvalue=6.0;

temperature=30◦ C).

modelfitstheexperimentaldatabettercomparedtothe Freund-lichmodel.Consequently,thesorptionofmetalionsonEMRZ15 followstheLangmuirisothermmodelwheretheuptakeoccurson homogeneoussurfacebymonolayersorptionwithoutinteraction betweensorbedions[48].

3.3. Comparisonbetweenourresultsandrelatedliterature

Table7liststhecomparisonofmaximumadsorptioncapacity ofMn2+and Ni2+onvariousadsorbents.For Mn2+,theEMRZ15

hasagreatercapacitythannaturalclinoptilolite[8],natural zeo-lite[49],vermiculite[50],andNa-montmorillonite[51].ForNi2+, theadsorptioncapacityofEMRZismuchhigherthanother low-cost adsorbents such as spirodela intermedia, Brazilian natural scolecite,pretreatedclinoptilolite,naturalbentonite,vermiculite and Na-montmorillonite [5,7,44,50–52]. Thus, it is evident that EMRZ15showsgreat potentialasanadsorbent formeatal ions. Besides, the adsorption of Mn2+ and Ni2+ onto standard zeo-lites (zeoliteA,Yand P)wasconductedin order toinvestigate which component is responsible for the superior performance

Table6

ParametersofadsorptionisothermsofheavymetalontoEMRZ15at30◦ C.

Metal pH Langmuirisotherm Freundlichisotherm

KL(Lmg−1) q0(mgg−1) R2 KF(mgg−1)(Lg−1)n 1/n R2

Mn2+ 6.0 0.02373 66.93 0.9942 8.421 0.3468 0.8293

(9)

Table7

Comparisonofmaximumadsorptioncapacityofmetalionsonvariousadsorbents.

Adsorbent q0(mgg−1) Reference

Ni2+ EMRZ15 128.70 Thiswork

Spirodelaintermedia 122.10 [5]

Pretreatedclinoptilolite 15.55 [7]

Braziliannaturalscolecite 3.52 [44]

Vermiculite 25.33 [50]

Na-montmorillonite 3.63 [51]

Naturalbentonite 4.27 [52]

Mn2+ EMRZ15 66.93 Thiswork

Naturalclinoptilolite 4.22 [8]

NaturalTurkishzeolite 2.42 [49]

Vermiculite 26.78 [50]

Na-montmorillonite 3.22 [51]

oftheEMRZ15,sincethesynthesizedEMRZ15wasamixtureof zeolites(seeFig.2).Andthetestsweremadeunderfollowing con-ditions:initialmetal ionsconcentration=300mgL−1; adsorbent dose=0.3g/100mL; pH value=6.0; temperature=30◦C; contact time=180min.ItwasfoundthattheuptakecapacityforNi2+and Mn2+bycommerciallyavailablezeoliteA,PandYweredetermined tobe108.57,80.86,56.62mgg−1 and65.59,48.26,35.42mgg−1, respectively.Hence,comparedtotheadsorptioncapacityofMn2+ andNi2+byEMRZ15underthesamecondition(seeFig.5),itcould bestatedthatthezeoliteAinEMRZ15playsthemainroleinthe Mn2+and Ni2+ uptake.This statementis alsosupportedbythe resultsfromXRDanalysis(Fig.2)showingthatNa-Azeolitewas themajorconstituentofEMRZ15.

