• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
16
0
0

Teks penuh

(1)

FRACTIONAL CALCULUS AND SOME PROPERTIES OF SALAGEAN-TYPE K-STARLIKE FUNCTIONS

WITH NEGATIVE COEFFICIENTS

H. ¨Ozlem G ¨UNEY

Abstract.We define and investigate a new class of Salagean-type k-starlike functions with negative coefficients. We obtain some properties of this sub-class. Furthermore, we give Hadamard product of several functions and some distortion theorems for fractional calculus of this generalized class.

Keywords. analytic function, univalent function, k-starlike, S˘al˘agean oper-ator, Hadamard product.

2000 Mathematics Subject Classification : 30C45. 1. Introduction

Let A denote the class of functions of the form f(z) =z+

∞ X

k=2 akzk

which are analytic in the open unit disk U ={z ∈C : |z|<1}. For f(z) belongs to A, Salagean [12] has introduced the following operator called the Salagean operator :

D0f(z) = f(z)

D1f(z) =Df(z) = zf′

(2)

Dnf(z) = D(Dn−1

f(z)), n ∈N0 ={0} ∪ {1,2,· · ·}.

Let Sp (p ≥ 1) denote the class of functions of the form f(z) = zp +

P∞

n=1ap+nzp+n that are holomorphic and p-valent in the unit disk U.

Also, let Ap(n) denote the subclass of Sp (p ≥ 1) consisting of functions

that can be expressed in the form f(z) = zp−

∞ X

m=p+n

amzm ; am ≥0. (1)

We can write the following equalities for the functions f(z) belonging to the class Ap(n):

D0f(z) = f(z)

D1f(z) =Df(z) = zf′

(z) = pzp−

∞ X

m=p+n

mamzm

...

Dλf(z) =D(Dλ−1

f(z)) =pλzp−

∞ X

m=p+n

mλamzm , λ∈N0 ={0} ∪N.

Denote byS the class of functions of the formf(z) =z+a2z2+...,analytic and univalent, by ST(α) subclass consisting of starlike and univalent of order α and by k− ST(0≤ k <∞) a class of k−starlike univalent functions in U, introduced and investigated Lecko and Wisniowska in [1].

It is known that every f ∈k− ST has a continuous extension to U,f(U) is bounded and f(∂U) is a rectifiable curve [2].

In the present paper, a subclass (k, n, p, α, λ)− ST of starlike functions in the open unit disk U is introduced. A functionsf(z)∈ Ap(n) is said to be in

the class (k, n, p, α, λ)− ST if it is satisfies Re

(

ζ z +

(z−ζ)(Dλf(z))

f(z)

)

(3)

for some α(0≤α < p) and z ∈U. We note that

i)(0,1,1, α,0)− ST ≡T∗

(α) was introduced by Silverman [3],

ii)(k,1,1,0,0)− ST ≡ k− ST was introduced by Lecko and Wisniowska [1],

iii)(k,1,1, α,0)− ST ≡ k− ST(α) was studied by Baharati et.al. [5], iv)(k, n,1, α,0)− ST ≡ (k, n, α)− ST was studied by Guney et.al [4], v)(k,1,1, α,1)− ST ≡(k,1,−1, α)− UCV ≡k− UCV(α) was investigated by Baharati et.al [5]. Also, the class (k, A, B, α)− U CV was introduced by Guney et al.[6].

2.Some results of the class (k, n, p, α, λ)− ST

Theorem 2.1 A function f ∈ Ap(n) is in the class(k, n, p, α, λ)− ST iff

∞ X

m=p+n

mλ[k(m−1) +m−α]am ≤pλ(p−α) +pλk(p−1). (3)

Proof. Let (k, n, p, α, λ)− ST. Then we have from (2)

Re

(

ζ z +

(z−ζ)(Dλf(z))

f(z)

)

=Re

   

  

ζpλzp−1+pλ+1zpζpλ+1zp−1+ζ

P

m=p+n

(mλ+1mλ)a

mzm−1−

P

m=p+n

mλ+1a mzm

zp−

P

m=p+n

a mzm

   

  

≥α.

