• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:AUA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:AUA:"

Copied!
12
0
0

Teks penuh

(1)

CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

C.Selvaraj and C.Santhosh Moni

Abstract.By making use of the Hadamard product, we define a new class of analytic functions of complex order. Coefficient inequalities, sufficient condition and an interesting subordination result are obtained.

2000Mathematics Subject Classification: 30C45, 30C50.

Keywords and Phrases: analytic functions, Hadamard product, generalized hy-pergeometric functions, coefficient inequalities, subordinating sequence.

1. Introduction, Definitions And Preliminaries Let Adenote the class of functions of the form

f(z) =z+ ∞ X

k=2

akzk ak ≥0, (1)

which are analytic in the open disc U = {z ∈ C\ | z |< 1} and S be the class of

function f ∈ Awhich are univalent inU.

The Hadamard product of two functions f(z) = z+P∞k=2akzk and g(z) =

z+P∞k=2bkzk is given by

(f∗g)(z) =z+ ∞ X

k=2

akbkzk. (2)

For a fixed functiong∈ Adefined by

g(z) =z+ ∞ X

k=2

bkzk (bk≥0 fork≥2) (3)

We now define the following linear operator Dm

λ, gf : A −→ A by

(2)

Dλ, g1 f(z) = (1−λ)(f(z)∗g(z)) +λ z(f(z)∗g(z))′, (4)

Dλ, gm f(z) =D1λ, g(Dm−λ, g1f(z)). (5) If f ∈ A, then from (4) and (5) we may easily deduce that

Dmλ, gf(z) =z+ ∞ X

k=2

1 + (k−1)λmakbk

zk

(k−1)!, (6)

where m∈N0 =N∪ {0} and λ0.

Remark 1. It is interesting to note that several integral and differential operator follows as a special case ofDm

λ, gf(z), here we list few of them. 1. When g(z) = z/(1−z),Dm

λ, gf(z) reduces to an operator introduced recently by F. Al-Oboudi [1].

2. Let the coefficients bk be of the form

bk=

(α1)k−1 . . .(αq)k−1

(β1)k−1 . . . (βs)k−1(k−1)!

(7) (α1, . . . αq, β1, . . . βs∈C andβj 6= 0,−1,−2, . . . for j={1,2,. . . ,s}) and ifm= 0, thenDλ, gm f(z) reduces to the well-known Dziok-Srivastava opera-tor. It is well known that Dziok-Srivastava operator includes as its special cases various other linear operator which were introduced and studied by Hohlov, Carlson and Shaffer and Ruscheweyh. For details we refer to [6, 7, 8]

Apart from these, the operator Dm

λ, gf(z) generalizes the well-known operators like S˘al˘agean operator [14] and Bernardi-Libera-Livingston operator.

Using the operatorDm

λ, gf(z), we defineHmλ(g, δ;A, B) to be the class of functions

f ∈ Asatisfying the inequality

1 +1

δ

Dm+1

λ, g f(z)

Dm λ, gf(z)

−1

≺ 1 +Az

1 +Bz, z∈ U, (8)

whereδ ∈C\ {0},A andB are arbitrary fixed numbers,1B < A1,mN0.

(3)

1. If we letg(z) = z

1−z, λ= 1 in (8), then the class H

m

λ (g, δ;A, B) reduces to the well- known class

Hm(δ;A, B) :=

f : 1 + 1

δ

Dm+1f(z) Dmf(z) −1

≺ 1 +Az

1 +Bz

where Dmf is the well- known S˘al˘agean operator. The class Hm(δ;A, B) was introduced and studied by Attiya [4].

2. If we letg(z) =z+ ∞ X

n=2

(α1)k−1 . . . (αq)k−1

(β1)k−1 . . .(βs)k−1(k−1)!

akzk in (8), then we have following class of functions

Hmλ(α1, β1;A, B) :=

f : 1 + 1

δ

Dm+1(α

1, β1)f(z) Dm(α

1, β1)f(z) −1

≺ 1 +Az

1 +Bz

introduced and studied by C. Selvaraj and K.R.Karthikeyan in [17]. 3. If we letg(z) = z

1−z, λ= 1, m= 0 in (8), then the class H

m

λ(g, δ;A, B) reduces to the well- known class of starlike functions of complex order [12].

