• Tidak ada hasil yang ditemukan

1433 dwi eko suwarno

N/A
N/A
Protected

Academic year: 2017

Membagikan "1433 dwi eko suwarno"

Copied!
86
0
0

Teks penuh

(1)

IDENTIFIKASI KERUSAKAN DAN PREDIKSI UMUR LAYAN

JALAN BRIGJEND. KATAMSO KOTA SURAKARTA

TESIS

Untuk Memenuhi Sebagian Persyaratan Derajat Magister Program Studi Magister Teknik Sipil

Disusun Oleh :

D W I E K O S U W A R N O N I M . S . 9 4 0 9 0 6 0 0 9

UNIVERSITAS SEBELAS MARET

PROGRAM PASCASARJANA

(2)

IDENTIFIKASI KERUSAKAN DAN PREDIKSI UMUR LAYAN

JALAN BRIGJEND. KATAMSO KOTA SURAKARTA

Disusun Oleh :

D W I E K O S U W A R N O N I M . S . 9 4 0 9 0 6 0 0 9

Telah disetujui oleh Tim Pembimbing

Dewan Pembimbing

Jabatan Nama Tanggal Tanda Tangan

Pembimbing I Ir. Ary Setyawan, M.Sc(Eng), Ph.D 5-8-2009 ... NIP. 196612041995121001

Pembimbing II Ir. Djoko Sarwono, M.T 5-8-2009 ... NIP. 196004151992011001

Mengetahui Ketua Program,

(3)

IDENTIFIKASI KERUSAKAN DAN PREDIKSI UMUR LAYAN

JALAN BRIGJEND. KATAMSO KOTA SURAKARTA

Disusun Oleh :

D W I E K O S U W A R N O N I M . S . 9 4 0 9 0 6 0 0 9

Telah disetujui oleh Tim Penguji

Jabatan Nama Tanggal Tanda Tangan

Ketua Dr. techn. Ir. Sholihin As’ad, MT 5-1-2010 ...

Sekretaris Prof. Dr. Ir. Sobriyah, MS 5-1-2010 ...

Anggota Penguji 1. Ir. Ary Setyawan, M.Sc(Eng), Ph.D 5-1-2010 ...

2. Ir. Djoko Sarwono, MT 5-1-2010 ...

Mengetahui

Ketua Program Prof. Dr. Ir. Sobriyah, MS ... Studi Rehabilitasi dan NIP. 194804221985032001

Pemeliharaan Bangunan

(4)

PERNYATAAN

Yang bertandatangan di bawah ini saya,

Nama : Dwi Eko Suwarno NIM : S.940906009

Mahasiswa Program Pascasarjana Magister Teknik Sipil Universitas Sebelas Maret Surakara

Menyatakan dengan sesungguhnya bahwa Tesis berjudul ” Identifikasi Kerusakan

dan Prediksi Umur Layan Jalan Brigjend Katamso Kota Surakarta ” adalah benar

– benar karya sendiri. Hal – hal yang bukan karya saya, dalam Tesis tersebut diberi tanda citasi dan ditunjukkan dalam daftar pustaka.

Apabila di kemudian hari terbukti pernyataan saya tidak benar, maka saya bersedia menerima sanksi akademik berupa pencabutan Tesis dan gelar yang saya peroleh dari Tesis tersebut.

Surakarta, Agusttus 2009 Yang membuat pernyataan,

(5)

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa atas rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penyusunan Tesis dengan judul “Identifikasi Kerusakan

dan Prediksi Umur Layan Jalan Brigjend. Katamso Kota Surakarta ”

Tesis ini disusun sebagai salah satu syarat yang harus ditempuh guna meraih gelar Magister Teknik pada Program Pascasarjana Universitas Sebelas Maret Surakarta. Tesis ini tidak dapat terselesaikan tanpa bantuan dari pihak-pihak yang ada di sekitar penulis, karena itu dalam kesempatan ini penulis mengucapkan terima kasih kepada :

1. Segenap Pimpinan Program Pascasarjana Universitas Sebelas Maret Surakarta. 2. Prof. Dr.Ir. Sobriyah, MS selaku Ketua Program Magister Teknik Universitas

Sebelas Maret Surakarta.

3. Ir. Ary Setyawan, MSc (Eng), PhD selaku Pembimbing I Tesis dan Sekretaris Program Magister Teknik Sipil Universitas Sebelas Maret Surakarta..

