• Tidak ada hasil yang ditemukan

Bahan Mata Kuliah Matematika Ekonomi Gratis Terbaru - Kosngosan Situs Anak Kost Mahasiswa Pelajar algebra and matrikx

N/A
N/A
Protected

Academic year: 2017

Membagikan " Bahan Mata Kuliah Matematika Ekonomi Gratis Terbaru - Kosngosan Situs Anak Kost Mahasiswa Pelajar algebra and matrikx"

Copied!
34
0
0

Teks penuh

(1)

Linear Models

and

Matrix Algebra

OLEH

SYAIFUL HADI

MAGISTER AGRIBISNIS

FAKULTAS PERTANIAN

(2)

Linear Models and Matrix

Linear Models and Matrix

Algebra

Algebra

4.1 Matrices and Vectors

4.2 Matrix Operations

4.3 Notes on Vector Operations

4.4 Commutative, Associative, and

Distributive Laws

4.5 Identity Matrices and Null

Matrices

(3)

Objectives of math for

Objectives of math for

economists

economists

To understand mathematical economics

problems by stating the unknown, the data

and the conditions

To plan solutions to these problems by

finding a connection between the data and

the unknown

To carry out your plans for solving

mathematical economics problems

To examine the solutions to mathematical

economics problems for general insights

into current and future problems

(4)

3.4 Solution of a

3.4 Solution of a

General-equation System

equation System

2x + y = 12

4x + 2y = 24

Find x*, y*

y = 12 – 2x

4x + 2(12 – 2x) =

24

4x +24 – 4x = 24

0 = 0 ?

indeterminant!

Why?

4x + 2y =24

2(2x + y) = 2(12)

one equation with

two unknowns

2x + y = 12

x, y

Conclusion:

not all

simultaneous

(5)

4.1 Matrices and Vectors

4.1 Matrices and Vectors

Matrices as Arrays

Matrices as Arrays

Vectors as Special Matrices

Vectors as Special Matrices

Assume an economic model as system of

linear equations in which

a

ij

parameters, where

i = 1.. n rows, j = 1.. m columns, and n=m

x

i

endogenous variables,

d

i

exogenous variables and constants

n n

n n

nm m m

n

n

d

d

d

x

x

x

a

x

a

x

a

x

a

x

a

a

x

a

a

x

a

2 1

2

2 2

1 2

2 1

1

22 1

21

12 1

11

(6)

4.1 Matrices and Vectors

4.1 Matrices and Vectors

 A is a matrix or a rectangular array of elements in which the elements are parameters of the model in this case.  A general form matrix of a system of linear equations

Ax = d where

A = matrix of parameters (upper case letters => matrices) x = column vector of endogenous variables, (lower case => vectors)

d = column vector of exogenous variables and constants Solve for x*

(7)

One Commodity Market

One Commodity Market

Model

Model

(2x2 matrix)

(2x2 matrix)

Economic Model

(p. 32)

1) Q

d

=Q

s

2) Q

d

= a – bP (a,b

>0)

3) Q

s

= -c + dP (c,d

>0)

Find P* and Q*

Scalar Algebra

Endog. :: Constants

4) 1Q + bP = a

5) 1Q – dP = -c

x

A

d

d

Ax

c

a

P

Q

d

b

1 *

1

1

d

b

bc

ad

Q

d

b

c

a

P

* *

(8)

One Commodity Market

One Commodity Market

Model

Model

(2x2 matrix)

(2x2 matrix)

d

A

x

c

a

d

b

P

Q

d

Ax

c

a

P

Q

d

b

1 *

1

* *

1

1

1

1

(9)

General form of 3x3 linear

General form of 3x3 linear

matrix

matrix

parameters

endog. vars

exog. vars. & constants Scalar algebra form

parameters & endogenous variables exog. vars & const.

a

11

x

+ a

12

y

+ a

13

z

= d

1

a

21

x

+ a

22

y

+ a

23

z

= d

2

a

31

x

+ a

32

y

+ a

33

z

= d

3

3 2 1 33

32 31

23 22

21

13 12

11

d

d

d

z

y

x

a

a

a

a

a

a

a

a

a

(10)

1. Three Equation National Income

1. Three Equation National Income

Model

Model

(3x3 matrix)

(3x3 matrix)

Y = C + I

0

+ G

0

C = a + b(Y-T)

(a > 0, 0<b<1)

T = d + tY

(d > 0, 0<t<1)

Endogenous variables?

Exogenous variables?

Constants?

Parameters?

Why restrictions on the

(11)

2. Three Equation National Income

2. Three Equation National Income

Model

Model

 Endogenous: Y, C, T: Income (GNP), Consumption,

and Taxes

 Exogenous: I0 and G0: autonomous Investment &

Government spending

 Constants a & d: autonomous consumption and taxes  Parameter t is the marginal propensity to tax gross

income 0 < t < 1

 Parameter b is the marginal propensity to consume

private goods and services from gross income 0 < b < 1

bt

b

G

I

bd

a

Y

1

)

(12)

4. Three Equation National Income

4. Three Equation National Income

Model

Model

Parameters &

Endogenous vars.