Further, we note that several subclass of analytic functions can be obtained by specializing the parameters in Hm

λ(g, δ;A, B) (see for example [3, 11, 12]).

We use Ω to denote the class of bounded analytic functions w(z) in U which satisfy the conditions w(0) = 1 and|w(z)|<1 for z∈ U.

2.Coefficient estimates

Theorem 1. Let the function f(z) defined by (1) be in the class Hm

λ(g, δ;A, B). (a) If (A−B)2|δ |2>(k1)2B(AB)λ Re{δ}+ (1B2)λ2(k1) , let

G= (A−B)

2|δ |2

(k−1)2B(A−B)λ Re{δ}+ (1−B2)λ2(k1) , k= 2,3, . . . , m−1, M = [G] (Gauss symbol) and [G] is the greatest integer not greater than G. Then, for j= 2,3, . . . , M + 2

|aj |≤

1

[1 + (j−1)λ]mλj−1(j1)!bj

j Y

k=2

(4)

and for j > M + 2

|aj |≤

1

[1 + (j−1)λ]mλj−1(j1) (M+ 1)!b

j MY+3

k=2

|(A−B)δ−(k−2)B|.

(10)

(b) If (A−B)2|δ |2≤(k−1)2B(A−B)λ Re{δ}+ (1−B2)λ2(k−1) , then

|aj |≤

(A−B)|δ| λ(j−1) [1 + (j−1)λ]mb

j

j≥2. (11)

The bounds in (9) and (11) are sharp for all admissible A, B, δ ∈ C\ {0} and for

each j.

Proof. Since f(z)∈ Hm

λ(g, δ;A, B), the inequality (8) gives

|Dλ, gm+1f(z)−Dλ, gm f(z)|=[(A−B)δ+B]Dmλ, gf(z)−BDλ, gm+1f(z) w(z). (12) Equation (12) may be written as

∞ X

k=2

[1 + (k−1)λ]mλ(k−1)bkakzk (13)

=

(A−B)δz+ ∞ X

k=2

[(A−B)δ−B(k−1)λ][1 + (k−1)λ]mbkakzk

w(z).

Or equivalently j

X

k=2

[1 + (k−1)λ]mλ(k−1)bkakzk+ ∞ X

k=j+1 ckzk

=

(A−B)δz+ j−1

X

k=2

[(A−B)δ−B(k−1)λ][1+(k−1)λ]mbkakzk

w(z), (14) for certain coefficients ck. Explicitlyck = [1 + (k−1)λ]mλ(k−1)bkak−[(A−B)δ−

B(k−2)λ][1 + (k−2)λ]mb

k−1ak−1z−1. Since |w(z)|<1, we have

j X

k=2

[1 + (k−1)λ]mλ(k−1)bkakzk+ ∞ X

k=j+1 ckzk

(5)

(A−B)δz+ j−1

X

k=2

[(A−B)δ−B(k−1)λ][1 + (k−1)λ]mbkakzk .

Let z=reiθ, r <1, applying the Parseval’s formula (see [9] p.138) on both sides of the above inequality and after simple computation , we get

j X

k=2

[1 + (k−1)λ]2mλ2(k−1)2b2k|ak|2r2k+ ∞ X

k=j+1

|ck|2r2k

≤(A−B)2 |δ |2 r2+ j−1

X

k=2

|(A−B)δ−B(k−1)λ|2 [1 + (k−1)λ]2mb2k |ak |2 r2k. Let r−→1−, then on some simplification we obtain

[1 + (j−1)λ]2mλ2(j−1)2bj2 |aj |2≤(A−B)2 |δ|2 +

j−1

X

k=2

|(A−B)δ−B(k−1)λ|2 −(k−1)2λ2 [1 + (k−1)λ]2mb2k |ak|2 j ≥2. (16) Now the following two cases arises:

(a) Let (A−B)2|δ |2>(k−1)λ2B(A−B)Re(δ) + (1−B2)λ(k−1) ,suppose that j≤M + 2, then forj = 2, (16) gives

|a2 |≤

(A−B)|δ |

(1 +λ)mλ b

2 ,

which gives (9) for j = 2. We establish (9) for j ≤ M + 2, from (16), by mathematical induction. Suppose (9) is valid for j = 2,3, . . . , (k−1). Then it follows from (16)

