• Tidak ada hasil yang ditemukan

EQUIVALENCE OF n-NORMS ON THE SPACE OF p-SUMMABLE SEQUENCES | Mutaqin | Journal of the Indonesian Mathematical Society 27 97 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "EQUIVALENCE OF n-NORMS ON THE SPACE OF p-SUMMABLE SEQUENCES | Mutaqin | Journal of the Indonesian Mathematical Society 27 97 1 PB"

Copied!
7
0
0

Teks penuh

(1)

Vol. 16, No. 1 (2010), pp. 1–7.

EQUIVALENCE OF

n-NORMS ON THE SPACE OF

p-SUMMABLE SEQUENCES

Anwar Mutaqin

1

and Hendra Gunawan

2

1Department of Mathematics Education, Universitas Sultan Ageng

Tirtayasa, Serang, Indonesia, anwarmutaqin@gmail.com

2Department of Mathematics, Institut Teknologi Bandung, Bandung,

Indonesia, hgunawan@math.itb.ac.id

Abstract. We study the relation between two knownn-norms onℓp, the space of p-summable sequences. Onen-norm is derived from G¨ahler’s formula [3], while the other is due to Gunawan [6]. We show in particular that the convergence in one

n-norm implies that in the other. The key is to show that the convergence in each of thesen-norms is equivalent to that in the usual norm onℓp.

Key words:n-normed spaces,p-summable sequence spaces,n-norm equivalence.

Abstrak. Dalam makalah ini dipelajari kaitan antara dua norm-ndiℓp, ruang barisansummable-p. Norm-npertama diperoleh dari rumus G¨ahler [3], sementara norm-nkedua diperkenalkan oleh Gunawan [6]. Ditunjukkan antara lain bahwa kekonvergenan dalam norm-nyang satu mengakibatkan kekonvergenan dalam

norm-nlainnya. Kuncinya adalah bahwa kekonvergenan dalam masing-masing norm-n

tersebut setara dengan kekonvergenan dalam norm biasa diℓp.

Kata kunci: ruang norm-n, ruang barisansummable-p, kesetaraan norm-n

1. Introduction

In [6], Gunawan introduced an n-norm on ℓp (1 ≤ p ≤ ∞), the space of p-summable sequences (of real numbers), given by the formula

kx1, . . . , xnkp:=

 

1 n!

X

j1

· · ·X

jn abs

¯ ¯ ¯ ¯ ¯ ¯ ¯

x1j1 · · · xnj1

..

. . .. ... x1jn · · · xnjn

¯ ¯ ¯ ¯ ¯ ¯ ¯

p

 

1/p

2000 Mathematics Subject Classification: 46B15 Received: 31-03-2010, accepted: 05-08-2010.

(2)

for 1≤p <∞, and

Rwhich satisfies the following four conditions:

(N1)kx1, . . . , xnk= 0 if and only ifx1, . . . , xn are linearly dependent;

(N2)kx1, . . . , xnk is invariant under permutation;

(N3)kαx1, . . . , xnk=|α| kx1, . . . , xnk forα∈R;

(N4)kx1+x′1, x2, . . . , xnk ≤ kx1, x2, . . . , xnk+kx′1, x2, . . . , xnk.

The theory ofn-normed spaces was developed by G¨ahler in 1969 and 1970 [3, 4, 5]. The special case where n = 2 was studied earlier, also by G¨ahler, in 1964 [2]. Related work may be found in [1]. For more recent works, see [7, 8, 10].

IfX is equipped with a norm k · k, then according to G¨ahler, one may define ann-norm onX (assuming thatX is at leastn-dimensional) by the formula

kx1, . . . , xnk∗:= sup

HereX′denotes the dual ofX, which consists of bounded linear functionals onX. ForX =ℓp (1 p <), we know that X=p′

with 1p+ p1′ = 1. In this

case the above formula reduces to

kx1, . . . , xnk∗p:= sup

Thus, onℓp, we have two definitions of n-norms, one is due to Gunawan and the

other is derived from G¨ahler’s formula. For p = 2, one may verify that the two n-norms are identical.

The purpose of this paper is to study the relation between the twon-norms onℓpfor 1p <. In particular, we shall show that the twon-norms are weakly

(3)

a sequence (x(m)) in ann-normed space (X,k·, . . . ,·k) is said toconvergetox∈X ifkx(m)−x, x2, . . . , xnk →0 asm→ ∞, for everyx2, . . . , xn ∈X.

For convenience, we prove the result forn = 2 first, and then extend it to anyn≥2.

2. Main Results

Recall that Gunawan’s definition of 2-norm onℓp (1≤p≤ ∞) is given by

Meanwhile, G¨ahler’s definition is given by

kx, yk∗

By the same trick as in [6], one may obtain

kx, yk∗p= sup

From the last expression, we have the following fact.