Exog.

vars.

Y

C

T

&cons.

1Y -1C +0T = I

0

+G

0

-bY +1C +bT =

a

-tY +0C +1T =

d

Economic Model

Y = C + I0 + G0

C = a + b(Y-T)

T = d + tY

(13)

5. Three Equation National Income

5. Three Equation National Income

Model

Model

Parameters &

Endogenous vars.

Exog.

vars.

Y

C

T

&cons.

1Y -1C +0T = I

0

+G

0

-bY +1C +bT =

a

-tY +0C +1T =

d

d

a

G

I

T

C

Y

t

b

b

0 0

1

0

1

0

1

(14)

6. Three Equation National Income

6. Three Equation National Income

Model

Model

Parameters &

Endogenous vars.

Exog.

vars.

Y

C

T

&cons.

1Y -1C +0T = I

0

+G

0

-bY +1C +bT =

a

-tY +0C +1T =

d

Given

Y = C + I0 + G0

C = a + b(Y-T)

T = d + tY

Find Y*, C*, T*

d

a

G

I

T

C

Y

t

b

b

0 0

1

0

1

0

1

1

d

A

x

d

Ax

1

* 

(15)

7. Three Equation National Income

7. Three Equation National Income

(16)

1. Two Commodity Market

1. Two Commodity Market

Equilibrium

Equilibrium

Economic Model

1) Q

di

= Q

si,

i=1, 2

2) Q

d1

= 10 - 2P

1

+ P

2

3) Q

s1

= -2

+3P

1

4) Q

d2

= 15 + P

1

- P

2

5) Q

s2

= -1

+ 2P

2
(17)

2. Two Commodity Market

2. Two Commodity Market

Equilibrium

Equilibrium

Scalar algebra form

(endog on left & exog/const on

right)

1Q

1

+0Q

2

+2P

1

- 1P

2

= 10

1Q

1

+0Q

2

- 3P

1

+0P

2

= -2

0Q

1

+1Q

2

- 1P

1

+1P

2

= 15

(18)

3. Two Commodity Market

3. Two Commodity Market

Equilibrium

Equilibrium

Given

Qdi = Qsi, i=1, 2 Qd1 = 10 - 2P1 + P2 Qs1 = -2 + 3P1

Qd2 = 15 + P1 - P2 Qs2 = -1 + 2P2

Find Q1*, Q2*, P1*, P2*

Scalar algebra

1Q

1

+0Q

2

+2P

1

- 1P

2

= 10

1Q

1

+0Q

2

- 3P

1

+0P

2

= -2

0Q

1

+ 1Q

2

- 1P

1

+ 1P

2

= 15

0Q

1

+ 1Q

2

+0P

1

- 2P

2

= -1

(19)

4. Two Commodity Market

4. Two Commodity Market

(20)

Ch. 4 Linear Models & Matrix

Ch. 4 Linear Models & Matrix

Algebra

Algebra

Matrix algebra can be

used:

a. to express the system

of equations in a

compact notation;

b. to find out whether

solution to a system of

equations exist; and

c. to obtain the solution if it

exists. Need to invert the

A matrix to find the

solution for x*

d

A

adjA

x

A

adjA

A

d

A

x

d

Ax

* 1

1 *

(21)

4.2 Matrix Operations

4.2 Matrix Operations

Addition and Subtraction of Matrices

Addition and Subtraction of Matrices

Scalar Multiplication

Scalar Multiplication

Multiplication of Matrices

Multiplication of Matrices

The Question of Division

The Question of Division

Digression on Σ Notation

Digression on Σ Notation

2 2 2 2 2 2

11

7

2

5

2

0

1

3

9

7

1

2

x x

x

B

C

A

Matrix addition

Matrix

(22)

4.4 Laws of Matrix Addition &

4.4 Laws of Matrix Addition &

Multiplication

Multiplication

Matrix Addition Matrix Addition Matrix Multiplication Matrix Multiplication

22 22 21 21 12 12 11 11 22 21 12 11 22 21 12 11

a

b

a

a

a

b

b

a

b

b

b

b

a

a

a

a

B

A

Commutative law: A + B = B + A

11 12 11 12 11 11 12 12
(23)

4.2 Scalar multiplication

4.2 Scalar multiplication

(24)

4.3 Linear dependence

4.3 Linear dependence

A set of vectors is

linearly dependent if any one of them can be expressed as a linear combination of the remaining vectors;

otherwise it is linearly independent.

 Dependence prevents

solving the system of equations. More

unknowns than

independent equations.

4

5

8

1

7

2

3 2 1

v

v

v

 

3

2 1

5

4

16

2

21

6

2

3

v

v

v

0

2

(25)

4.1Vector multiplication

4.1Vector multiplication

(inner or dot product)

(inner or dot product)

y = c.z

4 4 3

3 2

2 1

1

z

c

z

c

z

c

z

c

y

4

1

i

i i

z

c

y

4 3 2 1 4

3 2

1

z

z

z

z

c

c

c

c

y

(26)

4.3 Notes on Vector Operations

4.3 Notes on Vector Operations

Multiplication of Vectors

Multiplication of Vectors

Geometric Interpretation of Vector Operations

Geometric Interpretation of Vector Operations

Linear Dependence

Linear Dependence

Vector Space

Vector Space

2

3

1 2

u

x

An [m x 1] column

vector u and a [1 x n]

row vector v, yield a

product matrix uv of

dimension [m x n].

