• Tidak ada hasil yang ditemukan

Dokumen - SKB29102 - STMIK EL RAHMA Example document

N/A
N/A
Protected

Academic year: 2017

Membagikan "Dokumen - SKB29102 - STMIK EL RAHMA Example document"

Copied!
4
0
0

Teks penuh

(1)

Brandenburg Technical University Cottbus

Department 1, Institute of Mathematics

Chair for Numerical Mathematics an Scientific Computing Prof. Dr. G. Bader, Dr. A. Pawell

Problem Session to the Course: Mathematics I

Environmental and Resource Management WS 2002/03

Solutions to Sheet No. 13 (Deadline: January, 27/28 2002)

Homework

H 13.1: Eigenvalues ofA: λ1=1, λ2

/3= 1

Eigenvectors:

λ1=−1:

2 0 0 0 1 1 0 1 1

~x= 0, ~x= (0,1,−1)T, ~c1=

1

2(0,1,−1) T

λ2/3= 1:

~c2=

1

2(0,1,1) T, ~c

3= (1,0,0)T

C=

0 0 1

1

2 1

2 0

− 1

2 1

2 0

.

q(~x) =~xTA~x=x2

1+ 2x2x3.

B =C, CTAC= diag(1,1,1)

q(C~y) = (C~y)TA(C~y) =~yTCTAC~y=~yTdiag(1,1,1)~y=y12−y 2 2−y

2 3.

H 13.2: det(AλE) = det

1λ 1 1

0 1λ 5

0 1 1λ 

=

(1−λ)[(1−λ)(−1−λ) + 5] = (1−λ)[4 +λ2

(2)

⇒ λ1= 1, λ2/3=±2i

Eigenvectors:

1−λ 1 1

0 1−λ 5

0 −1 −1−λ 

~x=~0

λ1= 1:

0 1 1

0 0 5

0 −1 −2

, ~x=t(1,0,0)T

λ1= 2i:

12i 1 1

0 12i 5

0 1 12i 

~x=~0

12i 1 1

0 1 12i

0 0 0

~x=~0, ~x= 2

i

1−2i,−1−2i,1 T

λ1=−2i:

1 + 2i 1 1

0 1 + 2i 5

0 −1 −1 + 2i 

~x=~0

1 + 2i 1 1

0 −1 −1 + 2i

0 0 0

~x=~0, ~x=

−2i

1 + 2i,−1 + 2i,1 T

H 13.3: det(AλE) = det

1λ 1

1 3λ

= (1λ)(3λ)1 =λ24λ+ 2.

Eigenvalues:

λ1/2= 2±

2 Eigenvectors: λ= 2 +√2

−1√2 1

1 1√2

~x=~0, ~x=p 1

4−2√2(−1 +

2,1)T

λ= 2√2

−1 +√2 1

1 1 +√2

~x=~0, ~x= 1 p

4 + 2√2(−1−

2,1)T

(3)

B

Additional Problems

P 13.1: det(AλE) = det

The transformation~x=C~y is an orthogonal transformation of the coor-dinate system. det C = 1 the transformation is a rotation of the coordinate system.

(4)

0 1 0 1 0 0 0 0 1

 

cos π4

−sin π4

0 sin π4

cos π4

0

0 0 1

Reflection aboutx2=x1 and a rotation by π4 around the origin.

P 13.2: C= (~c1, . . . , ~cn), ~cT

i~cj =

0, i6=j

1, i=j , A~ci=λi~ci.

CTAC=CT(A~c1, . . . , A~cn) =CT(λ1~c1, . . . , λn~cn) =

λ1~cT1~c1 . . . λn~cT1~cn

. . .

λ1~cTn~c1 . . . λn~cTn~cn

=diag(λ1, . . . , λn).

P 13.3: The quadratic formqis given by

q(~x) =x2

1−2x1x2+ 2x22=~x

TA~x=~xT

1 −1

−1 2

~x

Eigenvalues ofA

(1−λ)(2−λ)−1 = 1−3λ+λ2

= 0

λ1/2=

3 2±

5 2 Eigenvectors:

λ= 3 2+

5

2 ⇒~c1= 1

q

10 4 −

5 2

1 2 −

5 2 ,1

!T

λ= 3 2−

5

2 ⇒~c1= 1

q

10 4 +

5 2

1 2 +

5 2 ,1

!T

C= (~c1, ~c2)

CTAC= diag 3 2 +

5 2 ,

3 2 −

5 2

!

q(C~y) = (C~y)TAC~y=~yTCTAC~y= 3 2 +

5 2

! y21+

3 2−

5 2

! y22

Problems can be downloaded from the internet site:

http://www.math.tu-cottbus.de/∼pawell/education/erm/erm.html

Referensi

Dokumen terkait