If we choose z and ζ real and z →1−

and ζ → −k+, we get, −kpλ+pλ+1+kpλ+1+k P∞

m=p+n(m

λ mλ+1)a

m−

∞ P

m=p+nm λ+1a

m

∞ P

m=p+nm λa

m

≥α

or

∞ X

m=p+n

(4)

which is equivalent to (3).

Conversely, assume that (3) is true. Then

nζ

z +

(z−ζ)(Dλf(z))

f(z)

o =        ζ z +

(z−ζ)

pλ+1zp−1

P

m=p+n

mλ+1a mzm−1

zp−

P

m=p+n

a mzm

       =       

ζpλzp−1

+pλ+1zpζpλ+1zp−1

P

m=p+n

(mλ+1mλ)a

mzm−1−

P

m=p+n

mλ+1a mzm

zp−

P

m=p+n

a mzm

       ≥α.

for |z|<1. If we choose z →1−

and ζ → −k+ through real values, we obtain

Re

(

ζ z +

(z−ζ)(Dλf(z))

f(z)

)

=

k(p1) +pλ+1 P∞

m=p+nm

λ[k(m1) +m]a m

∞ P

m=p+nm λa

m

.

(4) If (3) is rewritten as

∞ X

m=p+n

mλ[k(m−1) +m]am ≤pλ+1−pλα+pλk(p−1) +α

∞ X

m=p+n

mλam,

and (4) is used, then we obtain

Re

(

ζ z +

(z−ζ)(Dλf(z))

f(z)

)

α pλ P∞

m=p+nm λa

m

!

∞ P

m=p+nm λa

m

=α.

Thus f ∈(k, n, p, α, λ)− ST.

Theorem 2.2 If f (k, n, p, α, λ)− ST, then for |z|=r <1 we obtain rp− p

λ(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα]r

p+n ≤ |f(z)| ≤

≤rp+ p

λ(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα]r

p+n (5)

(5)

prp−1

− p

λ(pα) +pλk(p1)

(p+n)λ−1[(1 +k)(p+n)kα]r

p+n−1

≤ |f′

(z)| ≤

≤prp−1

+ p

λ(pα) +pλk(p1)

(p+n)λ−1[(1 +k)(p+n)kα]r

p+n−1

. (6)

All inequalities are sharp.

Proof From (3), we have

∞ X

m=p+n

am ≤

(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα] (7)

and

∞ X

m=p+n

mam ≤

(pα) +pλk(p1)

(p+n)λ−1[(1 +k)(p+n)kα]. (8)

Thus

|f(z)| ≤rp+

∞ X

m=p+n

amrm ≤rp+rp+n

∞ X

m=p+n

am ≤

≤rp+ p

λ(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα]r p+n

and

|f(z)| ≥rp−

∞ X

m=p+n

amrm ≥rp−rp+n

∞ X

m=p+n

am ≥

≥rp− p

λ(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα]r p+n.

which prove that the assertion (5) of Theorem 2.2. Furthermore, for |z|=r <1 and (6), we have

|f′

(z)| ≤prp−1

+

∞ X

m=p+n

mamrm

1

≤prp−1

+rp+n−1 ∞ X

m=p+n

(6)

≤prp−1

+ p

λ(pα) +pλk(p1)

(p+n)λ−1

[(1 +k)(p+n)−k−α]r

p+n−1

and |f′

(z)| ≥prp−1

∞ X

m=p+n

mamrm

−1

≥prp−1

−rp+n−1 ∞ X

m=p+n

mam

≥prp−1

− p

λ(pα) +pλk(p1)

(p+n)λ−1[(1 +k)(p+n)kα]r

p+n−1

which prove that the assertion (6) of Theorem 2.2.

The bounds in (5) and (6) are attained for the function f given by

f(z) = zp− p

λ(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα]z p+n

(9)

Theorem 2.3 Let the functions

f(z) =zp−

∞ X

m=p+n

amzm;am ≥0.

and

g(z) =zp−

∞ X

m=p+n

bmzm;bm ≥0.

be in the class (k, n, p, α, λ)− ST. Then for 0≤ρ≤1,

h(z) = (1−ρ)f(z) +ρ g(z) =zp−

∞ X

m=p+n

cmzm;cm ≥0.

is in the class (k, n, p, α, λ)− ST.