4. Ir. Djoko Sarwono, MT selaku Pembimbing II Tesis.

5. Dr. techn. Ir. Sholihin As’ad, MT dan Prof. Dr. Ir. Sobriyah, MS selaku tim penguji pada ujian pendadaran Tesis.

6. Ketua Laboratorium Jalan Raya Fakultas Teknik Universitas Sebelas Maret Surakarta beserta staff.

7. Pusat Penelitian dan Pengembangan (Puslitbang) Jalan DPU di Bandung.

(6)

9. Kedua orang tuaku, kedua adikku dan kekasihku untuk dukungannya.

10.Teman – teman Magister Teknik angkatan I Universitas Sebelas Maret Surakarta.

Serta semua pihak yang tidak dapat saya sebutkan satu persatu yang selama ini membantu dalam penyelesaian Tesis ini. Penyusunan Tesis yang masih jauh dari sempurna ini sangat memberi pengalaman berharga bagi penulis, di samping itu semoga dapat menambah wawasan dan pengetahuan bagi kalangan Teknik Sipil umumnya dan khususnya Program Magister Teknik Sipil Universitas Sebelas Maret Surakarta.

Surakarta, 5 Januari 2010

Penulis

(7)
(8)
(9)

BAB 5. KESIMPULAN DAN SARAN... 5.1. Kesimpulan………..……...…...

5.2. Saran………..…….….

DAFTAR PUSTAKA... LAMPIRAN

(10)

DAFTAR TABEL

Hal.

Tabel 2.1 Kelas Kerusakan Jalan……….……….. 20

Tabel 4.1 Hasil Pemeriksaan agregat………....………... 41

Tabel 4.2 Hasil Pemeriksaan aspal……….………... 42

Tabel 4.3 Data Hasil Marshall test kondisi eksisting………... 44

Tabel 4.4 Data analaisa Saringan Extraction Test eksisting 1…………..… 46

Tabel 4.5 Data analaisa Saringan Extraction Test eksisting 1…………..… 46

Tabel 4.6 Lalu Lintas Harian Rata – Rata Tahun 2007... 47

Tabel 4.7 Penyebaran Kerusakan pada Jalan Brigjend. Katamso…………. 50

Tabel 4.8 Catatan Kondisi dan Hasil Pengukuran Kerusakan…………...… 52

Tabel 4.9 Tabel PCI (Pavement Condition Index)... 53

Tabel 4.10 Nilai PCI Rata – Rata Ruas Jalan……….……... 54

Tabel 4.11 Persen Berat Lolos Agregat Gradasi Bina Marga…………...….. 55

Tabel 4.12 Data Lapisan Jalan Brigjend. Katamso………. 57

Tabel 4.13 Hasil Uji Marshall Gradasi Bina Marga……… 57

Tabel 4.14 Rekapitulasi Hasil Uji Marshall Gradasi Bina Marga…………... 57

Tabel 4.15 Hasil Uji ITS Gradasi Bina Marga………... 58

Tabel 4.16 Hasil Uji ITS Sampel Eksisting/Coring ………... 59

Tabel 4.17 Perbandingan uji Marshall benda uji eksisting dan lab... 60

Tabel 4.18 Perbandingan uji ITS benda uji eksisting dan lab... 61

Tabel 4.19 Hasil Analisa ITS dan ITSM... 62

Tabel 4.20 Hasil perhitungan horisontal dan vertikal stress ... 63

Tabel 4.21 Hasil perhitungan horisontal dan vertikal strain ... 64

Tabel 4.22 Hasil perhitungan displacement ... 66

(11)

DAFTAR GAMBAR

Hal.

Gambar 2.1 Distribusi Pembebanan Lalu Lintas.…...……...……. ... 11

Gambar 2.2 Grafik Deduct Value untuk Alligator Cracking... 21

Gambar 2.3 Grafik Corrected Deduct Value ………... 22

Gambar 2.4 Indeks dan Kondisi Lapis Permukaan Jalan..……... 23

Gambar 2.5 Alat Uji Indirect Tensile Strength... 24

Gambar 2.6 Pembebanan dan Kerusakan benda uji pada ITS... 25

Gambar 2.7 Alat Uji Indirect Tensile Stiffness Modulus……... 26

Gambar 2.8 Fatigue Cracking dan Critical Strain... 28

Gambar 3.1 Posisi Peninjauan Distribusi Beban... 39

Gambar 3.2 Diagram Alir Tahap – Tahap Penelitian... 40

Gambar 4.1 Grafik Hubungan Nilai ESAL dengan Jenis Kendaraan... 48

Gambar 4.2 Lokasi Penelitian... 49

Gambar 4.3 Jenis Kerusakan Jalan Brigjend. Katamso... 49

Gambar 4.4 Grafik gradasi AC Tipe Bina Marga………. 55

Gambar 4.5 Benda uji hasil Lab sebelum dan sesudah pengujian ITS... 58

Gambar 4.6 Benda uji eksisting sebelum pengujian ITS... 59

Gambar 4.7 Benda uji eksisting setelah pengujian ITS... 59

Gambar 4.8 Struktur eksisting perkerasan dan titik peninjauan BISAR... 62

Gambar 4.9 Hasil perhitungan horisontal stress ... 63

Gambar 4.10 Hasil perhitungan vertikal stress ... 64

Gambar 4.11 Hasil perhitungan horisontal strain ... 65

Gambar 4.12 Hasil perhitungan vertikal strain ... 65

(12)