[1 + (j−1)λ]2mλ2(j−1)2b2j |aj |2

≤(A−B)2|δ |2

+ j−1

X

k=2

|(A−B)δ−B(k−1)λ|2 −(k−1)2λ2 [1 + (k−1)λ]2mb2k |ak|2

≤(A−B)2|δ |2

+ j−1

X

k=2

(6)

×

1 [1 + (k−1)λ]2mb2

k{λk−1(k−1)!}2 k Y

n=2

|(A−B)δ−(n−2)B |2

= (A−B)2 |δ |2 + j−1

X

k=2

|(A−B)δ−B(k−1)λ|2−(k−1)2λ2

×

1

{λk−1(k1)!}2

k Y

n=2

|(A−B)δ−(n−2)B|2

= (A−B)2 |δ|2 +

|(A−B)δ−Bλ|2 −λ2 1

λ2(1!)2(A−B)

2|δ |2 + |(A−B)δ−2Bλ|2−4λ2 1

λ4(2!)2 (A−B)

2 |δ |2|(AB)δ|2

+. . .up to (k=j−1)

= 1

{λj−2(j2)!}2

j Y

k=2

|(A−B)δ−(k−2)B |2.

Thus, we get

|aj |≤

1

[1 + (j−1)λ]mλj−1(j1)!b

j j Y

k=2

|(A−B)δ−(k−2)B |,

which completes the proof of (9).

Next, we suppose j > M+ 2. Then (16) gives

[1 + (j−1)λ]2mλ2(j−1)2bj2 |aj |2≤(A−B)2|δ |2

+ MX−2

k=2

|(A−B)δ−B(k−1)λ|2 −(k−1)2λ2 [1 + (k−1)λ]2mb2k |ak |2

+ j−1

X

k=M+3

|(A−B)δ−B(k−1)λ|2−(k−1)2λ2 [1 + (k−1)λ]2mb2k |ak|2 . On substituting upper estimates fora2, a3, . . . , aM+2obtained above and

(7)

(b) Let (A−B)2 |δ |2≤(k−1)λ2B(A−B)Re(δ) + (1−B2)λ(k−1) ,then it follows from (16)

[1 + (j−1)λ]2mλ2(j−1)2b2j |aj |2≤(A−B)2|δ |2 (j≥2), which proves (11).

The bounds in (9) are sharp for the functions f(z) given by

Dλ, gm f(z) = (

z(1 +Bz)(A−BB)δ if B6= 0,

z exp(Aδz) if B= 0.

Also, the bounds in (11) are sharp for the functionsfk(z) given by

Dλ, gm fk(z) =     

z(1 +Bz) (A−B)δ

Bλ(k−1) if B6= 0,

z exp

Aδ λ(k−1)zk−1

if B= 0.

Remark 2. If we letλ= 1, g(z) = z

1−z in Theorem 1, we get the result

due to Attiya [4].

3. A sufficient condition for a function to be in Hm

λ(g, δ;A, B) Theorem 2. Let the functionf(z) defined by (1) and let

∞ X

k=2

[1 + (k−1)λ]m(k−1)+|(A−B)δ−B(k−1)| λ bk |ak |≤(A−B)|δ | (17)

holds, then f(z) belongs to Hm

λ(g, δ;A, B).

Proof. Suppose that the inequality holds. Then we have for z∈ U |Dmλ, g+1f(z)−Dmλ, gf(z)| −(A−B)δDλ, gm f(z)−

BDmλ, g+1f(z)−Dmλ, gf(z) =

∞ X

k=2

[1 + (k−1)λ]mλ(k−1)bkakzk −

(A−B)δ

z+ ∞ X

k=2

[1 + (k−1)λ]mbkakzk

B

∞ X

k=2

(8)

∞ X

k=2

[1 + (k−1)λ]m(k−1)λ+|(A−B)δ−B(k−1)λ| bk|ak|rk−(A−B)|δ|r. Letting r−→1−, then we have

|Dmλ, g+1f(z)−Dmλ, gf(z)| −(A−B)δDλ, gm f(z)−

BDmλ, g+1f(z)−Dmλ, gf(z) ≤

∞ X

k=2

[1 + (k−1)λ]m(k−1)λ+|(A−B)δ−B(k−1)λ| bk|ak| −(A−B)|δ|≤0. Hence it follows that

Dm+1λ, g f(z)

Dm

λ, gf(z) −1

B

Dλ, gm+1f(z)

Dm

λ, gf(z) −1

−(A−B)δ

<1, z∈ U.

