• Tidak ada hasil yang ditemukan

Implementasi Gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means untuk Peramalan Tingkat Inflasi di Indonesia

N/A
N/A
Protected

Academic year: 2018

Membagikan "Implementasi Gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means untuk Peramalan Tingkat Inflasi di Indonesia"

Copied!
9
0
0

Teks penuh

(1)

Fakultas Ilmu Komputer

2569

Implementasi Gabungan Metode

Multi-Factors High Order Fuzzy Time

Series

dengan

Fuzzy C-Means

untuk Peramalan Tingkat Inflasi

di Indonesia

Jefri Hendra Prasetyo1, Agus Wahyu Widodo2, Bayu Rahayudi3

Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya Email: 1jefriprasetyo86@gmail.ac.id, 2a_wahyu_w@ub.ac.id, 3ubay1@ub.ac.id

Abstrak

Inflasi merupakan fenomena moneter dalam suatu negara dimana naik turunnya mengakibatkan gejolak ekonomi. Bank Central Indonesia menetapkan sasaran inflasi kedepan untuk periode waktu tertentu dengan Inflation Targeting Framework (ITF) sebagai acuan pelaksanaan kebijakan moneter. Jika sasaran inflasi tidak tercapai, maka diperlukan langkah-langkah untuk mengembalikan inflasi sesuai dengan sasaran. Berdasarkan permasalahan tingkat inflasi maka pada penelitian ini diharapkan dapat memberikan sasaran inflasi untuk waktu kedepan melalui peramalan tingkat inflasi menggunakan gabungan metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means. Fuzzy C-Means digunakan untuk membentuk subinterval berdasarkan pusat cluster yang diperoleh, penggunaan Fuzzy C-Means diharapkan dapat merefleksikan data asli sehingga menghasilkan peramalan yang lebih baik. Dalam melakukan peramalan digunakan 4-factor data yang meliputi data time series tingkat inflasi beserta 3 faktor yang mempengaruhi. Hasil Implementasi gabungan metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means dilakukan pengujian kesalahan dari peramalan menggunakan metode Mean Absolute Percentage Error (MAPE) dan diperoleh nilai kesalahan sebesar sebesar 11.33676% yang menunjukkan bahwa gabungan metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means termasuk dalam kategori baik digunakan dalam peramalan tingkat inflasi di Indonesia karena memiliki nilai akurasi dibawah 20%.

Kata kunci: Inflasi, Fuzzy Time Series, Fuzzy C-Means, Multi-Factors High Order Fuzzy Time Series, Mean Absolute Percentage Error (MAPE).

Abstract

Inflation is a monetary phenomenon in a country where ups and downs result in economic turmoil. Bank Central Indonesia sets the inflation target for the next time with the Inflation Targeting Framework (ITF) as a reference for monetary policy. If the actual inflation does not match the inflation target, then the policy is needed to return inflation to such an inflation target. Based on the inflation rate problem, this research is expected to provide inflation target for the future through inflation rate forecasting using combined Multi-Factors High Order Fuzzy Time Series method with Fuzzy C-Means. Fuzzy C-Means is used to determine the cluster center to be used as a basis for the development of intervals, the use of Fuzzy C-Means is expected to reflect the real data so that the results of forecasting is better. In forecasting used 4-factor data that includes time series data rate inflation and 3 factors that affect. The results of the combined implementation of Multi-Factors High Order Fuzzy Time Series method with Fuzzy C-Means tested the error of forecasting using Mean Absolute Percentage Error (MAPE). Based on the test the error value is 11.33676%, which indicates that the combined method of Multi-Factor High Order Fuzzy Time Series with Fuzzy C-Means is included in the good category used in forecasting the inflation rate in Indonesia because it has an accuracy value below 20%.

(2)

1. PENDAHULUAN

Inflasi merupakan fenomena moneter dalam suatu negara dimana naik turunnya mengakibatkan gejolak ekonomi (Silvia, 2013). Di Indonesia telah dibuat kebijakan-kebijakan moneter untuk menjaga kestabilan inflasi, hal ini karena inflasi dapat mempengaruhi pertumbuhan ekonomi negara sehingga berdampak terhadap kesejahteraan masyarakat. Inflasi dapat diartikan sebagai kenaikan harga barang dan jasa secara umum dan terus-menerus (Suseno, 2009). Dampak peningkatan inflasi dapat dirasakan secara langsung terutama oleh masyarakat yang memiliki gaji tetap, karena biaya hidup yang dikeluarkan semakin meningkat.