DAFTAR NOTASI DAN SIMBOL

AC : Asphalt Concrete

ASTM : American Society for Testing and Materials BISAR : Bitumen Stress Analysis in Road

CDV : Corrected Deduct Value cm : Centimeter

D : Rata – rata amplitudo dari deformasi horizontal d : Diameter benda uji

DV : Deduct Value

gr : gram

HGV : Heavy Goods Vehicle

ITS : Indirect Tensile Strength Test ITSM : Indirect Tensile Stiffness Modulus

kg : Kilogram

kN : Kilo Newton

kPa : Kilo Pascal

L : Nilai maksimal pembebanan vertikal Lk : Luas kerusakan

Lp : Luas perkerasan Ma : Berat sampel di udara MATTA : Material Testing Apparatus

mm : Milimeter

MPa : Mega Pascal

Nf : Prediksi Umur Layan

P : Porositas

PCI : Pavement Condition Index Pmax : Maksimal pembebanan Q : Temperature perkerasan

(13)

SG : Specific Grafity tiap komponen campuran Sgmix : Specific Grafity campuran

T : Tinggi rata – rata benda uji VIM : Void in Mix

u : Poisson ratio

et : Asphalt mix tensile strain

p : phi (3,14285) °C : Derajat Celcius °F : Derajat Farenheit

% : Persentase

(14)

DAFTAR LAMPIRAN

Lampiran 1 : Administrasi Penelitian

Lampiran 2 : Grafik Deduct Value dan Corrected Deduct Value Perkerasan Lentur Lampiran 3 : Pavement Condition Index

Lampiran 4 : Hasil Uji Indirect Tensile Stiffness Modulus Lampiran 5 : Analisa Program BISAR

Lampiran 6 : Analisa Marshall dan Indirect Tensile Strength Lampiran 7 : Koreksi Tebal dan Faktor Kalibrasi Uji Marshall

Lampiran 8 : Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan Metode Analisa Komponen 1987

(15)

ABSTRAK

DWI EKO SUWARNO. 2009. Identifikasi Kerusakan dan Prediksi Umur Layan Jalan Brigjend. Katamso Kota Surakarta. Tesis. Pascasarjana Magister Teknik Sipil Universitas Sebelas Maret Surakarta.

Layanan transportasi semakin meningkat terus sebagai akibat langsung dari mobilisasi manusia dan barang yang meningkat dari hari ke hari. Efektivitas layanan transportasi sangat dipengaruhi oleh kualitas sarana dan prasarana tranportasi itu sendiri. Perkerasan jalan akan dapat mencapai umur rencana apabila dilakukan manajemen pemeliharaan. Pemeliharaan yang dilakukan harus tepat dan sesuai dengan kondisi jalan serta kerusakannya sehingga perlu dilakukan analisis untuk mengetahui penyebab kerusakan dan akibat yang ditimbulkan dari kerusakan tersebut. Tujuan dari penelitian ini untuk mengetahui tingkat kerusakan pada ruas jalan Brigjend. Katamso serta melakukan prediksi umur layan dengan program BISAR.

Pengambilan sampel dilakukan dengan alat coring. Sampel perkerasan kondisi eksisting dan benda uji kondisi perencanaan selanjutnya dilakukan pengujian Marshall di Laboratorium Perkerasan Jalan Raya UNS. Pengujian Marshall untuk mengetahui perbandingan nilai stabilitas perkerasaan saat ini dengan kondisi perencanaan. Uji Indirect Tensile Strength (ITS) dan Indirect Tensile Stiffness Modulus (ITSM) di Puslitbang Jalan DPU di Bandung. Uji ITS untuk mengetahui nilai kuat tarik dari perkerasan. Semakin besar nilai kuat tarik, perkerasan tersebut akan semakin durable. Uji ITSM untuk mendapatkan nilai stiffness modulus yang akan digunakan sebagai salah satu input prediksi umur layan dengan program BISAR