Fact 2.1. The inequalitykx, yk∗

p≤21/pkx, ykp holds for everyx, y∈ℓp.

Proof. By H¨older’s inequality for 1

(4)

Now, observe that

This proves the inequality.

Note that forp= 1, H¨older’s inequality gives

1

Corollary 2.2 If (x(m))converges in k·,·kp, then it also converges (to the same

limit) ink·,·k∗ p.

We shall show next that the convergence ink·,·k∗

palso implies the convergence

in k·,·kp. We do so by showing that: (1) the convergence ink·,·k∗p implies that in

k · kp, and (2) the convergence ink · kp implies that ink·,·kp.

The second implication is already proved in [6] (using the inequalitykx, ykp≤

21−(1/p)kxk

pkykp). Hence it remains only to show the first implication.

Theorem 2.3 If (x(m)) converges in k·,·k∗

p, then it also converges (to the same

(5)

withzj :=sgn(xj(m)−xj)|xj(m)−xj|

p−1

kx(m)−xkp−1

p and

w:= (1,0,0, . . .), then we have

X

j=2

|xj(m)−xj|p

kx(m)−xkpp−1

< ǫ.

[Here we are handling only the case where kx(m)−xkp 6= 0.] Next, if we take

y := (0,1,0, . . .), z= (z1,0,0, . . .) withz1:= sgn(x1(m)−x1)|x1(m)−x1| p−1

kx(m)−xkp−1

p and

w:= (0,1,0, . . .), then we have

|x1(m)−x1|p

kx(m)−xkpp−1

< ǫ.

Adding up, we get

kx(m)−xkp= ∞

X

j=1

|xj(m)−xj|p

kx(m)−xkpp−1

<2ǫ.

This shows that (x(m)) converges toxin k · kp. ¤

Corollary 2.4A sequence is convergent ink·,·k∗p if and only if it is convergent (to

the same limit) ink·,·kp.

All these results can be extended ton-normed spaces for any n≥2. As an extension of Fact 2.1, we have:

Fact 2.5The inequalitykx1, . . . , xnk∗p≤(n!)1/pkx1, . . . , xnkpholds for everyx1, . . . , xn∈ℓp.

Corollary 2.6 If (x(m)) converges in k·, . . . ,·kp, then it converges (to the same

limit) ink·, . . . ,·k∗p.

Analogous to Theorem 2.3, we have:

Theorem 2.7If(x(m))converges ink·, . . . ,·k∗

p, then it also converges (to the same

limit) ink · kp.

Proof. Let (x1(m)) be a sequence inℓp which converges tox1= (x11, x12, . . .)∈ℓp in k·, . . . ,·k∗p. Then, for anyǫ >0, there exists an N ∈Nsuch that formN we

have

1 n!

X

j1

· · ·X

jn

¯ ¯ ¯ ¯ ¯ ¯ ¯

x1j1(m)−x1j1 · · · x1jn(m)−x1jn ..

. . .. ...

xnj1 · · · xnjn

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

z1j1 · · · z1jn ..

. . .. ... znj1 · · · znjn

¯ ¯ ¯ ¯ ¯ ¯ ¯

< ǫ

for every x2, . . . , xn ∈ ℓp and z1, . . . , zn ∈ ℓp with kz1k, . . . ,kznk ≤ 1. Now, take

(6)

term and z1 = (z11, z12, . . .)∈ ℓp

with z1j := sgn(x1j(m)−x1j)|x1j(m)−x1j|

p−1

kx1(m)−x1kp−1

p

, then we have

X

j1=n

|x1j1(m)−x1j1|

p

kx1(m)−x1kpp−1

< ǫ.

Next, if we take xk =zk := (0, . . . ,0,1,0, . . .) for every k = 2, . . . , n, where 1 is

k-th term, and z1:= (z11,0,0, . . .) with z11:= sgn(x11(m)−x11)|x11(m)−x11| p−1

kx1(m)−x1kp−1

p

, then we have

|x11(m)−x11|p

kx1(m)−x1kpp−1

< ǫ.

Similarly, if we alter the position of the entry 1 inxk andzk fork= 2, . . . , n, and

change the nonzero entry ofz1 accordingly, then we can get

|x12(m)−x12|p

kx1(m)−x1kpp−1

< ǫ

and so on until

¯

¯x1(n−1)(m)−x1(n−1)

¯ ¯

p

kx1(m)−x1kpp−1

< ǫ.

Adding up, we get

kx1(m)−x1kp=

X

j1=1

|x1j1(m)−x1j1|p

kx1(m)−x1kpp−1

< nǫ.

