• Tidak ada hasil yang ditemukan

Paper3-Acta25-2011. 127KB Jun 04 2011 12:03:17 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper3-Acta25-2011. 127KB Jun 04 2011 12:03:17 AM"

Copied!
12
0
0

Teks penuh

(1)

ON SOME CLASSES OF MEROMORPHIC FUNCTIONS DEFINED BY A MULTIPLIER TRANSFORMATION

Alina Totoi

Abstract. ForpN∗

let Σp denote the class of meromorphic functions of the

formg(z) = a−p

zp +a0+a1z+· · ·, z∈U , a−˙ p 6= 0. In the present paper we introduce

some new subclasses of the class Σp, denoted by ΣSp,λn (α) and ΣSp,λn (α, δ), which

are defined by a multiplier transformation, and we study some properties of these subclasses.

2010Mathematics Subject Classification: 30C45.

Keywords: meromorphic functions, multiplier transformations. 1. Introduction and preliminaries

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane, ˙U =U \ {0},

H(U) ={f :U →C:f is holomorphic inU},Z={. . .−1,0,1, . . .},N={0,1,2, . . .} and N∗

=N\ {0}. Forp∈N∗

let Σp denote the class of meromorphic functions in ˙U of the form g(z) = a−p

zp +a0+a1z+· · ·, z∈U , a−˙ p 6= 0.

We will also use the following notations: Σp,0 ={g∈Σp :a−p= 1},

Σ∗ p(α) =

g∈Σp : Re

−zg

(z)

g(z)

> α, z ∈U

, where α < p, Σ∗

p(α, δ) =

g∈Σp :α <Re

−zg

(z)

g(z)

< δ, z ∈U

, where α < p < δ, H[a, n] ={f ∈H(U) :f(z) =a+anzn+an+1zn+1+. . .}for a∈C, n∈N∗,

(2)

We know that Σ∗

1(α) is the class of meromorphic starlike functions of order α, when 0≤α <1.

Forn∈Z, pN∗

, λ∈C with Reλ > p, let the operator Jn

p,λ on Σp be defined

as

Jp,λn g(z) = a−p

zp + ∞

X

k=0

λ−p k+λ

n

akzk,whereg(z) = a−p

zp + ∞

X

k=0

akzk.

Let p∈N∗

, λ∈C with Reλ > p. We have: 1. J−1

p,λg(z) =

1

λ−pzg ′

(z) + λ

λ−pg(z), g∈Σp,

2. J0

p,λg(z) =g(z), g∈Σp,

3. J1

p,λg(z) = λ−p

Z z

0

tλ−1

g(t)dt=Jp,λ(g)(z), g∈Σp,

4. If g∈Σp withJp,λn g∈Σp, then Jp,λm (Jp,λn g) =J n+m

p,λ g, form, n∈Z.

Remark 1. Letp∈N∗

andλ∈Cwith Reλ > p. We know from [7] that if gΣp, then Jp,λ(g)∈Σp, hence, using item 4 and the induction, we obtain

Jp,λn g∈Σp for all n∈N ∗

.

We notice from item 1 that for g∈Σp we have J −1

p,λg∈Σp, so J−n

p,λg∈Σp for all n∈N ∗

.

Therefore, for n∈Z, p∈N∗

, λ∈Cwith Reλ > p, we have Jn

p,λ: Σp →Σp.

Now it is easy to see that we have the next properties for Jp,λn , when Reλ > p: 1. Jn

p,λ(Jp,λmg(z)) =J n+m

p,λ g(z), n, m∈Z, g∈Σp ,

2. Jp,γn (Jp,λm g(z)) =Jp,λm (Jp,γn g(z)), n, m∈Z, gΣp,Reγ > p, 3. Jp,λn (g1+g2)(z) =Jp,λn g1(z) +Jp,λn g2(z), forg1, g2 ∈Σp, n∈Z,

4. Jp,λn (cg)(z) =cJp,λn g(z), c∈C∗

, n∈Z, 5. Jp,λn (zg′

(z)) =z(Jp,λn g(z))′

= (λ−p)Jn−1

(3)

Remark 2. 1. When λ= 2 and p= 1, we have

J1n,2g(z) =

a−1

z +

X

k=0

(k+ 2)−na kzk,

and this operator was studied by Cho and Kim [1] forn∈Zand by Uralegaddi and Somanatha [8] forn <0.