4. Conclusions

Inthepresentstudy,wehavefirstreportedonthesynthesisof zeoliteutilizingEMRasanabundantandcheapchemicalsource fromtheviewpointofthechemicalandeconomicaluseofEMR. AnalysesbymeansofXRD,FT-IR,FE-SEM,XRF,CECandBET sur-faceareameasurementindicatedthatthezeolitesynthesizedat Si/Alratio=1.5,namelyEMRZ15,wasmainlycomposedofNa-A zeoliteandthezeolitematerialhasspecificpropertiessuchashigh purityand CEC.Theadsorptionof Mn2+and Ni2+wasfoundto bedependentoninitialconcentration,pHandcontacttime.The adsorbedamountofMn2+andNi2+bothincreasedwith increas-inginitialconcentration,pHandcontacttime.Langmuirisotherm displayedabetterfittingmodelthanFreundlichisotherm,thus, indicatingtotheapplicabilityofmonolayercoverageofmetalions onthesurfaceofadsorbent.Thekineticprocesscanbepredictedby pseudo-second-ordermodelandrateconstantsforMn2+andNi2+ sorptionwerefoundtobe0.001091and0.005668gmg−1min−1, respectively at30◦C. Moreover,themaximum sorption capaci-tiesforMn2+andNi2+shownbyEMRZ15were66.93mgg−1 and 128.70mgg−1,respectively. Theseresultsshow thatEMRZ15 is a highlyefficient adsorbent formetal ionsremoval from aque-ous solution, which exhibits much higher adsorption capacity thanotherlow-costadsorbents.Thisconversionprocess, which enablesus to fabricate valuable zeolite materials from EMR at lowcostandthroughconvenientpreparationsteps,issurely ben-eficialfrom theviewpoint of thechemical and economicaluse ofEMR.

Acknowledgments

TheauthorsaregratefulfortheNationalNaturalScience Foun-dationofChina(No.21376273)andtheMajorProjectofScience andTechnologyofHunanProvince(No.2010FJ1011)byofferingthe researchfund.

References

[1]Z.Elouear,J.Bouzid,N.Boujelben,M.Feki,F.Jamoussi,A.Montiel,Heavymetal removalfromaqueoussolutionsbyactivatedphosphaterock,J.Hazard.Mater. 156(2008)412–420.

[2]T.S.Jamil,H.S.Ibrahim,I.H.AbdEl-Maksoud,S.T.El-Wakeel,Applicationof zeo-litepreparedfromEgyptiankaolinforremovalofheavymetals:I.Optimum conditions,Desalination258(2010)34–40.

[3]M.Prasad,H.Y.Xu,S.Saxena,Multi-componentsorptionofPb(II),Cu(II) andZn(II)ontolow-costmineraladsorbent,J.Hazard.Mater.154(2008) 221–229.

[4]F.Pagnanelli,S.Mainelli,F.Vegliò,L.Toro,Heavymetalremovalbyolive pomace:biosorbentcharacterizationandequilibriummodelling,Chem.Eng. Sci.58(2003)4709–4717.

[5]P.Miretzky,A.Saralegui,A.F.Cirelli,Simultaneousheavymetalremoval mech-anismbydeadmacrophytes,Chemosphere62(2006)247–254.

[6]R.Petrus,J.K.Warchol,Heavymetalremovalbyclinoptilolite.Anequilibrium studyinmulti-componentsystems,WaterRes.39(2005)819–830. [7]M.Sprynskyy,B.Buszewski,A.P.Terzyk,J.Namiesnik,Studyoftheselection

mechanismofheavymetal(Pb2+,Cu2+,Ni2+,andCd2+)adsorptionon

clinop-tilolite,J.ColloidInterfaceSci.304(2006)21–28.

[8]M.Kobya,E.Demirbas,E.Senturk,M.Incea,Adsorptionofheavymetalionsfrom aqueoussolutionsbyactivatedcarbonpreparedfromapricotstone,Bioresour. Technol.96(2005)1518–1521.

[9]K.Hagelstein,Globallysustainablemanganesemetalproductionanduse,J. Environ.Manage.90(2009)3736–3740.

[10]N.Duan,Z.Dan,F.Wang,C.X.Pan,C.B.Zhou,L.H.Jiang,Electrolyticmanganese metalindustryexperiencebasedChina’snewmodelforcleanerproduction promotion,J.Clean.Prod.19(2011)2082–2087.