Hasil uji kadar aspal sampel perkerasan kondidi eksisting didapat nilai 3,32%, lebih rendah dibandingkan kadar aspal kondisi perencanaan yaitu 6,7%. Sehingga telah tejadi penurunan kadar aspal selama umur pelayanan. Hasil uji Marshall untuk kondisi eksisting 974,93 kg, lebih rendah dibandingkan benda uji kondisi perencanaan 1495,808 kg. Hasil uji ITS untuk kondisi eksisting 484,967 kPa, sedangkan kondisi perencanaan 521,284 kPa. Sementara hasil uji ITSM kondisi eksisting 2898,333 MPa, sedangkan kondisi perencanaan 3212,333 MPa. Hasil prediksi umur layan pada wearing course kondisi eksisting 5,82E+08 MSA, sedangkan kondisi perencanaan 6,46E+08 MSA. Dari analisis tersebut dapat disimpulkan bahwa kondisi perkerasan saat ini lebih rendah daripada kondisi perencanaan, maka ruas jalan Brigjend. Katamso perlu segera dilakukan perbaikan untuk mencegah kerusakan yang lebih besar.

(16)

ABSTRACT

DWI EKO SUWARNO. 2009. Identification Damage and Service Life Prediction Brigjend. Katamso Street Surakarta. Thesis. Post Graduate Program of Sebelas Maret University.

Transportation service is increased as a direct result of human and commodity mobilization which are increased every day. Effectivenness of the transportation service is highly influenced by quality of the transportation means. The pavement af the road will achieve the planning age if ther is maintenance. The maintenance conducted must be precise and appropiate to condition and damage of road, hence, it is necessary to have analysis to know any causes and consequence of the damage. The objective of the present study is to know the damage level on Jl. Brigjend. Katamso and have prediction of the service age by BISAR Program.

Sampling can do with coring. Beside that, we made the sample test that fix with the design condition. After that we do test, to the existing condition sample and design sample condition, include Marshall test in pavement laboratorium in Sebelas Maret University, ITS and ITSM in Puslitbang Jalan Bandung. Marshall test to know the stabilitty comparation value on the pavement condition at this time and beginning design condition. ITS test is to know the tensile strength value from the pavement . ITSM test is to know the stiffness modulus value that used as one of the calculation of service life input.

Asphalt grade test result on the street is 3,32%, lower than asphalt grade at the begining of making the road wich is 6,7%. So the asphalt grade has been through displacement as long as service life. Result of ITS test for existing condition is 484,967 kPa, meanwhile the design condition is 521,284 kPa. Result of ITSM test for existing is 2898,333 MPa, meanwhile design condition is 3212,333 MPa. More biggest the value of horizontal strength it is geting critical. Horizontal strength is happen in the botton of wearing course. Service life prediction result on wearing course in existing condition 5,82E+08 MSA and design condition 6,46E+08 MSA. From the analysis result, Brigjend Katamso Street is need reparation to preven bigger damage.

(17)

BAB I

PENDAHULUAN

1.1. Latar Belakang

Layanan transportasi semakin meningkat terus sebagai akibat langsung dari mobilisasi manusia dan barang yang meningkat dari hari ke hari. Efektivitas layanan transportasi sangat dipengaruhi oleh kualitas sarana dan prasarana tranportasi itu sendiri.

Jalan berfungsi sebagai prasarana untuk pergerakan arus lalu lintas. Dengan demikian jalan direncanakan agar dapat melayani perpindahan kendaraan dari suatu tempat ke tempat lain dengan waktu sesingkat mungkin dengan persyaratan nyaman dan aman (comfortable and safe). Sehingga dapat dikatakan bahwa kecepatan (speed) adalah merupakan faktor yang dapat dipakai sebagai indikator untuk menilai apakah suatu jalan mengalami kegagalan fungsi bangunan atau tidak.

(18)

pelayanan yang direncanakan. Penetapan umur rencana untuk suatu jalan juga harus mempertimbangkan growth factor dan rencana pengembangan wilayah.

Perkerasan jalan akan dapat mencapai umur rencana apabila dilakukan pemeliharaan. Pemeliharaan yang dilakukan harus tepat dan sesuai dengan kondisi jalan serta kerusakannya. Karena itu perlu dilakukan analisis untuk mengetahui penyebab kerusakan dan akibat yang ditimbulkan dari kerusakan tersebut. Pemeliharaan yang benar akan meningkatkan kenyamanan dan keamanan dari pengguna jalan serta menghemat biaya pemeliharaan. Untuk mengetahui besar pembebanan dan kekuatan dari struktur perkerasan dapat dilakukan dengan pengujian Indirect Tensile Strength (ITS) dan Indirect Tensile Stiffness Modulus (ITSM)

1.2. Rumusan Masalah

Dari uraian latar belakang di atas, maka diambil suatu rumusan masalah sebagai berikut:

a. Bagaimana jenis kerusakan flexible pavement jalan Brigjend Katamso Kota Surakarta.

b. Bagaimana kondisi perkerasan jalan Brigjend Katamso Kota Surakarta saat ini serta prediksi umur layan perkerasan jalan Brigjend. Katamso.