Bank Indonesia menetapkan sasaran inflasi kedepan untuk periode waktu tertentu (Bank Sentral Republik Indonesia, 2017). Bank Indonesia membuat sebuah kerangka kerja yang dinamakan Inflation Targeting Framework (ITF) dalam pelaksanaan kebijakan moneter. Sistem kerja ITF adalah dengan menentukan sasaran inflasi untuk periode waktu tertentu, dimana sasaran inflasi ditentukan berdasarkan sejumlah model dan informasi untuk menggambarkan kondisi inflasi kedepan. Sasaran inflasi digunakan sebagai acuan tingkat inflasi yang akan datang, jika sasaran inflasi tidak tercapai, maka diperlukan langkah-langkah untuk mengembalikan inflasi sesuai dengan sasaran.

Peramalan merupakan metode yang digunakan untuk memperkirakan peristiwa di masa yang akan datang (Maulidah, 2012). Dasar teori logika fuzzy dapat dimanfaatkan sebagai dasar dalam melakukan peramalan menggunakan data time series (data runtut waktu) (Fahmi, 2013). Pada tahun 1993 Song dan Chissom mengembangkan metode peramalan dengan memanfaatkan logika fuzzy sebagai dasar untuk melakukan peramalan yang disebut dengan metode Fuzzy Time Series.

Pada penelitian sebelumnya mengenai peramalan indeks harga saham gabungan di Shanghai dan indek harga saham di Shenzhen menggunakan Multi-Factors High Order Fuzzy Time Series Model, dimana data yang digunakan lebih dari satu faktor dan lebih dari satu order (n-order) yang berfungsi untuk pembentukkan Fuzzy Logic Relationship (FLR). Multi-Factors High Order Fuzzy Time Series dapat melakukan peramalan lebih teliti dibandingkan

menggunakan single factor dan 1-order karena dalam peramalan menggunakan FLR yang dibangun didasarkan pada data deret waktu sejumlah n-order dan menggunakan pertimbangan dari faktor-faktor data yang diramalkan. Pada pembentukkan subinterval penelitian ini menggunakan Fuzzy C-Means yang dimanfaatkan untuk memperoleh pusat cluster yang kemudian digunakan sebagai dasar penentuan subinterval, hal ini dikarenakan Fuzzy C-Means dapat merefleksikan dari data asli sehingga diperoleh hasil peramlaan yang lebih baik. Hasil penelitian ini dengan Chen’s Model, didapati nilai kesalahan pada peramalan indeks harga saham gabungan di Shanghai dan indek

Berdasarkan permasalahan dan penelitian sebelumnya maka penulis ingin melakukan penelitian mengenai “Implementasi gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy Means, dimana Fuzzy C-Means digunakan untuk membagi himpunan semesta ke dalam subinterval, menggunakan 4-factor data yang meliputi data inflasi beserta 3 faktor yang mempengaruhi dan menggunakan n-order untuk Peramalan Tingkat Inflasi di

Indonesia”.

2. INFLASI

2.1 Pengertian Inflasi

Inflasi merupakan kondisi meningkatnya harga-harga barang dan jasa secara umum dan terjadi terus-menerus (Suseno,2009). Berdasarkan pengertian inflasi terdapat dua kata kunci penting dalam memahami inflasi, yang

pertama adalah kata “secara umum” artinya

Inflasi harus menggambarkan kenaikan harga sejumlah besar barang dan jasa yang dikonsumsi dalam suatu perekonomian. Sedangkan yang

kedua adalah kata “terus-menerus”, artinya kenaikan harga akan berdampak secara terus-menerus bukan hanya sebentar seperti karena faktor musiman.

(3)

relatif wajar meskipun tingkat inflasi tersebut relatif lebih tinggi dari pada tingkat inflasi negara-negara di kawasan regional.

2.2 Faktor Penyebab Inflasi

Inflasi dapat disebabkan dari sisi permintaan, sisi penawaran, sisi ekspektasi (Suseno, 2009).

a. Sisi permintaan

Berdasarkan penelitian yang telah dilakukan oleh Primawan W. N. tahun 2012 telah membuktikan bahwa suku bunga di Indonesia, kurs Dollar Amerika (USD) tehadap Rupiah (Rp) dan jumlah peredaran uang secara luas (M2) memiliki pengaruh yang signifikan terhadap inflasi di Indonesia (Nugroho, 2012).

b. Sisi penawaran

Pada sisi penawaran, inflasi disebabkan karena naiknya biaya produksi atau biaya pengadaan barang dan jasa dapat mempengaruhi barang dan jasa yang dihasilkan. Contoh : adanya kenaikan harga minyak dunia, harga Bahan Bakar Minyak (BBM), dan Tarif Dasar Listrik.

c. Ekspektasi

Ekspektasi inflasi disebabkan oleh ekspektasi pelaku ekonomi yang didasarkan pada perkiraan yang akan datang akibat adanya kebijakan yang dilakukan oleh pemerintah pada saat ini.