Letting

w(z) =

Dλ, gm+1f(z)

Dm

λ, gf(z) −1

B

Dm+1λ, g f(z)

Dm

λ, gf(z) −1

−(A−B)δ ,

then w(0) = 0, w(z) is analytic in|z|<1 and|w(z)|<1. Hence we have

Dλ, gm+1f(z)

Dm λ, gf(z)

= 1 + [B+δ(A−B)]w(z) 1 +Bw(z) which shows that f belongs to Hm

λ (g, δ;A, B).

3. Subordination Results For the Class Hm

λ(g, δ;A, B) Definition 1. A sequence {bk}

k=1 of complex numbers is called a subordinating

factor sequence if, whenever f(z) is analytic, univalent and convex in U, we have the subordination given by

∞ X

k=1

(9)

Lemma 1. The sequence{bk}

k=1 is a subordinating factor sequence if and only

if

Re

1 + 2

∞ X

k=1 bkzk

>0 (z∈ U). (19)

For convenience, we shall henceforth

σk(δ, λ, m, A, B) (20)

= [1 + (k−1)λ]mλ(k−1)+|(A−B)δ−B(k−1)| bk to be real.

LetHem

λ(g, δ;A, B) denote the class of functions f ∈ Awhose coefficients satisfy the conditions (17). We note that Hem

λ(g, δ;A, B)⊆ Hλm(g, δ;A, B). Theorem 3. Let the function f(z) defined by (1) be in the class Hem

λ(g, δ;A, B) where −1 ≤ B < A ≤ 1. Also let C denote the familiar class of functions f ∈ A

which are also univalent and convex in U. Then

σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B)

(f∗g)(z)≺g(z) (z∈ U;g∈ C), (21) and

Re(f(z))>−(A−B)|δ|+σ2(δ, λ, m, A, B)

σ2(δ, λ, m, A, B) (z∈ U). (22) The constant σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B)

is the best estimate. Proof. Let f(z)∈Hem

λ(δ;A, B) and let g(z) =z+ P∞

k=2bkzk∈ C. Then

σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B)

(f∗g)(z)

= σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B)

z+ ∞ X

k=2 akbkzk

.

Thus, by Definition 1, the assertion of the theorem will hold if the sequence

σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B) ak

k=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this will be

true if and only if

Re

1 + 2

∞ X

k=1

σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B)

akzk

(10)

Now

Re

1+ σ2(δ, λ, m, A, B) (A−B)|δ|+σ2(δ, λ, m, A, B)

∞ X

k=1 akzk

=Re

1+ σ2(δ, λ, m, A, B)

(A−B)|δ|+σ2(δ, λ, m, A, B)a1z

+ 1

(A−B)|δ|+σ2(δ, λ, m, A, B)

∞ X

k=2

σ2(δ, λ, m, A, B)akzk

≥1− σ2(δ, λ, m, A, B)

(A−B)|δ|+σ2(δ, λ, m, A, B) r

+ 1

|(A−B)|δ|+σ2(δ, λ, m, A, B)|

∞ X

k=2

σk(δ, λ, m, A, B)|ak|rk

.

Since σk(δ, λ, m, A, B) is a real increasing function ofk (k≥2) 1− σ2(δ, λ, m, A, B)

(A−B)|δ|+σ2(δ, λ, m, A, B)

r+

1

|(A−B)|δ|+σ2(δ, λ, m, A, B)|

∞ X

k=2

σk(δ, λ, m, A, B)|ak|rk

>1−

σ2(δ, λ, m, A, B)

(A−B)|δ|+σ2(δ, λ, m, A, B)

r+ (A−B)|δ|

(A−B)|δ|+σ2(δ, λ, m, A, B) r

= 1−r >0.

Thus (23) holds true in U. This proves the inequality (21). The inequality (22) follows by taking the convex function g(z) = 1−zz = z +P∞k=2zk in (21). To prove the sharpness of the constant σ2(δ, λ, m, A,B)

2(A−B)|δ|+σ2(δ, λ, m, A,B)

, we consider f0(z) ∈

e

Hm

λ(g, δ;A, B) given by

f0(z) =z−

(A−B)|δ| σ2(δ, λ, m, A, B)

z2 (−1≤B < A≤1).