[11]C.X.Li,H.Zhong,S.Wang,J.R.Xue,Leachingbehaviorandriskassessmentof heavymetalsinalandfillofelectrolyticmanganeseresidueinWesternHunan, China,Hum.Ecol.Risk.Assess.20(2014)1249–1263.

[12]N.Hu,J.F.Zheng,D.X.Ding,J.Liu,L.Q.Yang,J.Yin,G.Y.Li,Y.D.Wang,Y.L. Liu,MetalpollutioninHuayuanRiverinHunanProvinceinChinaby man-ganese sulphate wasteresidue,Bull. Environ.Contam. Toxicol.83(2009) 583–590.

[13]D.Qiao,J.S.Qian,Q.Z.Wang,Y.D.Dang,H.Zhang,D.Q.Zeng,Utilizationof sulfate-richsolidwastesinruralroadconstructionintheThreeGorges Reser-voir,Resour.Conserv.Recy.54(2010)1368–1376.

[14]Z.G.Zhou,L.J.Xu,J.L.Xie,C.L.Liu,Effectofmanganesetailingsoncapsicum growth,Chin.J.Geochem.28(2009)427–431.

[15]J.Wang,B.Peng,L.Y.Chai,Q.Zhang,Q.Liu,Preparationofelectrolytic man-ganeseresidue–groundgranulatedblastfurnaceslagcement,PowderTechnol. 241(2013)12–18.

[16]P.K.Hou,J.S.Qian,Z.Wang,C.Deng,Productionofquasi-sulfoaluminate cemen-titiousmaterialswithelectrolyticmanganeseresidue,Cem.Concr.Compos.34 (2012)248–254.

[17]J.Peric,M.Trgo,N.V.Medvidovic,Removalofzinc,copperandleadby nat-uralzeolite—acomparisonofadsorptionisotherms,WaterRes.38(2004) 1893–1899.

[18]S.B.Wang,Y.L.Peng,Naturalzeolitesaseffectiveadsorbentsinwaterand wastewatertreatment,Chem.Eng.J.156(2010)11–24.

[19]S.K. Pitcher,R.C.T.Slade,N.I.Ward,Heavymetalremovalfrommotorway stormwaterusingzeolites,Sci.TotalEnviron.334–335(2004)161–166. [20]C.X. Li, H. Zhong, S. Wang, J.R. Xue, Z.Y. Zhang,Removal of basic dye

(methylene blue) from aqueous solution using zeolitesynthesized from electrolyticmanganeseresidue,J.Ind.Eng.Chem.(2014),http://dx.doi.org/ 10.1016/j.jiec.2014.08.038.

[21]M.L.Zhang,H.Y.Zhang,D.Xu,L.Han,D.X.Niu,B.H.Tian,J.Zhang,Y.Zhang,W.S. Wu,Removalofammoniumfromaqueoussolutionsusingzeolitesynthesized fromflyashbyafusionmethod,Desalination271(2011)111–121. [22]C.Belviso,F.Cavalcante,S.Fiore,SynthesisofzeolitefromItaliancoalflyash:

differencesincrystallizationtemperatureusingseawaterinsteadofdistilled water,WasteManage.30(2010)839–847.

[23]Y.Kuwahara,T.Ohmichi,T.Kamegawa,K.Mori,H.Yamashita,Anovel con-versionprocessforwasteslag:synthesisofahydrotalcite-likecompoundand zeolitefromblastfurnaceslagandevaluationofadsorptioncapacities,J.Mater. Chem.20(2010)5052–5062.

[24]M.Nascimento,P.S.M.Soares,V.P.Souza,Adsorptionofheavymetalcations using coal fly ash modified by hydrothermal method, Fuel 88 (2009) 1714–1719.

[25]R.M.Mohamed,A.A.Ismail,G.Kini,I.A.Ibrahim,B.Koopman,Synthesisofhighly orderedcubiczeoliteAanditsion-exchangebehavior,ColloidsSurf.A348 (2009)87–92.