2. We also have

z2J1n,2g(z) =Dn(z 2

g(z)), g∈Σ1,0,

where Dn is the well-known Sˇalˇagean differential operator of order n [5], de-fined by Dnf(z) =z+

X

k=2

knakzk, f(z) =z+

X

k=2

akzk . 3. Jn

p,λ is an extension to the meromorphic functions of the operatorKpn, defined

on A(p) = (

f ∈H(U) :f(z) =zp+

X

n=1

ap+nzp+n )

, introduced in [6]. Also, forn≥0 we find that Kpn is the Komatu linear operator, defined in [2]. 4. It is easy to see that for n > 0, Jp,λn is an integral operator while J−n

p,λ is a

differential operator with the property J−n

p,λ(Jp,λn g(z)) =g(z).

Lemma 1. [7] Let n∈N∗

, α, β ∈R, γ C with Reγαβ >0. If P H[P(0), n] with P(0)∈Rand P(0)> α, then we have

Re

P(z) + zP

(z)

γ−βP(z)

> α⇒ReP(z)> α, z∈U.

Definition 1. [3, pg. 46], [4, pg. 228] Let c ∈C with Rec > 0 and n N∗

. We consider

Cn=Cn(c) = n

Rec

" |c|

r

1 +2Rec

n + Imc

#

.

If the univalent function R:U →C is given by R(z) = 2Cnz

1−z2, then we denote by Rc,n the ”Open Door” function, defined as

Rc,n(z) =R z+b

1 + ¯bz

!

= 2Cn (z+b)(1 + ¯bz)

(4)

Theorem 1. [7] Let p ∈ N∗

, Φ, ϕ ∈ H[1, p] with Φ(z)ϕ(z) 6= 0, z ∈ U. Let

α, β, γ, δ ∈ C with β 6= 0, δ + = γ + and Re (γ ) > 0. Let g Σp and suppose that

αzg ′

(z)

g(z) +

zϕ′

(z)

ϕ(z) +δ≺Rδ−pα,p(z). If G=Jp,α,β,γ,δΦ,ϕ (g) is defined by

G(z) =Jp,α,β,γ,δΦ,ϕ (g)(z) =

γ−pβ zγΦ(z)

Z z

0

gα(t)ϕ(t)tδ−1

dt

β1

, (1)

then G∈Σp with zpG(z)6= 0, z∈U,and

Re

βzG ′

(z)

G(z) +

zΦ′

(z) Φ(z) +γ

>0, z∈U.

All powers in (1) are principal ones.

Taking β = α = 1, δ = γ, Φ = ϕ ≡ 1, in the above theorem, and using the notation Jp,γ instead ofJp,1,11,1,γ,γ, we obtain the corollary:

Corollary 1. Letp∈N∗, γ

∈CwithReγ > pand let the functiong∈Σp satisfying

the condition

zg′

(z)

g(z) +γ ≺Rγ−p,p(z), z∈U. Then

G(z) =Jp,γ(g)(z) = γ−p

Z z

0

g(t)tγ−1

dt∈Σp,

with zpG(z)6= 0, z∈U,and Re

γ+zG

(z)

G(z)

>0, z∈U.

2. Main results

Definition 2. For p∈N∗

, n∈Z, λC,Reλ > p andα < p < δ we define

ΣSp,λn (α) =   

 

g∈Σp: Re

 −

zJp,λn g(z)

Jn p,λg(z)

> α, z ∈U      ,

ΣSp,λn (α, δ) =   

 

g∈Σp :α <Re

 −

zJp,λn g(z)

Jn p,λg(z)

(5)

Remark 3. 1. We have g ∈ΣSp,λn (α) if and only if Jp,λn g ∈Σ∗

p(α), respectively g∈ΣSp,λn (α, δ) if and only ifJp,λn g∈Σ∗

p(α, δ).

2. Using the equalityz(Jp,λn g(z))′

= (λ−p)Jn−1

p,λ g(z)−λJp,λn g(z), we can easy see

that for Reλ > pthe condition

α <Re 

 −

zJp,λn g(z)

Jp,λn g(z) 

< δ, z∈U,

is equivalent to

Reλ−δ <Re "

(λ−p)J

n−1

p,λ g(z) Jn

p,λg(z)

#

<Reλ−α, z∈U. (2)

3. We have

ΣSp,λ0 (α, δ) = Σ∗ p(α, δ),

ΣSp,λ1 (α, δ) =

g∈Σp :G(z) = λ−p

Z z

0

tλ−1

g(t)dt∈Σ∗ p(α, δ)

.

The following theorem gives us a connection between the sets ΣSp,λn (α) and ΣSn−1

p,λ (α), respectively between ΣSp,λn (α, δ) and ΣSn −1

p,λ (α, δ).

