• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
11
0
0

Teks penuh

(1)

New York J. Math. 17a(2011) 165–175.

Counterexamples on non-

α

-normal

functions with good integrability

Rauno Aulaskari, Shamil Makhmutov

and Jouni R¨

atty¨

a

Abstract. Blaschke products are used to construct concrete examples of analytic functions with good integrability and bad behavior of spheri-cal derivative. These examples are used to show that none of the classes Mp#, 0< p <∞, is contained in theα-normal classNαwhen 0< α <2. This implies thatMp#is in a sense a much larger class thanQ#p.

Contents

1. Introduction and results 165 2. Proof of Theorem 1 168 3. Proof of Theorem 2 171 4. Proof of Theorem 3 171 5. Proof of Theorem 4 172

References 174

1. Introduction and results

LetM(D) denote the class of all meromorphic functions in the unit disc D={z:|z|<1}. A function f ∈ M(D) is called normal if

kfkN = sup

z∈D

f#(z)(1− |z|2)<∞,

wheref#(z) =|f(z)|/(1 +|f(z)|2) is the spherical derivative off atz. The

class of normal functions is denoted by N. For a given sequence {zn}∞

n=1

of points in D for which P∞

n=1(1− |zn|2) converges (with the convention

Received August 2, 2010.

2000Mathematics Subject Classification. Primary 30D50; Secondary 30D35, 30D45.

Key words and phrases. Dirichlet space, normal function, Blaschke product.

This research was supported in part by the Academy of Finland #121281; IG/SCI//DOMS/10/04; MTM2007-30904-E, MTM2008-05891, MTM2008-02829-E (MICINN, Spain); FQM-210 (Junta de Andaluca, Spain); and the European Science Foun-dation RNP HCAA.

(2)

zn/|zn|= 1 for zn = 0), the Blaschke product associated with the sequence {zn}∞

n=1 is defined as

B(z) =

∞ Y

n=1

|zn|

zn

zn−z

1−znz

.

Allen and Belna [1] showed that the analytic function

fs(z) =B(z)/(1−z)s,

where B(z) is the Blaschke product associated with{1−e−n}

n=1, is not a

normal function if 0< s < 12, but satisfies the integrability condition

Z

D

|fs′(z)|dA(z)<∞.

It is well-known that if f is analytic in Dand satisfies

Z

D

|f′(z)|2dA(z)<∞,

that is, f belongs to the Dirichlet space (analytic functions in D with bounded area of image counting multiplicities), then f ∈ N. Concerning the normality, the question arose if

(1)

Z

D

|f′(z)|pdA(z)<∞, 1< p <2,

implies f ∈ N. Yamashita [9] showed that this is not the case since the function

(2) f(z) =B(z) log 1 1−z,

where B is a Blaschke product associated with an exponential sequence

{zn}∞n=1 whose limit is 1, is not normal but satisfies (1) for all 1 < p < 2.

Recall that a sequence{zn}∞n=1 is exponential if (3) 1− |zn+1| ≤β(1− |zn|), n∈N,

for some β ∈ (0,1). It is well known that every such sequence {zn}∞n=1

satisfies

(4) Y

k6=n

zn−zk

1−znzk

≥δ, n∈N,

for someδ=δ(β)>0, and is therefore an interpolating sequence (uniformly separated sequence).

The basic idea in this note is to find a function f that satisfies (1) (or another integrability condition) but the behavior of f# is worse than the behavior of the spherical derivative of a nonnormal function necessarily is. To make this precise, for 0 < α < ∞, a function f ∈ M(D) is called α -normal if

sup

z∈D

(3)

The class of allα-normal functions is denoted byNα.

Theorem 1. Let B be the Blaschke product associated with an exponential sequence{zn}∞n=1 whose limit is 1. Let 1≤α <∞, 0< p <2 and

(5) fs(z) =

B(z)

(1−z)s, 0< s <∞. Then fs6∈ Nα for alls > α−1, but

Z

D

|fs′(z)|pdA(z)<∞

for all s∈(0,2/p−1).

It is easy to see that fα−1 ∈ Nα. Moreover, the following result proves

the sharpness of Theorem 1.

Theorem 2. Let B be the Blaschke product associated with an exponential sequence {zn}∞n=1 such that |zn− 12|= 12, ℑzn >0 and limn→∞zn = 1. Let

0< p <1. Then

f2

p−1(z) =

B(z)

(1−z)2p−1

satisfies

Z

D

|f′2 p−1

(z)|pdA(z) =∞.

The following result is of the same nature as Theorem 1.

Theorem 3. Let B be the Blaschke product associated with an exponential sequence {zn}∞

n=1 whose limit is 1. Let 1≤α <∞ and

f(z) = log 1 1−z

B(z) (1−z)α−1.