2.3 Dampak Inflasi

Tingkat inflasi yang tinggi akan berakibat negatif terhadap perekonomian secara keseluruhan. Penurunan nilai mata uang sebagai akibat meningkatnya inflasi dampaknya tidak akan sama terhadap seluruh masyarakat. Kelompak masyarakat yang berpenghasilan tetap adalah kelompok masyarakat yang paling merasakan bagaimana dampak buruk dari tingginya inflasi, hal ini karena biaya yang dikeluarkan untuk memenuhi kebutuhan hidup semakin meningkat sedangkan uang pemasukkan tetap.

3. PERAMALAN

3.1 Pengertian Peramalan

Peramalan merupakan suatu teknik untuk memperkirakan suatu kondisi atau peristiwa di waktu yang akan datang. Metode peramalan tidak dapat menjamin kebenarannya secara tepat

100%, namun pemilihan metode peramalan yang tepat akan berguna untuk mendapatkan hasil peramalan yang mendekati benar (Junaidi, 2014).

3.2 Pengertian Peramalan Data Time Series

Model Deret Waktu (time series method) merupakan teknik peramalan yang memanfaatkan sejumlah data masa lalu dalam periode waktu yang terurut seperti harian, bulanan, ataupun tahunan untuk melakukan peramalan. Teknik ini melakukan prediksi dengan asumsi bahwa masa depan adalah fungsi dari masa lalu.

4. FUZZY C-MEANS

Fuzzy C-Means merupakan salah satu metode fuzzy clustering yang menggunakan partisi fuzzy sehingga titik-titik data dapat dimiliki oleh semua kelompok dengan tingkat keanggotaan yang berbeda-beda antara 0 sampai 1 (Suganya, 2012). Berikut merupakan langkah-langkah clustering menggunakan Algoritma Fuzzy C-Means (Kusumadewi, 2013):

1. Menentukan data set yang digunakan 2. Menentukan variabel awal yang meliputi

jumlah cluster, pangkat, maksimum iterasi, nilai error terkecil,

3. Membangkitkan matrik partisi (𝜇𝑖𝑘,

i=1,2,3,…,n dan k=1,2,3,…c).

4. Normalisasi matrik partisi

5. Hitung pusat cluster ke-𝑘(𝑉𝑘𝑗), dimana 𝑘 =

1,2,3, … , 𝑐 jumlah cluster dan 𝑗 = 1,2,3, … , 𝑚 jumlah atribut. Dengan persamaan (1).

𝑉𝑘𝑗 =∑ ((µ𝑖𝑘)

adalah elemen penyusun matrik partisi pada baris 𝑖 dan kolom 𝑘, dan 𝑤 adalah

(4)

8. Cek kondisi terakhir :

• Jika : (|𝑃𝑡− 𝑃𝑡−1| < ɛ) 𝑎𝑡𝑎𝑢 (𝑡 >

𝑀𝑎𝑥𝐼𝑡𝑒𝑟) maka berhenti;

• Jika tidak : maka t=t+1, ulangi langkah ke-5.

5. FUZZY TIME SERIES DAN FUZZY

RELATIONSHIP

Fuzzy Time Series (FTS) dikembangkan oleh Song dan Chissom pada tahun 1993. Fuzzy Time Series menggunakan teori fuzzy sebagai prinsip dasar dalam melakukan peramalan. Berikut ini merupakan penjelasan singkat mengenai hal-hal yang perlu didefinisikan dalam Fuzzy Time Series (Sun, 2015):

Definisi 1. Misalkan diketahui himpunan semesta (U), dimana U terbagi menjadi beberapa subinterval

(

𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛}

) maka

fuzzy set (himpunan fuzzy) dapat didefinisikan dengan persamaan (4).

𝐴 =𝑓𝐴 (𝑢1) 𝑢1 +

𝑓𝐴 (𝑢2) 𝑢2 + ⋯ +

𝑓𝐴 (𝑢𝑛)

𝑢𝑛 (4)

dimana 𝑓𝐴 adalah fungsi keanggotaan dari fuzzy set A sehingga nilai dari 𝑓𝐴 bernilai antara 0 sampai 1. Jadi 𝑓𝐴 (𝑢𝑖) bertujuan untuk menghitung nilai keanggotaan ui pada fuzzy set A.