Theorem 2. Let p∈N∗

, n∈Z, λCwith Reλ > p, α < p < δ andgΣp. Then

g∈ΣSp,λn (α)⇔Jp,λ(g)∈ΣSn −1

p,λ (α),

respectively

g∈ΣSp,λn (α, δ)⇔Jp,λ(g)∈ΣSn −1

p,λ (α, δ),

where Jp,λ(g)(z) = λ−p

Z z

0

tλ−1

g(t)dt.

Proof . We know that g ∈ ΣSp,λn (α, δ) is equivalent to Jp,λn g ∈ Σ∗

p(α, δ). Since Jp,λn g=Jn−1

p,λ (J

1

p,λg), we haveJ n−1

p,λ (J

1

p,λg)∈Σ ∗

p(α, δ), which is equivalent to Jp,λ1 (g)∈ΣSn−1

(6)

Since Jp,λ1 (g) =Jp,λ(g), we obtain Jp,λ(g)∈ΣSn−1

p,λ (α, δ). Therefore, g∈ΣSp,λn (α, δ)⇔Jp,λ(g)∈ΣSn

−1

p,λ (α, δ).

The proof for the first equivalence is similar, so we omit it.

A corollary presented in [7] holds that: Corollary 2. [7] Letp∈N∗

, γ ∈Cand α < p < δReγ. IfgΣ

p(α, δ), then G=Jp,γ(g)∈Σ

∗ p(α, δ).

Theorem 3. Let p ∈ N∗

, n ∈ Z, λ, γ C with Reλ > p and α < p < δ Reγ. Then

g∈ΣSp,λn (α, δ)⇒Jp,γ(g)∈ΣSp,λn (α, δ).

Proof . Becauseg∈ΣSp,λn (α, δ) we haveJp,λn (g)∈Σ∗

p(α, δ), hence, from Corollary 2,

we obtain

Jp,γ(Jp,λn (g))∈Σ∗ p(α, δ).

Using the fact that Jp,γ1 (Jp,λn (g)) =Jp,λn (Jp,γ1 (g)), whereJp,γ1 (g) =Jp,γ(g), we obtain

Jp,λn (Jp,γ(g))∈Σ∗p(α, δ),

which is equivalent toJp,γ(g)∈ΣSp,λn (α, δ).

Corollary 3. Let n∈Z, pN∗

, λ∈C and α < p < δReλ. Then we have ΣSp,λn (α, δ)⊂ΣSp,λn+1(α, δ).

(7)

A theorem presented in [7] holds that: Theorem 4. [7] Let p∈N∗

, β >0, γ∈C andα < p < Reγ

β ≤δ.

If g∈Σ∗

p(α, δ), with

βzg ′

(z)

g(z) +γ ≺Rγ−pβ,p(z), z∈U, then G=Jp,β,γ(g)∈Σ∗p(α, δ).

Using this theorem, forβ = 1, we get the next result.

Theorem 5. Let n∈Z, p N∗

, λ, γ∈C with Reλ > p and α < p <Reγ δ. If

g∈ΣSp,λn (α, δ) and satisfies the condition

zhJn p,λ(g)(z)

i′

Jp,λn (g)(z) +γ ≺Rγ−p,p(z), z∈U, then Jp,γ(g)∈ΣSp,λn (α, δ).

We omit the proof because it is similar with that of Theorem 3. If we consider in Theorem 5 thatδ → ∞ we get:

Theorem 6. Let n ∈ Z, p N∗

, λ, γ ∈ C with Reλ > p and α < p < Reγ. If

g∈ΣSp,λn (α) and satisfies the condition

zhJp,λn (g)(z)i

Jn p,λ(g)(z)

+γ ≺Rγ−p,p(z), z∈U,

then Jp,γ(g)∈ΣSp,λn (α).

Theorem 7. Let n ∈ N, p ∈ N∗

, λ, γ ∈ C and α < p < Reγ ≤ Reλ ≤ δ. If

h∈ΣSp,λn (α, δ) and satisfies the condition

zh′

(z)

(8)

Proof . Let us denote H =Jp,γ(h).Because the conditions of Corollary 1 are full-filled, we have H∈Σp withzpH(z)6= 0, z∈U,and

Re

zH′

(z)

H(z) +γ

>0, z∈U. (3)

Since Reγ ≤Reλ, we obtain from (3) that Re

zH′

(z)

H(z) +λ

>0, z∈U.