Proof. Assume that f, g ∈(k, n, p, α, λ)− ST. Then we have from Theorem 2.1

∞ X

m=p+n

(7)

and

∞ X

m=p+n

mλ[k(m−1) +m−α]bm ≤pλ(p−α) +pλk(p−1).

Therefore we can see that

∞ X

m=p+n

mλ[k(m−1) +m−α]cm =

=

∞ X

m=p+n

mλ[k(m−1) +m−α][(1−ρ)am+ρbm]≤pλ(p−α) +pλk(p−1)

which completes the proof of Theorem 2.3.

Definition 2.1 The Modified Hadamard Product f g of two functions

f(z) = zp−

∞ X

m=p+n

amzm;am ≥0

and

g(z) = zp−

∞ X

m=p+n

bmzm;bm ≥0

are denoted by

(f ∗g) (z) =zp−

∞ X

m=p+n

ambmzm.

Theorem 2.4 If f, g(k, n, p, α, λ)−ST thenfg (k, n, p, β, λ)−ST,

where

β =β(k, n, p, α, λ) =

= (p

λ+1+pλk(p1))(p+n)λ[(1 +k)(p+n)kα]2 pλ(p+n)λ[(1 +k)(p+n)kα]2(pλ(pα) +pλk(p1))2

− (p

λ(pα) +pλk(p1))2[(1 +k)(p+n)k]

(8)

The result is sharp for f(z) and g(z) given by

f(z) = g(z) =zp− p

λ(pα) +pλk(p1)

(p+n)λ[(1 +k)(p+n)kα]z p+n

where 0≤α < p and 0≤k <∞.

Proof. From Theorem 2.1, we have

∞ X

m=p+n

[k(m1) +mα]

(pα) +pλk(p1)am ≤1 (10)

and

∞ X

m=p+n

[k(m1) +mα]

(pα) +pλk(p1)bm≤1. (11)

We have to find the largest β such that

∞ X

m=p+n

[k(m1) +mβ]

(pβ) +pλk(p1)ambm ≤1. (12)

From (10) and (11) we obtain, by means of Cauchy-Schwarz inequality,that

∞ X

m=p+n

[k(m1) +mα]

(pα) +pλk(p1)

q

ambm ≤1. (13)

Therefore, (12) is true if mλ[k(m1) +mβ]

(pβ) +pλk(p1)ambm ≤

[k(m1) +mα]

(pα) +pλk(p1)

q

ambm

or

q

ambm ≤

[pλ(pβ) +pλk(p1)][k(m1) +mα]

[pλ(pα) +pλk(p1)][k(m1) +mβ].

Note that from (13)

q

ambm ≤

[pλ(pα) +pλk(p1)]

[k(m1) +mα] .

(9)

[pλ(pα) +pλk(p1)]

[k(m1) +mα]

[pλ(pβ) +pλk(p1)][k(m1) +mα]

[pλ(pα) +pλk(p1)][k(m1) +mβ]

or, equivalently, if β ≤ (p

λ+1+pλk(p1))mλ[(1 +k)mkα]2 pλmλ[(1 +k)mkα]2(pλ(pα) +pλk(p1))2

− (p

λ(pα) +pλk(p1))2[(1 +k)mk]

mλ[(1 +k)mkα]2(pλ(pα) +pλk(p1))2 then (12) satisfied. Defining the function Φ(m) by

Φ(m) = (p

λ+1+pλk(p1))mλ[(1 +k)mkα]2 pλmλ[(1 +k)mkα]2 (pλ(pα) +pλk(p1))2

− (p

λ(pα) +pλk(p1))2[(1 +k)mk]

mλ[(1 +k)mkα]2(pλ(pα) +pλk(p1))2. We can see that Φ(m) is increasing function of m. Therefore,

β ≤Φ(p+n) = (p

λ+1+pλk(p1))(p+n)λ[(1 +k)(p+n)kα]2 pλ(p+n)λ[(1 +k)(p+n)kα]2(pλ(pα) +pλk(p1))2

− (p

λ(pα) +pλk(p1))2[(1 +k)(p+n)k]

(p+n)λ[(1 +k)(p+n)kα]2(pλ(pα) +pλk(p1))2. which completes the assertion of theorem.