Definisi 2.Misal Y(t) (t=...,0,1,2,…) merupakan

data time series (deret waktu) dengan nilai bilangan real yang merupakan anggota himpunan semesta (U), dimana Y(t) termasuk dalam anggota dari beberapa fuzzy set 𝑓𝑖 (t). F(t) merupakan kumpulan dari fuzzy set 𝑓𝑖 (t) (

i=1,2,3,…), sehingga F(t) disebut dengan Fuzzy Time Series dari data Y(t) (t=...,0,1,2,…).

Definisi 3. Jika terdapat F(t) hanya ditentukan berdasarkan F(t-1), maka dapat dinyatakan dengan F(t-1)→ F(t) disebut single-order, sedangkan jika terdapat F(t) ditentukan berdasarkan F(t-1), F(t-2), …, F(t-n), maka dapat representasikan dengan F(t-1), F(t-2), …, F(t

-n)→ F(t) dan disebut dengan nth-order fuzzy time series.

Definisi 4. Jika diketahui n-faktor data untuk peramalan maka diperoleh fuzzy set F1 (t) F2

(t),…,F_m (t). Jika F1(t) ditentukan berdasarkan ( F1 (t-1), F2 (t-1),…,Fm (t-1)), (F1 (t-2), F2(t-2),…,Fm (t-2)),…,(F1(t-n), F2(t-n) ,…,Fm(t-n)) maka dapat direpresentasikan dengan ( F1(t-1), F2(t-1),…, Fm(t-1)), (F1(t-2), F2 (t-2),…, Fm (t-2)), …, (F1(t-n), F2(t-n), …,Fm(t-n))→ F1(t), maka disebut dengan m-factors nth order fuzzy

time series model.

6. METODE MULTI-FACTORS HIGH

ORDER FUZZY TIME SERIES

DENGAN FUZZY C-MEANS

Sesuai dengan penelitian sebelumnya (Lin,2009) maka penelitian ini mengadopsi metode fuzzy time series yang telah digunakan oleh Song dan Chissom dengan menerapkan menggunakan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means untuk peramalan tingkat Inflasi di Indonesia. Diagram alur penyelesaian permasalahan pada penelitian ini ditunjukkan pada Gambar 1.

Berdasarkan Gambar 1, berikut ini merupakan langkah-langkah gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means:

1. Penentuan Universe of Discource (U) Menentukan menentukan batas bawah (𝐷𝑚𝑖𝑛) dan batas atas (𝐷𝑚𝑎𝑥) dari universe of discourse (U) menggunakan persamaan(5).

𝑈 = [𝐷𝑚𝑖𝑛− 𝜎 , 𝐷𝑚𝑎𝑥+ 𝜎] (5) dimana, 𝜎 adalah standar deviasi yang dihitung menggunakan persamaan(6).

𝜎 = √𝑛−11 ∑𝑛𝑖=1 (𝑥𝑖− 𝑥̅)2 (6)

dimana xi adalah data set ke-i dan 𝑥̅ adalah rata-rata data set.

2. Pembentukkan Subinterval

Subinterval dibentuk menggunakan metode Fuzzy C-Means untuk memperoleh pusat cluster. Sebelum mencari nilai pusat cluster, terlebih dahulu menentukan jumlah 𝑘 cluster menggunakan persamaan (7).

𝑘 = [|𝐷𝑚𝑖𝑛− 𝐷𝑚𝑎𝑥|/ (∑ |𝑥(𝑡)−𝑥(𝑡−1)| 𝑛

𝑡=2

𝑛−1 ) ] (7) Dimana k adalah jumlah cluster, n adalah jumlah data, dan x(t) adalah data pada periode t. kemudian, Pusat cluster yang diperoleh diurutkan dari data terkecil hingga terbesar kemudian dibentuk menjadi subinterval menggunakan persamaan(8).

𝑢1= [𝐷𝑚𝑖𝑛 , 𝑉1+ 𝑉2 2 ],

𝑢2= [𝑉1+ 𝑉2 2 , 𝑉2+ 𝑉2 3], (8)

𝑢3= [𝑉2+ 𝑉2 3 , 𝑉3+ 𝑉2 4],

(5)

𝑢𝑘 = [𝑉𝑘−12+ 𝑉𝑘 , 𝐷𝑚𝑎𝑥 ]

Dimana 𝑢𝑖 adalah subinterval ke-i dan Vi adalah pusat cluster ke-i (i=1,2,3,…,k).

Gambar 1 Diagram alur gabungan metode Multi-Factors High Order Fuzzy Time Series dengan

Fuzzy C-Means

3. Pembentukkan fuzzy set

Fuzzy set dibentuk menggunakan persamaan (9).