(19)

Pembatasan masalah diperlukan dalam penelitian agar tinjauannya tidak terlalu luas dan tidak menyimpang dari rumusan masalah. Batasan – batasan masalah yang digunakan dalam penelitian ini sebagai berikut:

a. Ruas jalan yang ditinjau adalah ruas jalan Brigjend Katamso Kota Surakarta b. Pengujian Indirect Tensile Strength (ITS) dilakukan di Laboratorium Jalan

Raya Fakultas Teknik Universitas Negeri Sebelas Maret Surakarta sedangkan pengujian Indirect Tensile Stiffness Modulus (ITSM) di Pusat Penelitian dan Pengembangan Jalan di Bandung

c. Data teknis jalan Brigjend Katamso diperoleh dari Departemen Pekerjaan Umum Subdin Bina Marga Kota Surakarta

d. Survei data lalu lintas jalan Brigjend. Katamso Surakarta

1.4. Tujuan Penelitian

Tujuan dari penelitian ini sebagai berikut:

1. Mengidentifikasi jenis kerusakan dan penyebab kerusakan yang terjadi pada flexible pavement jalan Brigjend Katamso Kota Surakarta

2. Mengetahui kondisi perkerasan jalan Brigjend. Katamso saat ini serta menganalisis prediksi umur layan perkerasan jalan Brigjend. Katamso.

1.5. Manfaat Penelitian

(20)

1. Memberi pengetahuan tentang kerusakan yang terjadi pada perkerasan lentur baik sebab maupun akibatnya disertai penanganannya.

2. Mengetahui manfaat perencanaan perkerasan dalam menjamin umur pelayanan suatu jalan.

3. Mengetahui kondisi perkerasan sebagai acuan perlu tidaknya perbaikan dan melakukan prediksi umur layan jalan Brigjend. Katamso.

4. Memberi gambaran pemeliharaan jalan raya yang lebih baik sehingga biaya perawatan bisa berkurang serta keamanan dan kenyamanan yang diperoleh pemakai jalan menjadi lebih baik.

BAB II

(21)

2.1. Tinjauan Pustaka

Dari penelitian Sunaryono (2007) nilai pengujian ITS dan ITSM benda uji umur 14 hari masing – masing 225 kPa dan 1081 Mpa, sedangkan untuk benda uji umur 29 hari terjadi kenaikan masing – masing 275 kPa dan 1285 MPa. Semenara penelitian Batista (2005) yang dilakukan pada aspal emulsi terjadi perubahan nilai stiffness modulus dari 1000 MPa menjadi 2000 MPa setelah ageing selama dua

bulan.

Dari penelitian Hamidi (1998) angka modulus kekakuan dari campuran aspal sangat bergantung terhadap temperatur, penambahan Gilsonte yang cukup berarti terjadi pada temperatur 25oC dengan peningkatan 45% dan 77% untuk penambahan berturut – turut 4% dan 8% Gilsonite. Pada temperatur 35oC dan 45oC angka modulus dari semua campuran aspal berkurang secara drastis dan penambahan Gilsonite tidak cukup berarti dalam hal meningkatkan angka modulus.

Penelitian Daniel (2008) yang dilakukan dengan membuat benda uji open graded asphlat (OGA) dengan variasi kadar aspal 2,5% ; 3% ; dan 3,5% yang

(22)

Penelitian Batista (2005) yang dilakukan pada aspal emulsi terjadi perubahan nilai stiffness modulus dari 1000 MPa menjadi 2000 MPa setelah ageing selama dua

bulan.

Dari penelitian Agung (2005) pada suhu 45oC pada campuran HRS-Coal ash diperoleh nilai kuat tarik tak langsung sebesar 20,5 psi, sedangkan pada campuran HRS-Standar diperoleh nilai kuat tarik tak langsung sebesar 29,2 psi.

Penelitian Firmansyah (2007) pada Split Mastic Asphalt (SMA) didapatkan nilai Indirect Tensile Strength pada suhu 25oC, 35oC, dan 45oC dengan penambahan latex sebanyak 6% masing – masing 122,57 psi, 61,43 psi, 31,74 psi.

Sedangkan penelitian Thanaya (2007) didapatkan nilai Indirect Tensile Stiffness Modulus pada aspal penetrasi 50, suhu pengujian 20oC untuk Glass Mix sebesar 2218 MPa, Sslag Mix sebesar 2732 MPa, HRA sebesar 4564 MPa, dan AC sebesar 5683 MPa.