3. Extreme Points for (k, n, p, α, λ)− ST

Theorem 3.1 Letfp+n1(z) =zp andf

m(z) = zp−p

λ(pα)+pλk(p1)

[k(m1)+mα]z

m, m =

(10)

f(z) =

∞ X

m=p+n+1

ξmfm(z),

where ξm ≥0 and

∞ P

m=p+n−1

ξm = 1.

Proof. Assume that

f(z) =

∞ X

m=p+n−1

ξmfm(z).

Then

f(z) =ξp+n−1fp+n−1(z) + ∞ X

m=p+n

ξmfm(z) =

=ξp+n−1z

p

+

∞ X

m=p+n

ξm

"

zp− p

λ(pα) +pλk(p1)

[k(m1) +mα]z m

#

=

 ∞ X

m=p+n−1

ξm

z

p

∞ X

m=p+n

ξm

(pα) +pλk(p1)

[k(m1) +mα]z m

=zp−

∞ X

m=p+n

ξm

(pα) +pλk(p1)

[k(m1) +mα]z m.

Thus

∞ X

m=p+n

ξm

(pα) +pλk(p1)

[k(m1) +mα]

!

[k(m1) +mα]

(pα) +pλk(p1)

!

=

∞ X

m=p+n

ξm

=

∞ X

m=p+n−1

ξm−ξp+n−1 = 1−ξm ≤1.

(11)

Conversely, suppose that f ∈(k, n, p, α, λ)− ST. Since |am| ≤

(pα) +pλk(p1)

[k(m1) +mα] m=p+n, p+n+ 1, ...,

we can set ξm =

[k(m1) +mα]

(pα) +pλk(p1)am, m=p+n, p+n+ 1, ...

and

ξp+n−1 = 1− ∞ X

m=p+n

ξm.

Then

f(z) =zp−

∞ X

m=p+n

amzm =zp−

∞ X

m=p+n

(pα) +pλk(p1)

[k(m1) +mα]ξmz m

=zp−

∞ X

m=p+n

ξm(zp−fm(z)) =

1− ∞ X

m=p+n

ξm

zp+ ∞ X

m=p+n

ξmfm(z)

=ξn+p−1zp+ ∞ X

m=p+n

ξmfm(z) = ξn+p−1fn+p−1(z) + ∞ X

m=p+n

ξmfm(z)

=

∞ X

m=p+n−1

ξmfm(z).

This completes the assertion of theorem.

Corollary 3.1 The extreme points of (k, n, p, α, λ)− ST are given by fp+n−1(z) = zp

and

fm(z) = zp−

(pα) +pλk(p1)

[k(m1) +mα]z

(12)

4. Definitions and Applications of the Fractional Calculus

In this section, we shall prove several distortion theorems for functions to general class (k, n, p, α, λ)−ST . Each of these theorems would involve certain operators of fractional calculus we find it to be convenient to recall here the following definition which were used recently by Owa [7] (and more recently, by Owa and Srivastava [3], and Srivastava and Owa [8] and Srivastava and Owa [9] ; see also Srivastava et all. [10] )

Definition 4.1. The fractional integral of order λ is defined, for a

func-tion f , by

D−µ

z f(z) =

1 Γ (µ)

z

Z

0

f(ζ)

(z−ζ)1−µ dζ (µ > 0 ) (14)

where f is an analytic function in a simply connected region of the z -plane containing the origin, and the multiplicity of(z−ζ)µ−1

is removed by requiring

log (z−ζ) to be real when z−ζ > 0.