𝐴1= 𝑓11⁄ + 𝑓𝑢1 12⁄ + 𝑓𝑢2 13⁄ + ⋯ + 𝑓𝑢3 1𝑘⁄𝑢𝑘

𝐴2= 𝑓21⁄ + 𝑓𝑢1 22⁄ + 𝑓𝑢2 23⁄ + ⋯ + 𝑓𝑢3 2𝑘⁄𝑢𝑘

… = … …⁄ + … …⁄ + … …⁄ + ⋯ + … …⁄

𝐴𝑘 = 𝑓𝑘1⁄ + 𝑓𝑢1 𝑘2⁄ + 𝑓𝑢2 𝑘3⁄ + ⋯ + 𝑓𝑢3 𝑘𝑘⁄𝑢𝑘 (9)

Dimana 𝑓𝑖𝑗 menyatakan nilai keanggotaan dari subinterval ke- 𝑗(𝑢𝑗) pada fuzzy set 𝐴𝑖 (i = 1,2,...,k; j = 1,2,...,k). Tanda “+” menunjukkan operator himpunan gabungan.

4. Fuzzifikasi

Data sampel (𝑥) difuzzifikasikan dengan cara menghitung nilai keanggotaan setiap data terhadap semua fuzzy set 𝑓𝑖(𝑥) yang telah terbentuk dalam kurva bahu. Hasil fuzzifikasi ditentukan berdasarkan nilai maksimum dari perhitungan nilai keanggotaan terhadap setiap fuzzy set 𝑓𝑖(𝑥).

5. Pembentukkan FLR

Fuzzy Logic Relationship (FLR) terdiri dari Right Hand Side (RHS) dan Left Hand Side (LHS), dimana RHS merupakan data hasil fuzzifikasi pada periode t dan nilai hasil fuzzifikasi disebut secendent, sedangkan LHS terdiri dari deretan data hasil fuzzifikasi pada periode waktu sebelum t (t − n, … , t − 3, t −

2, t − 1) sejumlah n-order.

Misal diketahui hasil fuzzifikasi data dengan 4 faktor data sampel yang meliputi data

𝐴𝑝, 𝐵𝑞, 𝐶𝑟, dan 𝐷𝑠(P=1,2,3,..,k1, Q=1,2, 3,..,k2,

R=1,2,3,..,k3, S=1,2,3,..,k4). Pada periode waktu t dan akan dilakukan peramalan dengan 3-order, maka RHS adalah terdiri dari 𝐴(𝑡,𝑝) dan LHS terdiri dari 3 deret data sebelum periode t

(t − 1, t − 2, t − 3) seperti yang ditunjukan pada persamaan (10).

(𝐴(𝑡−3, 𝑝3), 𝐵(𝑡−3,𝑞3), 𝐶(𝑡−3,𝑟3), 𝐷(𝑡−3,𝑠3)),

(𝐴(𝑡−2, 𝑝2), 𝐵(𝑡−2,𝑞2), 𝐶(𝑡−2,𝑟2), 𝐷(𝑡−2,𝑠2)),

(𝐴(𝑡−1, 𝑝), 𝐵(𝑡−1,𝑞1), 𝐶(𝑡−1,𝑟1), 𝐷(𝑡−1,𝑠1))

→ 𝐴(𝑡, 𝑝) (10)

dimana nilai p,q,r,s pada LHS disebut antecedent sedangkan A pada RHS disebut sedentent. 6. Defuzzifikasi

Tahap defuzzifikasi bertujuan untuk menghitung peramalan pada periode waktu t berdasarkan FLR yang telah dibentuk. Nilai peramalan diperoleh dengan menghitung nilai total jumlah dari selisih antara masing-masing antecedent pada FLR data latih terhadap antecedent pada FLR data uji pada urutan yang bersesuaian. Masing-masing total jumlah selisih antecedent yang dimiliki FLR data latih dibandingkan dengan nilai threshold yang telah ditentukan, dimana FLR data latih yang memiliki total selisih kurang dari threshold dihitung frekuensinya sesuai dengan nilai secendent yang sama. setelah memperoleh fekuensi secendent maka langkah selanjutnya adalah menghitung nilai peramalan dengan persamaan (11).

Data set (4-factors data), MaxIter, w,

error

Penentuan Universe of Discourse (𝑈)

Mulai

For 𝑓= 1 to 4

Pembentukan Subinterval

Pembentukan Fuzzy set

Fuzzifikasi

𝑓

Pembentukan Fuzzy Logic

Relationship (FLR)

Defuzzifikasi

Hasil Peramalan

(6)

𝑟𝑇 =∑ 𝑐𝑖 𝑥 𝐴𝑖

𝐴𝑖 adalah frekuensi nilai secendent data training ke-i (i=1,2,3,…,k cluster), dan 𝑓𝑖 (i=1,2,3,…,n) adalah frekuensi FLR data latih yang terpilih.