Using now Corollary 1, we have Jp,λH ∈Σp with zpJp,λH(z)6= 0, z∈U, and

Re z

(Jp,λH)′(z) Jp,λH(z)

>0, z∈U.

By induction, we obtainzpJp,λn H(z)6= 0, z∈U, and

Re "

z(Jn p,λH)

(z)

Jn p,λH(z)

#

>0, z∈U. (4)

Since Reλ≤δ, we get from (4) that

Re "

−z(J

n p,λH)

(z)

Jp,λn H(z) #

< δ, z ∈U. (5)

From the definition ofH we have

γH(z) +zH′

(z) = (γ−p)h(z), z∈U .˙ (6) We apply the operator Jp,λn to (6) and after using the properties of Jp,λn , we obtain

(γ−p)Jp,λn h(z) =γJp,λn H(z) +z(Jp,λn H(z))′

. (7)

Fromh∈ΣSp,λn (α, δ), we have

α <Re "

−z(J

n p,λh(z))

Jn p,λh(z)

#

< δ,

which is equivalent to (see Remark 3, item 2)

Reλ−δ <Re "

(λ−p)J

n−1

p,λ h(z) Jp,λn h(z)

#

(9)

From (7), we have

(λ−p)J

n−1

p,λ h(z) Jn

p,λh(z)

= (λ−p)γJ

n−1

p,λ H(z) +z(J n−1

p,λ H(z)) ′

γJn

p,λH(z) +z(Jp,λn H(z))

′ . (9)

Let us denoteP(z) =−z(J

n

p,λH(z)) ′

Jp,λn H(z) .Using the fact that

z(Jp,λn H(z))′

= (λ−p)Jn−1

p,λ H(z)−λJ n p,λH(z),

we obtain

P(z) = (p−λ)J

n−1

p,λ H(z)

Jp,λn H(z) +λ, z∈U. Hence

Jn−1

p,λ H(z) Jp,λn H(z) =

P(z)−λ

p−λ . (10)

If we apply the logarithmic differential to (10), we get

z(Jn−1

p,λ H(z)) ′

Jn−1

p,λ H(z)

−z(J

n

p,λH(z)) ′

Jn p,λH(z)

= zP

(z)

P(z)−λ,

so,

z(Jn−1

p,λ H(z)) ′

Jn−1

p,λ H(z)

=−P(z) + zP

(z)

P(z)−λ. (11)

Using (10) and (11) we obtain from (9),

(λ−p)J

n−1

p,λ h(z) Jn

p,λh(z)

= (λ−p)J

n−1

p,λ H(z) Jn

p,λH(z)

·

γ+z(J

n−1

p,λ H(z)) ′

Jn−1

p,λ H(z) γ+z(J

n

p,λH(z)) ′

Jp,λn H(z) =

= (λ−p)P(z)−λ

p−λ ·

γ−P(z) + zP

(z)

P(z)−λ

γ−P(z) =λ−P(z) +

zP′

(z)

P(z)−γ. (12)

From (8) and (12), we get Reλ−δ <Re

λ−P(z) + zP

(z)

P(z)−γ

(10)

which is equivalent to

α <Re

P(z) + zP

(z)

γ−P(z)

< δ. (13)

Because we know from (5) that ReP(z) < δ, z ∈ U, we have only to verify that ReP(z)> α, z ∈U.To show this we will use Lemma 1.

We know thatJp,λn H ∈Σp and since we have proved thatzpJp,λn H(z)6= 0, z∈U,

we get thatP is analytic inU. We also have Reγ−α >0 andP(0) =p > α. Since the hypothesis of Lemma 1 is fulfilled for β = 1, we obtain ReP(z) > α, z ∈ U, which is equivalent to

Re "

−z(J

n

p,λH(z)) ′

Jp,λn H(z) #

> α, z∈U. (14)

Since H ∈Σp, we get from (5) and (14) thatH ∈ΣSp,λn (α, δ).

If we considerγ =λ, in the above theorem, we obtain:

Corollary 4. Let n∈N, pN∗

, λ∈CandhΣSn

p,λ(α, δ)withα < p <Reλ≤δ.

If

zh′

(z)

h(z) +λ≺Rλ−p,p(z), z∈U. Then Jp,λ(h)∈ΣSp,λn (α, δ).

Takingn= 0 in Corollary 4, we get:

Corollary 5. Let p∈N∗

, λ∈C and α < p <Reλδ. IfhΣ

p(α, δ) with zh′

(z)

h(z) +λ≺Rλ−p,p(z), z∈U, then Jp,λ(h)∈Σ∗p(α, δ).