Definition 4.2. The fractional derivative of order µ is defined, for a

function f, by

z f(z) = 1 Γ (1−µ)

d d z

z

Z

0

f(ζ)

(z−ζ)µdζ(0 ≤µ < 1 ) (15)

where f is constrained, and the multiplicity of (z −ζ)−µ is removed, as in

Definition 1.

Definition 4.3. Under the hypotheses of Definition 2, the fractional

derivative of order (n+µ) is defined by

Dzn+µf(z) = d

n

d zn D µ

zf(z) (0 ≤µ < 1 ) (16)

where 0 ≤µ < 1 and n ∈IN0 = INS{0}. From Definition 4.2, we have

D0zf(z) = f(z) (17)

(13)

Dzn+0f(z) = d

n

d znD

0

zf(z) = f

n(z). (18)

Thus, it follows from (17) and (18) that lim

µ→0 D −µ

z f(z) = f(z)

and

lim

µ→0 D

1−µ

z f(z) = f

(z).

Theorem 4.1. Let the function f defined by

f(z) = zp−

∞ X

m=p+n

amzm ; am ≥0

be in the class (k, n, p, α, λ)− ST. Then

D

−µ z (D

i

f(z)) ≥ |z|

p+µ

·

·

(

Γ(p+ 1) Γ(p+µ+ 1) −

Γ(p+n+ 1) Γ(p+n+µ+ 1)

(pα) +pλk(p1)

(p+n)λ−i[(1 +k)(p+n)kα]|z| n

)

(19)

and

D

µ

z (D

if(z)) ≤ |z|

p+µ·

·

(

Γ(p+ 1) Γ(p+µ+ 1) +

Γ(p+n+ 1) Γ(p+n+µ+ 1)

(pα) +pλk(p1)

(p+n)λ−i[(1 +k)(p+n)kα]|z| n

)

(20)

for µ > 0, 0≤ i ≤λ and z ∈ U. The equalities in (19) and (20) are attained for the function f(z) given by

f(z) =zp− p

λ(pα) +pλk(p1)

[(1 +k)(p+n)−k−α](p+n)λz

(14)

Proof. We note that Γ(p+µ+ 1)

Γ(p+ 1) z

−µD−µ z (D

if(z)) =zp

∞ X

m=p+n

Γ(m+ 1)Γ(p+µ+ 1) Γ(p+ 1)Γ(m+µ+ 1)m

ia mzm.

Defining the function ϕ(m)

ϕ(m) = Γ(m+ 1)Γ(p+µ+ 1)

Γ(p+ 1)Γ(m+µ+ 1);µ >0. We can see that ϕ(m) is decreasing in m, that is

0< ϕ(m)≤ϕ(p+n) = Γ(p+n+ 1)Γ(p+µ+ 1) Γ(p+ 1)Γ(p+n+µ+ 1). On other hand, from [11]

∞ X

m=p+n

miam ≤

(pα) +pλk(p1)

[(1 +k)(p+n)−k−α](p+n)

(λ−i); 0iλ.

Therefore,

Γ(p+µ+ 1) Γ(p+ 1) z

µ

D−µ

z (Dif(z))

≥ |z|pϕ(p+n)|z|p+n

∞ X

m=p+n

miam

≥ |z|p Γ(p+n+ 1)Γ(p+µ+ 1)

Γ(p+ 1)Γ(p+n+µ+ 1)

pλ(p−α) +pλk(p−1)

[k(m1) +mα](p+n)

(λi)

|z|p+n

and

Γ(p+µ+ 1) Γ(p+ 1) z

−µD−µ z (D

if

(z))

≤ |z|p+ϕ(p+n)|z|p+n

∞ X

m=p+n

miam

≤ |z|p+Γ(p+n+ 1)Γ(p+µ+ 1) Γ(p+ 1)Γ(p+n+µ+ 1)

(pα) +pλk(p1)

[k(m1) +mα](p+n)

(λ−i)|z|p+n.