7. PERHITUNGAN NILAI KESALAHAN

Mean Absolute Percentage Error (MAPE) merupakan metode perhitungan kesalahan berdasarkan penyimpangan antara data aktual dengan data peramalan dalam ukuran persen (%). Nilai MAPE dihitung menggunakan

Dimana, Xt adalah data aktual pada periode t, Ft adalah hasil peramalan pada periode t, dan n = jumlah data.

Hasil peramalan masuk kategori “Sangat

baik” jika nilai MAPE kurang dari 10% dan jika kurang dari 20% maka termasuk dalam kategori

“Baik”(Zainun, 2010).

8. DATA PENELITIAN

Data set yang digunakan diperoleh dari beberapa sumber referensi diantaranya adalah data tingkat inflasi, Kurs Dollar terhadap Rupiah, Suku Bunga Indonesia diperoleh dari halaman web resmi Bank Central Indonesia pada www.bi.go.id (Bank Central Indonesia, 2017), sedangkan peredaran uang secara luas diperoleh dari halaman web resmi kementrian perdagangan pada www.kemendag.go.id (Kementrian perdagangan, 2017). Data yang digunakan berupa data time series dengan periode waktu bulanan dari Januari 2007 sampai Juli 2016 sehingga total jumlah data yang digunakan pada penelitian ini adalah 115 data.

9. HASIL DAN PEMBAHASAN

9.1 Pengujian Jumlah Order Terhadap Nilai MAPE

Pengujian nilai order dilakukan untuk mengetahui bagaimana pengaruh jumlah order terhadap nilai MAPE hasil peramalan sehingga diperoleh jumlah order yang optimal. Pada pengujian ini menggunakan parameter yang telah ditentukan meliputi threshold = 120, Jumlah data uji = 20, Bobot = 2, Iterasi maksimum = 45. Pengujian dilakukan sebanyak

5 kali.

Gambar 2 Grafik pengujian jumlah order terhadap nilai MAPE

Gambar 2 menunjukkan hasil pengujian bahwa semakin besar jumlah order maka nilai MAPE akan semakin kecil hal ini karena dalam pembentukkan FLR berdasarkan data dalam deret waktu sejumlah order sehingga perhitungan peramalan lebih kompleks (Lin, 2009). Dalam menentukan jumlah order harus memperhatikan nilai threshold, karena semakin besar nilai order maka akan semakin tinggi nilai minimum dari jumlah selisih antara antecedent dari FLR data latih dengan FLR data uji yang bersesuaian, sehingga jika seluruh nilai jumlah selisih lebih dari nilai threshold maka peramalan tidak dapat dilakukan. Dari pengujian ini diperoleh nilai optimum dari jumlah order adalah 19 yang menghasilkan nilai MAPE

11,252%.

9.2 Pengujian Nilai Threshold Terhadap Nilai MAPE

Pengujian nilai threshold dilakukan untuk mengetahui bagaimana pengaruh nilai threshold terhadap nilai MAPE hasil peramalan sehingga diperoleh nilai threshold yang optimal. Pada pengujian ini menggunakan parameter yang ditentukan meliputi jumlah order = 120, Jumlah data uji = 20, Bobot = 2, Iterasi maksimum = 45. Pengujian dilakukan sebanyak 5 kali.

Gambar 3 Grafik pengujian nilai threshold terhadap nilai MAPE

120 140 160 180 200 220 240 260 280 300

MAPE

(%

)

Nilai Threshold

(7)

Pengujian threshold dimulai dari nilai 120 hingga 300 seperti yang ditunjukkan Gambar 3 menunjukkan bahwa nilai threshold memiliki pengaruh terhadap nilai MAPE dari hasil peramalan, dimana semakin kecil nilai threshold maka hasil peramalan semakin baik, hal ini karena fungsi threshold yaitu untuk membatasi FLR data latih yang memiliki kemiripan terhadap data uji dalam perhitungan peramalan berdasarkan jumlah selisih antecedent FLR data latih dengan antecedent data uji. Semakin kecil threshold maka FLR yang terpilih semakin baik, namun dalam menentukan threshold harus memperhatikan jumlah selisih FLR data latih dengan data uji yang terkecil atau minimum karena jika nilai threshold kurang dari nilai minimum selisih antecedent maka FLR tidak ada yang terpilih dan tidak dapat dilakukan peramalan. Dari pengujian ini didapati hasil terbaik ketika nilai threshold adalah 120 yang menghasilkan nilai rata-rata MAPE sebesar 11,224%.