This shows that (x(m)) converges toxin k · kp. ¤

Corollary 2.8A sequence is convergent ink·, . . . ,·k∗

p if and only if it is convergent

(to the same limit) ink·, . . . ,·kp.

Related to the above results, one may also prove that a sequence is Cauchy in k·, . . . ,·k∗

p if and only if it is Cauchy in k·, . . . ,·kp. [A sequence (x(m)) in an

n-normed space (X,k·, . . . ,·k) is Cauchy if givenǫ >0 there exists anN ∈Nsuch

that kx(l)−x(m), x2, . . . , xnk< ǫ wheneverl, m≥N, for everyx2, . . . , xn ∈ X.]

Since (ℓp,, . . . ,·k

p) is a Banach space [6], we conclude, by Theorem 2.7, that

(ℓp,, . . . ,·k

p) also forms ann-Banach space.

3. Concluding Remarks

As we have mentioned earlier, the case where p = 2 is of course special. Here, the two n-norms k·, . . . ,·k2 and k·, . . . ,·k∗2 are identical. Indeed, by using Cauchy-Schwarz inequality (see [9]), one may obtain

kx1, . . . , xnk∗2= sup

zi∈ℓ2,kzik2≤1

i= 1,...,n

¯ ¯ ¯ ¯ ¯ ¯ ¯

hx1, z1i · · · hx1, zni

..

. . .. ...

hxn, z1i · · · hxn, zni

¯ ¯ ¯ ¯ ¯ ¯ ¯

(7)

By taking z1, . . . , zn to be the orthonormalized vectors obtained from x1, . . . , xn

through Gram-Schmidt process, one can show that the above upper bound is ac-tually attained. Hence we have

kx1, . . . , xnk∗2=kx1, . . . , xnk2.

For p6= 2, things are not so simple and we have difficulties in proving the strong equivalence between the two n-norms k·, . . . ,·k∗

p and k·, . . . ,·kp. The research on

this problem, however, is still ongoing.

Acknowledgement. The research was carried out while the first author did his master thesis at Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung.

References

[1] Diminnie, C.R., G¨ahler, S., and White, A., ”2-inner product spaces”,Demonstratio Math.6 (1973), 525–536.

[2] G¨ahler, S., ”Lineare 2-normierte r¨aume”,Math. Nachr.28(1964), 1–43.

[3] G¨ahler, S., ”Untersuchungen ¨uber verallgemeinerte m-metrische R¨aume. I”, Math. Nachr. 40(1969), 165 - 189.

[4] G¨ahler, S., ”Untersuchungen ¨uber verallgemeinertem-metrische R¨aume. II”, Math. Nachr. 40(1969), 229–264.

[5] G¨ahler, S., ”Untersuchungen ¨uber verallgemeinertem-metrische R¨aume. III”,Math. Nachr. 41(1970), 23–26.

[6] Gunawan, H., ”The space ofp-summable sequences and its naturaln-norms”,Bull. Austral. Math. Soc.64(2001), 137–147.

[7] Gunawan, H., ”On n-inner products, n-norms, and the Cauchy-Schwarz inequality”, Sci. Math. Jpn.55(2002), 53–60.

[8] Gunawan, H. and Mashadi, ”On n-normed spaces”, Int. J. Math. Math. Sci. 27 (2001), 631–639.

[9] Gunawan, H., Neswan, O., and Setya-Budhi, W., ”A formula for angles between two sub-spaces of inner product sub-spaces”,Beitr¨age Algebra Geom.46(2005), 311–320.

Referensi

Dokumen terkait

【朝日新聞】最後に朝日であるが,他の二紙と比べて記事面積量が著しく少ないのが

Ada beberapa teori motivasi kerja yang dikemukakan oleh para ahli, salah satunya adalah Teori kebutuhan yang dikemukakan oleh Clayton Alderfer yang dikenal dengan

Rumah-rumah dan bangunan komersiil lebih banyak mempunyai bentuk atap perisai atau pelana dimana bentuk atap perisai atau pelana akan mempunyai ruang atap (attic room)

Menimbang : bahwa untuk melaksanakan ketentuan Pasal 184 ayat (1) Undang-Undang Nomor 32 Tahun 2004 tentang Pemerintahan Daerah sebagaimana telah diubah beberapa kali

cacat mutu dalam jangka waktu yang ditentukan maka PPK akan menghitung biaya perbaikan yang diperlukan, dan PPK secara langsung atau melalui pihak ketiga yang

The Results Showed That Out Of 30 Subjects, Which Included Infection Control For Doctor Is Attending A Se- minar Or To Receive Training Related To

[r]

Pertimbangan lain adalah adanya relevansi dengan rencana program pemerintah (Departemen Sosial) serta dinas terkait lainnya di Pemerintahan Kota Cimahi untuk memberdayakan