2.2. Dasar Teori

(23)

Perencanaan perkerasan yang baik akan menghasilkan perkerasan yang dapat digunakan selama umur rencananya. Umur rencana adalah umur pelayanan yang direncanakan untuk perkerasan dalam melayani lalu lintas dengan baik tanpa adanya kerusakan yang berarti. Perencanaan perkerasan yang baik dapat mengurangi kemungkinan kerusakan yang terjadi sehingga menghemat biaya pemeliharaan dan lalu lintas dapat dilayani dengan baik.

Banyak tipe perkerasan yang didiskusikan dalam teknologi modern. Tapi biasanya dikelompokkan dalam dua tipe yaitu perkerasan lentur dan perkerasan kaku. Perkerasan lentur biasanya menggunakan aspal pada bagian permukaan tapi kadang berupa beton yang dilapisi aspal. Perkerasan lentur dikembangkan dalam berbagai bentuk. Perkerasan aspal konvensional menggunakan sistem pelapisan dimana bagian atas menggunakan material yang lebih baik karena intensitas tekanan beban sangat tinggi dan bagian bawahnya menggunakan material dengan mutu lebih rendah karena intensitas bebannya lebih rendah.

(24)

daya dukungnya sehingga perkerasan dapat menahan beban lalu lintas dengan baik.

Definisi Kegagalan Bangunan secara umum menurut Undang – Undang No 18 Tahun 1999 dan PP Tahun 2000 adalah keadaan bangunan yang tidak berfungsi, baik secara keseluruhan maupun sebagian dari segi teknis, manfaat, keselamatan dan kesehatan kerja dan atau keselamatan umum, sebagai akibat kesalahan penyedia jasa dan atau pengguna jasa setelah penyerahan akhir pekerjaan konstruksi. Sedangkan definisi Kegagalan Bangunan secara khusus untuk jalan adalah suatu kondisi dimana bangunan jalan tidak mampu melayani pengguna jalan sesuai dengan kecepatan rencana secara nyaman dan aman.

Menurut Silvia Sukirman terdapat 6 ( enam ) mekanisme yang menyebabkan terjadinya kerusakan pada konstruksi perkerasan jalan yaitu (Sukirman, 1999) :

1. Lalu lintas, yang dapat berupa peningkatan beban, dan repetisi beban.

2. Air, yang dapat berasal dari air hujan, sistem drainase jalan yang tidak baik, naiknya air akibat sifat kapilaritas.

3. Material konstruksi perkerasan. Dalam hal ini dapat disebabkan oleh sifat material itu sendiri atau dapat pula disebabkan oleh sistem pengolahan bahan yang tidak baik.

(25)

5. Kondisi tanah dasar yang tidak stabil. Kemungkinan disebabkan oleh sistem pelaksanaan yang kurang baik, atau dapat juga disebabkan oleh sifat tanah dasar yang memang jelek.

6. Proses pemadatan lapisan tanah dasar yang kurang baik.

Perbaikan terhadap jalan tidak hanya dilakukan apabila jalan telah mengalami kerusakan yang parah, tetapi sebaiknya perlu segera dilakukan pemeliharaan apabila tanda – tanda kerusakan terhadap jalan sudah terlihat. Semakin memperbesar tingkat kerusakan jalan, maka biaya perbaikan jalan juga akan semakin mahal. Untuk melakukan pemeliharaan yang tepat, maka perlu dilakukan kajian awal terhadap jalan tersebut, meliputi pengamatan visual kerusakan jalan, kekuatan struktur jalan saat ini, pertumbuhan lalu lintas.

2.3. Kerusakan pada Perkerasan Lentur

(26)

Intensitas tegangan statis dan dinamis terbesar terjadi di permukaan perkerasan dan terdistribusi dengan bentuk piramid dalam arah vertikal pada seluruh ketebalan struktur perkerasan. Peningkatan distribusi tegangan tersebut mengakibatkan tegangan semakin kecil sampai permukaan lapis tanah dasar.

Beban lalu lintas

Tanah dasar Sub base course

Base course

Binder course Wearing course

Gambar 2.1. Distribusi pembebanan lalu lintas

Mekanisme retak yang terjadi di lapangan terjadi karena adanya gaya tarik yang ditandai dengan adanya retak awal pada bagian bawah perkerasan yang mengalami deformasi kemudian retak ini lama kelamaan akan menjalar kepermukaan perkerasan jalan yang dapat mengakibatkan kerusakan dan ketidak nyamanan.

(27)

terjadi gompal dan akhirnya terjadi lubang. Di samping itu, retak memungkinkan air masuk ke dalam perkerasan sehingga mempercepat deformasi dan memungkinkan terjadinya penurunan kekuatan geser dan perubahan volume. (Sjahdanulirwan, 2003).