(11)

Corollary 6. Let p∈N∗

, λ∈C and α < p <Reλ. If hΣ

p(α) with zh′

(z)

h(z) +λ≺Rλ−p,p(z), z∈U, then Jp,λ(h)∈Σ∗p(α).

We remark that Corollary 5 and Corollary 6 were also obtained in [7].

Theorem 8. Let n ∈ Z, p ∈ N∗, λ, γ

∈ C with Reλ > p and α < p < Reγ. If

g∈ΣSp,λn (α) withJp,γ(Jp,λn (g)(z))6= 0, z∈U˙, then

Jp,γ(g)∈ΣSp,λn (α).

Proof . Let G = Jp,γ(g). We know from Remark 1 that if g ∈ Σp and Reγ > p,

then G∈Σp.

Let

P(z) =−z(J

n p,λG(z))

Jp,λn G(z) , z∈U.

We have Jp,λn (G) =Jp,λn (Jp,γ(g)) =Jp,γ(Jp,λn (g))6= 0 ˆın ˙U. So P ∈H(U).

Making some calculations, similar to those from the proof of Theorem 7, we get: −z(J

n p,λg(z))

Jn p,λg(z)

=P(z) + zP

(z)

γ−P(z), z∈U. Fromg∈ΣSp,λn (α) we have

Re "

−z(J

n p,λg(z))

Jn p,λg(z)

#

> α, z ∈U,

which is equivalent to Re

P(z) + zP

(z)

γ−P(z)

> α, z∈U.

Since P ∈H(U) with P(0) = p > α and Reγ > α, we have from Lemma 1 (when

β = 1) that ReP(z)> α, z ∈U, hence

(12)

Taking n= 0 andλ=γ in the above theorem we get the next corollary, which was also obtained in [7].

Corollary 7. Let p∈N∗

, γ ∈C and α < p <Reγ. If g∈Σ∗

p(α) with zpJp,γ(g)(z)6= 0, z∈U, then Jp,γ(g)∈Σ∗p(α).

References

[1] N.E. Cho, Ji A. Kim,On certain classes of meromorphically starlike functions, Internat. J. Math. & Math. Sci., vol. 18, no. 3 (1995), 463-468.

[2] Y. Komatu, Distorsion theorems in relation to linear integral transforms, Kluwer Academic Publishers, Dordrecht, Boston and London, 1996.

[3] S.S. Miller, P.T. Mocanu, Differential subordinations. Theory and applica-tions, Marcel Dekker Inc. New York, Basel, 2000.

[4] P.T. Mocanu, T. Bulboac˘a, Gr. S¸t. S˘al˘agean, The geometric theory of univalent functions, Casa C˘art¸ii de S¸tiint¸˘a, Cluj-Napoca, 2006 (in Romanian).

[5] Gr. S¸t. S˘al˘agean, Subclasses of univalent functions, Lectures Notes in Math., 1013, 362-372, Springer-Verlag, Heideberg, 1983.

[6] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Int. J. Math. Math. Sci., Article ID 94572 (2006), 1-3.

[7] A. Totoi, On integral operators for meromorphic functions, General Mathe-matics, Vol. 18, No. 3 (2010), 91-108.

[8] B.A. Uralegaddi, C. Somanatha, Certain differential operators for meromor-phic functions, Houston J. Math., 17 (1991), 279-284.

Alina Totoi

Referensi

Dokumen terkait

Meja Bhs Jepang Nada Isu Bhs Indonesia Dini Gomibako Bhs Inggris Daniel Randosēru Bhs Inggris Etienne Kabin Bhs Inggris Nobita Karend ā Bhs Jawa Sugiman.. Pencil case (box) Bhs

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Penetapan hasil kualifikasi (Short List)g. Pengumuman hasil kualifikasi 11

Pejabat Pembuat Komitmen SMARTD mengundang para Peserta Lelang yang memenuhi syarat untuk menyampaikan surat penawaran dalam amplop tertutup untuk pelaksanaan pekerjaan

Berdasarkan hasil evaluasi penawaran administrasi dan teknis pekerjaan Konstruksi PEMBANGUNAN RSUD KOTA BANJARBARU, Panitia Pengadaan menetapkan daftar peringkat teknis

Memahami pemrograman visual berbasis desktop 6.1 Menjelaskan IDE aplikasi bahasa pemograman. 6.2 Menjelaskan objek aplikasi

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Ajaran ini memiliki arti penuh hati-hati menjaga kekayaan yang telah diperoleh. Resources capabilities artinya kemampuan internal perusahaan untuk koordinasi dan