(15)

Theorem 4.2. Let the function f defined by

f(z) = zp−

∞ X

m=p+n

amzm; am ≥0

be in the class (k, n, p, α, λ)− ST. Then

D

µ z(D

if(z)) ≥ |z|

p−µ·

·

(

Γ(p+ 1) Γ(p−µ+ 1) −

Γ(p+n) Γ(p+n−µ+ 1)

(pα) +pλk(p1)

(p+n)λ−i−1

[(1 +k)(p+n)−k−α]|z|

n

)

(22)

and

D

µ z(D

if(z)) ≤ |z|

p−µ·

·

(

Γ(p+ 1) Γ(p−µ+ 1) +

Γ(p+n) Γ(p+n−µ+ 1)

(pα) +pλk(p1)

(p+n)λ−i1

[(1 +k)(p+n)−k−α]|z|

n

)

(23)

for 0 ≤ µ < 1, 0 ≤ i ≤ λ−1 and z ∈ U. The equalities (22) and (23) are attained for the function f(z) given by (21).

Proof. Using similar argument as given by Theorem 4.1, we can get result. Remark. Letting µ 0 and i = 0 in Theorem 4.1 and taking µ 1

and i = 0 in Theorem 4.2, we obtain the inequalities (5) and (6) in Theorem 2.2, respectively.

References

[1] A.Lecko and A.Wisniowska, Geometric properties of subclasses of star-like functions, J.Comp. and Appl. Math. 155(2003),383-387.

(16)

[3] H.Silverman,Univalent functions with negative coefficients, Proc.Amer. Math. Soc. 51(1975),109-116.

[4] H. ¨Ozlem Guney and S.S.Eker ,On a subclass of certain k-starlike func-tions with negative coefficients, Bull.Brazillian Math. Soc. 37(1)(2006), 19-28. [5] R.Baharati,R.Parvathom and A.Swaminathan, On a subclasses of uni-formly convex functions and corresponding class of starlike functions, tamkang J. Math 28(1997),17-32.

[6] H. ¨Ozlem Guney, S.S.Eker and S.Owa, Fractional calculus and some properties of k-uniform convex functions with negative coefficients, Taiwanese J.Math Vol.10, No.6 (2006), 1671-1683.

[7] S.Owa,On the distortion theorems, Kyunpook Math J. 18 (1978 ), 53-59. [8] S.Owa and H.M.Srivastava, Univalent and Starlike generalized hyperge-ometric functions, Canad. J. Math. 39 (1987 ),1057-1077.

[9] H.M.Srivastava and S.Owa, Some Characterization and distortion the-orems involving fractional calculus, linear operators and certain subclasses of analytic functions, Nagoya Math.J. 106 (1987),1-28.

[10] H.M.Srivastava, M.Saigo and S.Owa, A class of distortion theorems involving certain operators of fractional calculus, J.Math.Anal.Appl. 131(1988 ), 412-420.

[11] S.Owa and S.K.Lee,Certain generalized class of analytic functions with negative coefficients, to appear.

[12] G.S.S˘al˘agean,Subclasses of univalent function, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1(1981 ), 362-372.

Author:

H. ¨Ozlem G¨uney

Department of Mathematics Faculty of Science and Art University of Dicle

21280 Diyarbakır Turkey

Referensi

Dokumen terkait

Pokja Pemilihan Penyedia Barang/Jasa Pekerjaan pada Satker Peningkatan Keselamatan Lalu Lintas Angkutan Laut Pusat akan melaksanakan Pelelangan Umum dengan

Berdasarkan Penetapan Peringkat Teknis Nomor : T.02/PENGAWASLANDSCAPE/ULP/ BPSDMP-2017 tanggal 17 Juli 2017, Kelompok Kerja Konsultan Pengawas Penataan Landscape

Batas Akhir Pemasukan Dokumen Penawaran dan Pembukaan Dokumen Penawaran, waktu dan tempat ditentukan pada saat acara pemberian penjelasan Dokumen Pengadaan. Pendaftaran

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

Berdasarkan Surat Penetapan Pemenang Pelelangan Pelaksana Pekerjaan Pengadaan Alat Kesehatan Puskesmas, Kegiatan Pengadaan Sarana Kesehatan (DPPID) Dinas