Umumnya kerusakan pada perkerasan lentur yang timbul tidak hanya disebabkan oleh satu faktor saja, tetapi keterkaitan antara berbagai penyebab tersebut. Kerusakan yang terjadi pada perkerasan lentur, ditentukan berdasarkan Indeks Kinerja Perkerasan Jalan (pavement performance), yang meliputi 3 hal yaitu: 1. Keamanan, yang ditentukan oleh besarnya gesekan akibat adanya kontak antara

ban dan permukaan jalan. Besarnya gaya gesek yang terjadi dipengaruhi oleh bentuk dan kondisi ban, tekstur permukaaan jalan, kondisi cuaca dan lain sebagainya.

2. Wujud perkerasan (structural pavement), sehubungan dengan kondisi fisik dari jalan tersebut seperti adanya retak – retak, amblas, alur, gelombang dan lain sebagainya.

3. Fungsi Pelayanan (functional performance), sehubungan dengan bagaimana perkerasan tersebut memberikan pelayanan kepada pemakai jalan. Wujud perkerasan dan fungsi pelayanan umumnya merupakan satu kesatuan yang dapat digambarkan dengan kenyamanan mengemudi (riding quality).

(28)

a. Jalan disediakan untuk memberikan keamanan dan kenyamanan pada pemakai jalan.

b. Kenyamanan sebenarnya merupakan faktor subjektif, tergantung penilaian masing – masing pengemudi, tetapi dapat dinyatakan dari nilai rata – rata yang diberikan oleh pengemudi.

c. Kenyamanan berkaitan dengan bentuk fisik dari perkerasan yang dapat diukur secara objektif serta mempunyai nilai korelasi dengan penilaian subjektif masing – masing pengemudi.

d. Wujud dari perkerasan dapat juga diperoleh dari sejarah perkerasan itu sendiri. e. Pelayanan yang diberikan oleh jalan dapat dinyatakan sebagai nilai rata – rata

yang diberikan oleh si pemakai jalan.

Sehingga di dalam pelaksanaan pekerjaan jalan diperlukan quaity control untuk meminimalkan kesalahan dalam pelaksanaan yang dapat meningkatkan kualitas jalan tersebut. Pengenalan terhadap kerusakan jalan seringkali bersifat subjektif, maka kemampuan pemeriksaan untuk mengenali kerusakan dan parahnya kerusakan merupakan hal penting. Menurut Manual Pemeliharaan Jalan No. 03/MN/B/1983 yang dikeluarkan oleh Direktorat Jenderal Bina Marga, kerusakan jalan dapat dibedakan atas:

2.3.1. Lendutan (Deformation)

(29)

dengan beban). Pada beberapa kasus, deformasi dapat terjadi pada perkerasan baru dengan kontrol yang buruk.

Deformasi merupakan suatu unsur penting pada kondisi perkerasan. Deformasi mempunyai pengaruh langsung pada kualitas berkendara dengan perkerasan (kekasaran dan berkurangnya skid resistance) dan mencerminkan kekurangan pada struktur perkerasan. Deformasi dapat berujung ke retak-retak pada lapisan permukaan. Beberapa tipe deformasi sebagai berikut :

1. Bergelombang 2. Alur

3. Depresi 4. Pergeseran

2.3.2. Retak (cracks)

Retak adalah celah sebagai hasil dari patahan parsial atau komplet pada permukaan perkerasan. Retak pada permukaan perkerasan jalan dapat terjadi dengan berbagai variasi, baik retak tunggal yang terisolasi maupun retak yang saling berhubungan dan berkembang diatas seluruh permukaan perkerasan. Bentuk retak, baik sendirian maupun berhubungan dengan deformasi dapat digunakan untuk memperkirakan penyebab kerusakan. Retak yang dimasuki air dapat menjadi penyebab utama deformasi dan lubang. Adapun bentuk retak sebagai beriktu :

1. Retak blok (block cracks)

(30)

3. Retak tidak beraturan (crescent shaped cracks) 4. Retak memanjang (longitudinal crack)

5. Retak melintang (transverse crack) 6. Retak diagonal (diagonal crack)

2.3.3. Cacat tepi (edge defects)

Kerusakan ini terjadi pada pertemuan antara lapisan aspal dengan bahu jalan, dimana kerusakan terjadi pada lapisan aspal bukan bahu jalan. Cacat tepi sering terjadi pada baigan tepi jalan yang peka terhadap ban aus karena gesekan. Bentuk cacat tepi antara lain :

1. Patah tepi (edge break) 2. Kerusakan tepi (edge drop off)

2.3.4. Cacat permukaan

Cacat permukaan disebabkan hilangnya material permukaan baik banyak maupun sedikit. Cacat permukaan mengurangi kualitas layanan perkerasan dan mengurangi struktur perkerasan. Bentuk cacat permukaan sebagai berikut :

1. Delamination

2. Flushing

3. Polishing 4. Ravelling 5. Stripping

(31)

Lubang adalah cekungan berbentuk mangkuk pada permukaan perkerasan karena hilangnya lapisan permukaan dan material dibawahnya. Lubang dapat terjadi karena mengelupasnya sebagian kecil lapisan permukaan akibat lalu lintas yang diikuti masuknya air kedalam lapisan perkerasan, beban yang berlebihan, dan terbawanya lapisan aspal permukaan akibat adhesi yang mengikat aspal ke roda.