Thus from (21), we have

σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(b, λ, m, A, B)

f0(z)≺ z

(11)

It can be easily verified that min

Re

σ2(δ, λ, m, A, B)

2(A−B)|δ|+σ2(δ, λ, m, A, B)f0(z)

=−1

2 (z∈ U). This shows that the constant σ2(δ, λ, m, A,B)

2(A−B)|δ|+σ2(δ, λ, m, A,B) is best possible.

Remark 3.By specializing the parameters, the above result reduces to various other results obtained by several authors.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429–1436.

[2] M. K. Aouf, S. Owa and M. Obradovi´c, Certain classes of analytic functions of complex order and type beta, Rend. Mat. Appl. (7) 11(1991), no. 4, 691–714.

[3] M. K. Aouf, H. E. Darwish and A. A. Attiya,On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (2001), no. 10, 1443– 1452.

[4] A. A. Attiya,On a generalization class of bounded starlike functions of com-plex order, Appl. Math. Comput. 187 (2007), no. 1, 62–67.

[5] B. C. Carlson and D. B. Shaffer,Starlike and prestarlike hypergeometric func-tions, SIAM J. Math. Anal. 15(1984), no. 4, 737–745.

[6] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.

[7] J. Dziok and H. M. Srivastava, Some sublasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5(2002), 115-125.

[8] J. Dziok and H. M. Srivastava,Certain sublasses of analytic functions associ-ated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(2003), 7-18.

[9] P.L.Duren,Univalent functions, Springer - verlag, Berlin, 1983.

[10] Yu. E. Hohlov,Operators and operations in the class of univalent functions, Izv. Vyss. Ucebn. Zaved. Matematika, 10(1978), 83-89.

[11] G. Murugusundaramoorthy and N. Magesh, Starlike and convex functions of complex order involving the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 18 (2007), no. 5-6, 419–425.

[12.] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25(1985), no. 1, 1–12.

(12)

[14.] G. S¸. S˘al˘agean, Subclasses of univalent functions, in Complex analysis— fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin.

[15.] N. S. Sohi and L. P. Singh,A class of bounded starlike functions of complex order, Indian J. Math. 33(1991), no. 1, 29–35.

[16.] C.Selvaraj and K.R.Karthikeyan,Differential sandwich theorems for cer-tain subclasses of analytic functions, Math. Commun. 12(2008), no. 2.

[17.] C.Selvaraj and K.R.Karthikeyan, Certain classes of analytic functions of complex order involving a family of generalized differential operators, J. Math. Inequ. Appl. 2 (2008), no. 4, 449-458.

[18.] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689–693.

C.Selvaraj

Department of Mathematics, Presidency College,

Chennai-600 005, Tamilnadu, India

email: pamc9439@yahoo.co.in C. Santhosh Moni

R.M.K.Engineering College R.S.M.Nagar,

Kavaraipettai-601206,

Thiruvallur District, Gummidipoondi Taluk, Tamilnadu,India

Referensi

Dokumen terkait

(Analisis Semiotika John Fiske Tentang Kritik Kebebasan dalam Iklan “Tri Always On, Bebas itu Nyata Versi Perempuan ”

Pokja Pengadaan Jasa ULP II PSMP Handayani pada Kementerian Sosial RI akan melaksanakan Pemilihan Langsung dengan pascakualifikasi secara elektronik untuk paket pekerjaan

( p =0,020) terdapat perbedaan kepatuhan pengaturan diet sebelum dan sesudah diberikan edukasi diabetes antara kelompok intervensi dan kelompok kontrol.. Disimpulkan

[r]

Hasil analisa untuk mendeskripsikan dimensi dari variabel entrepreneurial leadership dapat dijabarkan dengan menunjukan skor tertinggi berdasarkan perolehan

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Penetapan Pemenang Pelelangan Penyedia lasa Konstruksi Pekerjaan Peningkatan Jalan Daerah/Poros Desa,.. Jalan Menuju Ponpes Syaiful Islam, Desa Jambu,

Selain mencocokan dengan pekerjaan, para pemberi kerja juga semakin berusaha untuk menentukan kecocokan antara individu-individu dan faktor-faktor organisasional guna