1

4

5

3

1

v

x

10

15

8

12

2

3

5

4

1

2

3

(27)

4.2 Matrix multiplication

4.2 Matrix multiplication

Multiplication of matrices require conformability

condition

The conformability condition for multiplication is that the

column dimensions of the lead matrix A must be equal to the row dimension of the lag matrix B.

What are the dimensions of the vector, matrix, and result?

 

   

   

c

b b

b b

b a

a aB

23 22

21

13 12

11 12

11

11 11 12 21 11 12 12 22 11 13 12 23

13 12

11

b

a

b

a

b

a

b

a

b

a

b

a

c

c

c

(28)

4.2

4.2

Σ notation

Σ notation

Greek letter sigma (for sum) is another convenient

way of handling several terms or variables

i is the index of the summation

What is the notation for the dot product?

c11 c12 c13

a11b11a12b21 a11b12a12b22 a11b13a12b23

2

a

1k

b

k1

3

1

i

i i

b

a

j

a

1

b

1

+a

2

b

2

+a

3

b

3

=

2

a

1k

b

k2

2

1

3 1

k

k k

b

(29)

4.4 Matrix Multiplication

4.4 Matrix Multiplication

Matrix multiplication is generally not commutative.

That is, AB  BA even if BA is conformable

(because diff. dot product of rows or col. of A&B)

(30)

4.4 Matrix multiplication

4.4 Matrix multiplication

Exceptions

AB=BA iff

B = a scalar,

B = identity matrix I, or

(31)

4.5 Identity and Null Matrices

4.5 Identity and Null Matrices

Identity Matrices

Identity Matrices

Null Matrices

Null Matrices

Idiosyncrasies of Matrix Algebra

Idiosyncrasies of Matrix Algebra

.

1

0

0

0

1

0

0

0

1

.

1

0

0

1

etc

or

Identity Matrix is a

square matrix and also it is a diagonal matrix with 1 along the

diagonals

similar to scalar “1”

Null matrix is one in

which all elements are zero

similar to scalar “0” Both are “idempotent”

matrices

A = AT and

A = A2 = A3 = …

0

0

0

0

0

0

0

0

(32)

4.6 Transposes & Inverses

4.6 Transposes & Inverses

Properties of Transposes

Properties of Transposes

Inverses and Their Properties

Inverses and Their Properties

Inverse Matrix and Solution of Linear-equation Systems

Inverse Matrix and Solution of Linear-equation Systems

A

3 8

9

1 0 4

Transposed matrices

(A')' = A

Matrix rotated along

its principle major

axis (running nw to

se)

Conformability

changes unless it is

square

4

9

0

8

1

3

(33)

4.6 Inverse matrix

4.6 Inverse matrix

AA

-1

= I

A

-1

A=I

Necessary for

matrix to be square

to have inverse

If an inverse exists

it is unique

D=(A

-1

)'

• A x = d

• A

-1

A x = A

-1

d

• Ix = A

-1

d

• x = A

-1

d

• Solution depends on

A

-1
(34)

4.2 Matrix inversion

4.2 Matrix inversion

It is not possible to

divide one matrix by

another. That is, we

can not write A/B.

This is because for

two matrices A and

B, the quotient can

be written as AB

-1

or

B

-1

A.

• In matrix algebra

AB

-1

B

-1

A. Thus

writing does not

clearly identify

whether it

represents

AB

-1

or B

-1

A

Referensi

Dokumen terkait

Berdasarkan tahapan evaluasi yang telah dilalui, perusahaan saudara dinyatakan lulus pada tahapan- tahapan tersebut, selanjutnya pokja II ULP wilayah XV Merauke

Penelitian karakteristik pembakaran campuran batubara dan limbah pertanian yang telah dilakukan menunjukkan hasil bahwa pencampuran limbah pertanian dengan batubara

Berdasarkan analisa hasil uji eksperimental dan model, diperoleh beberapa asumsi mendasar yang perlu mendapat perhatian: (1) Kapasitas fraktur dari lekatan pada antar-mmuka

“ Aplikasi Objek Wisata di Busan Untuk Orang Indonesia Berbasis Sistem. Operasi Android ” untuk mempermudah para wisatawan

Berdasarkan Surat Penetapan Pokja ULP Studi Kegiatan Pendukung Pembangunan Fasilitas Pelabuhan Tahun Anggaran 2017 Nomor: 03/ SK/UKL-UPL.AMPO/ULP.OP.SBY tanggal 11 April

Kompresi data citra menggunakan Alihragam Kosinus Diskret dan Logika Fuzzy Adaptif dilakukan dengan memilah sub-citra menjadi kelas-kelas yang sangat ditentukan

[r]

RIZAL RISMAWAN 10108389 MUZAKKI FADHIL 10108414 MUHAMMAD RAMZI 10109709. JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNIK DAN