9.3 Pengujian Jumlah Iterasi terhadap Nilai MAPE

Pengujian nilai iterasi dilakukan untuk mengetahui bagaimana pengaruh iterasi maksimum terhadap nilai MAPE hasil peramalan sehingga diperoleh iterasi maksimum yang optimal. Pada pengujian ini menggunakan parameter yang ditentukan meliputi jumlah order = 120, nilai threshold=120, Jumlah data uji= 20, Bobot = 2, Iterasi maksimum = 45. Pengujian dilakukan sebanyak 5 kali.

Gambar 4 Grafik Pengujian nilai iterasi maksimum terhadap nilai MAPE

Berdasarkan pengujian yang ditunjukkan Gambar 4 diketahui bahwa dengan menggunakan iterasi maksimum bernilai 10 sampai 20 menghasilkan nilai MAPE lebih tinggi dibandingkan dengan iterasi pengujian jumlah iterasi maksimum lainnya. Sedangkan untuk pengujian iterasi maksimum dengan nilai

25 sampai dengan 55 memiliki nilai MAPE naik turun yang bervariasi namun dengan selisih jarak hasil yang tidak signifikan. Hal ini menunjukkan bahwa pada metode Fuzzy C-Means telah mendapatkan nilai pusat cluster yang terbaik pada iterasi ke-25, namun karena pada hasil pengujian iterasi maksimum ke-45 menunjukkan nilai MAPE terbaik dibandingkan dengan pengujian iterasi maksimum lainnya.

9.4 Pengujian Validasi

Pengujian jumlah validasi dilakukan untuk mengetahui apakah perangkat lunak telah menghasilkan peramalan yang valid dengan cara melakukan peramalan sebanyak 10 kali dengan parameter yang tetap, dimana parameter yang digunakan merupakan nilai terbaik dari hasil pengujian sebelumnya yang meliputi:

Gambar 5 Grafik Pengujian Validasi perangkat lunak

Berdasarkan pengujian yang ditunjukkan pada Gambar 5 diketahui bahwa seluruh nilai MAPE dari hasil permalan memiliki selisih jarak yang tidak jauh dimana selisih hasil terkecil yakni 11,170% dengan terbesar yakni 11,556% sebesar 0,386 % sehingga perangkat lunak yang telah diimplementasikan layak digunakan untuk peramalan tingkat inflasi di Indonesia. Hasil dari rata-rata MAPE yang dihasilkan dari pengujian ini sebesar 11.33676 % yang menunjukkan bahwa hasil peramalan termasuk dalam kategori bagus karena memiliki nilai MAPE kurang dari 20%.

10. KESIMPULAN

Berdasarkan hasil dari penelitian ini yakni mengimplementasikan Metode Gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means untuk Peramalan Tingkat Inflasi di Indonesia dapat diperoleh kesimpulan sebagai berikut.

1. Untuk melakukan peramalan tingkat inflasi

(8)

menggunakan gabungan metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means dilakukan melalui enam proses utama yang meliputi penentuan Universe of discourse, pembentukkan subinterval berdasarkan nilai pusat cluster yang diperoleh menggunakan metode Fuzzy C-Means, pembentukkan fuzzy set, fuzzifikasi, pembentukkan Fuzzy Logic Relationship, dan Defuzzifikasi untuk menghitung hasil peramalan.

2. Berdasarkan hasil pengujian, maka dapat diketahui bahwa.

a) Semakin besar jumlah Order maka peramalan yang dihasilkan semakin mendekati benar, begitu juga sebaliknya.

b) Semakin kecil nilai Threshold maka peramalan yang dihasilkan semakin mendekati benar, begitu juga sebaliknya.

c) Pada iterasi ke-25 sampai iterasi ke-55 telah diperoleh nilai MAPE dari hasil peramlan yang stabil. Dan pada iterasi ke-45 memiliki hasil rata-rata MAPE yang terbaik.

d) Dari hasil pengujian validasi, hasil implementasi Metode Gabungan Metode Multi-Factors High Order Fuzzy Time Series dengan Fuzzy C-Means memperoleh hasil peramlaan yang stabil (tidak fluktuatif) sehingga secara keseluruhan fungsi hasil implementasi telah valid dengan nilai rata-rata MAPE sebesar 11.33676 % yang artinya hasil peramalan termasuk dalam ketegori bagus karena memiliki nilai kesalahan MAPE kurang dari 20%.

DAFTAR PUSTAKA

Bank Sentral Republik Indonesia, 2017. BI Rate. Retrieved Maret 22, 2017, from MathWorld-A Worfram Web Resource:

http://www.bi.go.id/en/moneter/bi-rate/data/Default.aspx.