[26]R.Terzano,M.Spagnuolo,L.Medici,F.Tateo,P.Ruggiero,Zeolitesynthesisfrom pre-treatedcoalflyashinpresenceofsoilasatoolforsoilremediation,Appl. ClaySci.29(2005)99–110.

[27]L.C.Peng,D.Y.Wu,Y.M.Sui,X.Shang,X.Y.Zheng,H.N.Kong,Effectof competi-tivecationsontheremovalofammoniumbyzeolitesynthesizedfromcoalfly ash,Environ.Sci.Technol.33(2010)146–149.

[28]H.Kazemian,Z.Naghdali,T.GhaffariKashani,F.Farhadi,Conversionofhigh siliconflyashtoNa-P1zeolite:alkalinefusionfollowedbyhydrothermal crys-tallization,Adv.Powder.Technol.21(2010)279–283.

[29]L.Liu,R.Singh,P.Xiao,P.A.Webley,Y.Zhai,Zeolitesynthesisfromwasteflyash anditsapplicationinCO2capturefromfluegasstreams,Adsorption17(2011)

(10)

[30]A.Medina,P.Gamero,J.M.Almanza,A.Vargas,A.Montoya,G.Vargas,M. Izquierdo,FlyashfromaMexicanmineralcoal.II.SourceofWzeoliteand itseffectivenessinarsenic(V)adsorption,J.Hazard.Mater.181(2010)91–104. [31]K.M.Lee,Y.M.Jo,SynthesisofzeolitefromwasteflyashforadsorptionofCO2,

J.Mater.CyclesWasteManage.12(2010)212–219.

[32]N.Koukouzasa,C.Vasilatos,G.Itskos,I.Mitsisb,A.Moutsatsou,Removalof heavymetalsfromwastewaterusingCFB-coalflyashzeoliticmaterials,J. Haz-ard.Mater.173(2010)581–588.

[33]R.Juan,S.Hernández,J.M.Andrés,C.Ruiz,Ionexchangeuptakeofammonium inwastewaterfromasewagetreatmentplantbyzeoliticmaterialsfromflyash, J.Hazard.Mater.161(2009)781–786.

[34]D.Karadag,Y.Koc,M.Turan,B.Armagan,Removalofammoniumionfrom aque-oussolutionusingnaturalTurkishclinoptilolite,J.Hazard.Mater.136(2006) 604–609.

[35]H.M.Huang,X.M.Xiao,B.Yan,L.P.Yang,Ammoniumremovalfromaqueous solutionsbyusingnaturalChinese(Chende)zeoliteasadsorbent,J.Hazard. Mater.175(2010)247–252.

[36]N.M.Musyoka,L.F.Petrik,E.Hums,H.Baser,W.Schwieger,Insituultrasonic monitoringofzeoliteAcrystallizationfromcoalflyash,Catal.Today190(2012) 38–46.

[37]S.Alfaro,C.Rodríguez,M.A.Valenzuela,P.Bosch,Agingtimeeffectonthe syn-thesisofsmallcrystalLTAzeolitesintheabsenceoforganictemplate,Mater. Lett.61(2007)4655–4658.

[38]M.Alkan,C.Hopa,Z.Yilmaz,H.Güler,Theeffectofalkaliconcentrationand solid/liquidratioonthehydrothermalsynthesisofzeoliteNaAfromnatural kaolinite,MicroporousMesoporousMater.86(2005)176–184.

[39]H.K.An,B.Y.Park,D.S.Kim,Crabshellfortheremovalofheavymetalsfrom aqueoussolution,WaterRes.35(2001)3551–3556.

[40]O.S.Amuda,A.A.Giwa,I.A.Bello,Removalofheavymetalfromindustrial wastewaterusingmodifiedactivatedcoconutshellcarbon,Biochem.Eng.J. 36(2007)174–181.