Then f 6∈ Nα, but

(6)

Z

D

|f′(z)|2(1− |z|2)2α−2+εdA(z)<∞

for all ε >0.

Wulan [8] showed that the function f, defined in (2), satisfies

(7) f 6∈ [

0<p<∞

Q#p but f ∈ \

0<p<∞

Mp#,

where

Q#p =

f ∈ M(D) : sup

a∈D

Z

D

(f#(z))2gp(z, a)dA(z)<∞

and

Mp#=

f ∈ M(D) :kfk2

Mp# = supa

D

Z

D

(f#(z))2(1− |ϕa(z)|2)pdA(z)<∞

(4)

Here ϕa(z) = (a−z)/(1−az) is a M¨obius transformation and g(z, a) = −log|ϕa(z)|is a Green’s function ofD.

Keeping (7) in mind, we will show that the function fs, defined in (5),

belongs to Mp# for certain values ofs.

Theorem 4. Let B be the Blaschke product associated with an exponential sequence {zn}∞n=1 whose limit is 1. Then the function fs, defined in (5), satisfies

fs∈

\

0<p<∞

Mp#

for all 0< s≤1.

Theorems 1 and 4 have the following immediate consequence.

Corollary 5.

\

0<p<∞

Mp#6⊂ [

0<α<2

Nα.

Using [6, Theorem 3.3.3], with α = 2−2/q, we see that if f ∈ M(D) satisfies

sup

a∈D

Z

D

(f#(z))q(1− |z|2)2q−4(1− |ϕa(z)|2)pdA(z)<∞,

for some 2< q <∞ and 0≤p <∞, thenf ∈ N2. In view of this fact and

Corollary 5 it is natural to ask the following questions.

Question 6. For which values of p the classMp# is contained inN2?

Question 7. Is the class

B#=

(

f ∈ M(D) : sup

a∈D

Z

D(a,r)

(f#(z))2dA(z)<∞

)

contained inN2?

Recall that Mp#=B# for all 1< p <∞, see [7, 8].

Before embarking on the proofs of the results presented in this section, a word about the notation. We will writeA.Bif there is a positive constant

C such that A ≤CB. The notation A &B is understood in an analogous manner. In particular, ifA.B .A, we will write A≃B.

2. Proof of Theorem 1

The factfs6∈ Nα for alls > α−1 follows at once by the following lemma,

(5)

Lemma 8. Let 1≤α < ∞ and let B be an interpolating Blaschke product associated with the sequence {zn}∞

n=1. If g is analytic inD and satisfies

Proof. Since B is interpolating, there existsδ >0 such that

(Bg)#(znk)(1− |znk|

and the H¨older inequality yields

(6)

where µ ∈ (22sp,2p) and λ∈ (22p,sp2) such that λ−1+µ−1 = 1. The last

integral above is finite because psλ < 2. Moreover, we may choose µ such thatpµ >1. Then

and it follows that

I1 .

the Schwarz–Pick lemma, we obtain

I1≤2p−1 the H¨older inequality implies

(7)

3. Proof of Theorem 2

and the assertion follows.

Note that an application of the asymptotic equality in (10) gives an al-ternative way to prove the case 0< p <1 in Theorem 1.

4. Proof of Theorem 3

Denote

(8)

Choose the conjugate indexespandqsuch thatp(1−ε)<1. Here we assume, without loss of generality, thatε∈(0,1). Then the H¨older inequality implies

I2.

5. Proof of Theorem 4

This proof uses ideas from [2]. Let 0 < p < ∞ and 0 < s ≤ 1. Let

δ∗ =δ/4, and consider the pseudohyperbolic discs

(9)

for all a∈D by [4, p. 208 (2)]. Moreover,

To estimate the integrals over E1, note first that

(10)

Hence

I2(E1) =

Z

E1

|B(z)g′s(z)|2

(1 +|B(z)gs(z)|2)2

(1− |ϕa(z)|2)pdA(z)

.sup

a∈D

∞ X

k=1

(1− |ϕa(zk)|2)p <∞

by [5].

A similar reasoning as above together with the Schwarz–Pick lemma yields

Z

Dk

|B′(z)|2|g

s(z)|2

(1 +|B(z)gs(z)|2)2

(1− |ϕa(z)|2)pdA(z)

.(1− |ϕa(zk)|2)p

Z

D(0,δ∗)

|gs(ϕzk(w))| 2

(1− |ϕzk(w)|2)2

|ϕ′z k(w)|

2dA(w),

where

Z

D(0,δ∗)

|gs(ϕzk(w))| 2

(1− |ϕzk(w)|2)2

|ϕ′z k(w)|

2dA(w)

≤4

Z

D(0,δ∗)

|ϕ′zk(w)|2

(1− |ϕzk(w)|2)2+2s

dA(w).(1− |zk|)2−2s≤1.