Bank Sentral Republik Indonesia, 2017. Kalkulator Kurs. Retrieved Maret 22, 2017,

from MathWorld-A Worfram Web

Resource:http://www.bi.go.id/id/moneter/k alkulator-kurs/Default.aspx .

Bank Sentral Republik Indonesia, 2017.

Kerangka kebijakan moneter di Indonesia. Retrieved Maret 22, 2017, from

MathWorld-A Worfram Web

Resource:http://www.bi.go.id/id/moneter/k erangka-kebijakan/Contents.

Bank Sentral Republik Indonesia, 2017. Kerangka kebijakan moneter di Indonesia. Retrieved Maret 22, 2017, from

MathWorld-A Worfram Web

Resource:http://www.bi.go.id/id/moneter/i nflasi/data/Default.aspx.

Fahmi, T., Sudarno., Wilandari, Y., 2013. Perbandingan Metode Pemulusan Eksponensial Tunggal Dan Fuzzy Time Series Untuk Memprediksi Indeks Harga Saham Gabungan. Jurnal Gaussian. 2 (2) : 137-146. Jurusan Statistika FSM. Universitas Diponegoro.

Junaidi., 2014. Analisis Hubungan Deret Waktu Untuk Peramalan. Fakultas Ekonomi dan Bisnis. Universitas Jambi.

Kementrian Perdagangan. 2017. Jumlah Uang Beredar. Retrieved Maret 22, 2017, from MathWorld-A Worfram Web Resource: http://www.kemendag.go.id/id/economic- profile/economic-indicators/amount-of-circulate-money.

Kusumadewi., S., Purnomo., H.,2010. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta:Graha Ilmu.

Lin Y.,Yang.,Y.,2009. Stock Market Forecasting based on Fuzzy Time Series

Model. IEEE CONFERENCE

PUBLICATION. 782-886

Maulidah., S., 2012. Peramalan (Forecasting) Permintaan. Lab of Agribusiness Analysis

and Management, Faculty of Agriculture, Universitas Brawijaya. Nugroho., P., W., Basuki., M.,U., 2012. Analisis

Faktor-Faktor yang mempengaruhi Inflasi di Indonesia Periode 2000.1 -2011.4. Fakultas Ekonomik dan Bismis. Universitas Diponegoro.

Silvia, E., D., Wardi, Y., 2013. Analisis Pertumbuhan Ekonomi. Investasi dan Inflasi Di Indonesia. Fakultas Ekonomi. Universitas Negeri Padang.

(9)

Publications. 2 (11) : 1-3.

Sun., B., Guo., H., Karimi., H., R., Ge., Y., Xiong., S., 2015. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series. Department of Engineering,Faculty of Engineering and Science. University of Agder, 4898 Grimstad, Norway

Suseno., Astiyah., S., 2009. Inflasi. Pusat Pendidikan dan Study Kebanksentralan (PPSK),Bank Indonesia.

Gambar

Gambar 1 Diagram alur gabungan metode Multi-
Gambar 2 Grafik pengujian jumlah order terhadap nilai MAPE
Gambar 4  Grafik Pengujian nilai iterasi maksimum terhadap nilai MAPE

Referensi

Dokumen terkait

Dimensi sains yang dimaksud adalah proses, produk, aplikasi, dan sikap yang dapat dikembangkan dalam pembelajaran sains dengan menggunakan budaya dan kearifan

Hasil dari transformasi Fourier akan berupa spektrum amplitudo dan spektrum fasa sehingga dapat memperkirakan kedalaman dengan mengestimasi nilai bilangan gelombang (k)

Pemeliharaan Kerangka Tata Kelola Tujuan dari EDM01 adalah menganalisa dan mengartikulasikan persyaratan untuk tata kelola enterprise TI, serta pilah struktur,

Kekhasan motif Ceplok Kembang Kates terlihat sangat jelas yang memiliki komposisi sesuai dengan bentuk tanaman kates, sedangkan warna aslinya juga terdiri dari

REALISASI EKSPOR PROVINSI GORONTALO PERIODE BULAN NOVEMBER 2008.. Mitra Mandiri

Kaitan antara Doktrin Monroe dengan tradisi demokrasi di Amerika Serikat , antara lain: Pertama, bangsa Amerika selama satu setengah abad (tahun 1817- Perang Dunia

Aneurisma dapat disebabkan karena adanya stenosis yang dapat meningkatkan tekanan balik pembuluh darah sehingga terjadilah ketegangan dan kerapuhan dinding dari

Kritik tajam juga dilontarkan oleh Mukthie Fadjar, 8 yang mengatakan dalam melakukan perubahan-perubahan terhadap UUD 1945 tersebut ternyata sejak semula MPR memang tidak memiliki