[41]M.Al-Anber,Z.A.Al-Anber,Utilizationofnaturalzeoliteasion-exchangeand sorbentmaterialintheremovalofiron,Desalination225(2008)70–81. [42]A.Aklil,M.Mouflih,S.Sebti,Removalofheavymetalionsfromwaterbyusing

calcinedphosphateasanewadsorbent,J.Hazard.Mater.A112(2004)183–190. [43]S.Kocaoba,Y.Orhan,T.Akyüz,Kineticsandequilibriumstudiesofheavymetal

ionsremovalbyuseofnaturalzeolite,Desalination214(2007)1–10. [44]S.M.D.Bosco,R.S.Jimenez, W.A.Carvalho,Removaloftoxicmetalsfrom

wastewaterbyBraziliannaturalscolecite,J.ColloidInterfaceSci.281(2005) 424–431.

[45]W.Qiu,Y.Zheng,Removaloflead,copper,nickel,cobalt,andzincfromwater byacancrinite-typezeolitesynthesizedfromflyash,Chem.Eng.J.145(2009) 483–488.

[46]R.Shawabkeh,A.Al-Harahsheh,M.Hami,A.Khlaifat,Conversionofoilshale ashintozeoliteforcadmiumandleadremovalfromwastewater,Fuel83(2004) 981–985.

[47]E.Erdem,N.Karapinar,R.Donat,Theremovalofheavymetalcationsbynatural zeolites,J.ColloidInterfaceSci.280(2004)309–314.

[48]V.B.H.Dang,H.D.Doan,T.Dang-Vu,A.Lohi,Equilibriumandkineticsof biosorp-tionofcadmium(II)andcopper(II)ionsbywheatstraw,Bioresour.Technol. 100(2009)211–219.

[49]T.Motsi,N.A.Rowson,M.J.H.Simmons,Adsorptionofheavymetalsfromacid minedrainagebynaturalzeolite,Int.J.Miner.Process.92(2009)42–48. [50]M.Malandrinoa,O.Abollinoa,A.Giacominoa,M.Acetob,E.Mentasti,

Adsorp-tionofheavymetalsonvermiculite:influenceofpHandorganicligands,J. ColloidInterfaceSci.299(2006)537–546.

[51]O.Abollino,M.Aceto,M.Malandrino,C.Sarzanini,E.Mentasti,Adsorption ofheavymetalsonNa-montmorillonite.EffectofpHandorganicsubstances, WaterRes.37(2003)1619–1627.

[52]R.Donat,A.Akdogan,E.Erdem,H.Cetisli,ThermodynamicsofPb2+andNi2+

Referensi

Dokumen terkait

( 6) Dalam hal berdasarkan hasil penelit ian t im pelaksanaan MAP sebagaim ana dim aksud dalam Pasal 22 ayat ( 2) huruf m , rancangan Perset uj uan Bersam a t idak perlu dim

untuk memastikan bahwa dua class-class ini mengimplementasikan beberapa method dengan tanda yang sama, kita dapat menggunakan sebuah interface untuk hal ini. Kita dapat membuat

Diajukan untuk Memenuhi Sebagian dari Persyaratan Memperoleh Gelar Sarjana Pendidikan pada Program Program Studi Pendidikan Guru Sekolah Dasar.

 Merencanakan dan merancang suatu lingkungan dan bangunan dengan fasilitas yang menarik yang dapat mendukung aktifitas wisata budaya di dalamnya, serta menjadikan

Dalam hal perilaku konsumsi yang cukup berlebihan dilaku- kan oleh seorang individu yang dilatarbelakangi suatu prospek, akan dianggap rasional bagi individu tersebut,

akan membuat virtualisasi server di VoIP cloud dengan menggunakan sistem operasi.. Proxmox

WIBIS.ID Linux Administrator - Wiyata Infotek Bina Solusindo | Page 45 of 88 Samba adalah himpunan aplikasi yang bertujuan agar komputer dengan sistem operasi Linux, BSD( atau

Variable predictor that are performance expectancy, effort expectancy, social influence and facilitating condition influence to the level of use information technology in SME , while