It follows that

I1(E1) =

Z

E1

|B′(z)|2|g

s(z)|2

(1 +|B(z)gs(z)|2)2

(1− |ϕa(z)|2)pdA(z)

.sup

a∈D

∞ X

k=1

(1− |ϕa(zk)|2)p <∞.

Putting everything together, we obtain f ∈Mp#.

References

[1] Allen, H.; Belna, C.Non-normal functionsf(z) with∫ ∫|z|<1|f′(z)|dxdy < ∞. J.

Math. Soc. Japan24(1972) 128–131. MR0294649 (45 #3717) Zbl 0239.30038.

[2] Aulaskari, R.; Wulan, H.; Zhao. R.Carleson measures and some classes of mero-morphic functions.Proc. Amer. Math. Soc.128(2000), no. 8, 2329–2335. MR1657750

(2000k:30054) Zbl 0945.30027.

[3] Cima, J.; Colwell, P.Blaschke quotients and normality.Proc. Amer. Math. Soc.19

(1968) 796–798. MR0227423 (37 #3007) Zbl 0159.36704.

[4] Danikas, N.; Mouratides, Chr.Blaschke products inQpspaces.Complex Variables

Theory Appl.43(2000), no. 2, 199–209. MR1812465 (2001m:30040) Zbl 1021.30033.

[5] Ess´en, M.; Xiao, J.Some results on Qp spaces, 0< p <1.J. Reine Angew. Math.

485(1997) 173–195. MR1442193 (98d:46024) Zbl 0866.30027.

[6] R¨atty¨a, J. On some complex function spaces and classes. Ann. Acad. Sci. Fenn. Math. Diss.No. 124 (2001) 73 pp. MR1866201 (2002j:30052) Zbl 0984.30019. [7] Wulan, H.On some classes of meromorphic functions. Ann. Acad. Sci. Fenn. Math.

(11)

[8] Wulan, H.A non-normal function relatedQpspaces and its applications.Progress in

analysis, Vol. I, II(Berlin, 2001), 229–234,World Sci. Publ., River Edge, NJ, 2003. MR2032689.

[9] Yamashita, S.A nonnormal function whose derivative has finite area integral of order 0< p <2.Ann. Acad. Sci. Fenn. Ser. A I Math.4(1979), no. 2, 293–298. MR0565879

(81k:30042) Zbl 0433.30026.

University of Eastern Finland, Department of Physics and Mathematics, Cam-pus of Joensuu, P. O. Box 111, 80101 Joensuu, Finland

[email protected]

Department of Mathematics and Statistics, Sultan Qaboos University, P. O. Box 36, Al Khodh 123, Oman, UFA State Aviation Technical University, UFA, Russia

[email protected]

University of Eastern Finland, Department of Physics and Mathematics, Cam-pus of Joensuu, P. O. Box 111, 80101 Joensuu, Finland

[email protected]

Referensi

Dokumen terkait

Berkala Serta Merta Setiap Saat Dikecualikan 1... Hari/Tanggal : Kamis, 28

Mean ( ± SE) concentra- tions of microelements (Mn, Fe and B), toxic elements Al, F and Ca/Al molar ratio along the length (five sections) of current-year needles of Scots pine trees

--- Demikian Berita Acara ini dibuat dengan sebenar-benarnya, ditutup pada hari dan tanggal tersebut diatas pukul sebelas tujuh belas Waktu Indonesia Barat.---.

Maka kami mengundang saudara untuk melakukan pembuktian kualifikasi perusahaan saudara dengan membawa dokumen-dokumen yang telah diupload yang akan diadakan pada:. Hari/ Tanggal

Dari Tabel 4 dan Gambar 2 diperoleh variabel yang paling berpengaruh terhadap nilai lahan dan bangunan persepsi responden (penghuni perumahan) yaitu variabel faktor

Berdasarkan apa yang telah penulis uraikan dapat ditarik suatu kesimpulan bahwa peranan alat bukti dalam menentukan seberapa besar jumlah uang pengganti adalah sebagai

Berdasarkan Perpres 70 Tahun 2012 Tentang Pedomanan Pengadaan Barang dan Jasa dan APBD Kota Tasikmalaya Tahun 2012 Dinas Cipta Karya, Tata Ruang dan Kebersihan Kota Tasikmalaya

Sebaliknya, penelitian yang dilakukan oleh Iswanti (2002) dan Tanwil dan Suryansari (2008) tidak menemukan adanya pengaruh antara lingkungan keluarga dan prestasi belajar,