Untuk itu, semua prasarana yang terdapat pada suatu sistem transportasi khususnya transportasi darat memerlukan perbaikan kerusakan dan perawatan yang baik. Hal ini dimaksudkan untuk dapat memperpanjang masa pelayanan ekonominya dengan mempertahankan tingkat pelayanan pada batas standar yang aman. Aspek dari perbaikan dan perawatan jalan raya adalah prasarana dalam keadaan siap pakai di setiap waktu untuk menjamin kelancaran dan keamanan penumpang serta keselamatan operasi transportasi darat.

Pemeliharaan fasilitas transportasi adalah suatu kegiatan untuk menjaga fasilitas transportasi dengan cara melakukan pemeliharaan dan perbaikan atau penyesuaian kondisi fasilitas transportasi sehingga dapat menghasilkan suatu kondisi operasi yang optimal sesuai dengan standar operasi yang telah ditetapkan. Kegiatan pemeliharaan mencakup perencanaan, pelaksanaan, dan pengendalian pemeliharaan.

(32)

harus diperlihara secara efektif dan efisien. Pemeliharaan yang baik dapat dilakukan setelah kerusakan-kerusakan yang timbul pada perkerasan tersebut diidentifikasi dan dievaluasi mengenai penyebab dan akibat dari kerusakan tersebut. Identifikasi kerusakan dan penyebabnya sangat penting, karena visualisasi yang hampir sama menunjukkan kerusakan yang berbeda. Dua aspek yang dipandang memegang peranan penting dalam sistem manajemen pemeliharaan adalah pangkalan data dan survai regular.

Dalam pemeliharaan jalan terdapat berbagai pendekatan yang berbeda. Salah satu pendekatan yaitu pemeliharaan yang bersifat pencegahan, dimana suatu komponen dirawat untuk menghindari kerusakan yang terjadi selama umur pelayanan. Pemeliharaan jenis ini banyak digunakan untuk di Indonesia, apalagi kalau kerusakan tersebut akan menimbulkan ketidakamanan dari pengguna jalan.

Secara umum pemeliharaan dapat diartikan sebagai upaya untuk mempertahankan/meningkatkan kondisi perkerasan, namun pengertian secara spesifik dapat ditinjau dari berbagai segi, antara lain :

a. Berdasarkan saatnya ( timing )

o Scheduled : dijadwalkan, misal setiap 3 tahun

o Responsive : tergantung pada kerusakan, misal penambalan dilakukan

apabila ada lubang b. Berdasarkan luasnya

(33)

c. Berdasarkan frekuensinya

o Rutin, misal pembersihan saluran tepi

o Periodik, misal pemasangan laburan aspal-pasir ( surface dressing ) o Peningkatan, misal pemasangan lapis tambah ( overlay )

o Rehabilitasi ( pembongkaran dan penggantian lapisan ) o Khusus / insidentil, misal pembuangan longsoran tanah d. Berdasarkan tebal lapisan

o Lapisan tipis, misal laburan aspal-pasir, bubur aspal-pasir o Lapisan tebal, misal lapis beton aspal 5 cm

o Peremajaan ( rejuvenation ), misal fog seal e. Berdasarkan bagian jalan

o Perkerasan o Bahu

o Saluran drainase o Daerah milik jalan o Daerah manfaat jalan o Perlengkapan jalan

(34)

2.4. Penentuan Kondisi Perkerasan Jalan

Nilai kondisi perkerasan Pavement Condition Index (PCI) digunakan untuk mengetahui nilai kondisi lapis permukaan pada suaru ruas jalan yang besarnya dipengaruhi oleh keadaan permukaan perkerasan yang diakibatkan oleh kerusakan yang terjadi. Data – data hasil survei kerusakan perkerasan jalan dikelompokkan berdasarkan kelas kerusakan seperti pada Tabel 2.1.

Tabel 2.1. Kelas Kerusakan Jalan

Batas kerusakan

Rendah Sedang Tinggi Kerusakan Elemen (mm)

(Low) (Medium) (High)

Lubang Kedalaman < 50 mm 50 mm > 50 mm Bergelombang/Keriting Penurunan < 30 mm 30 mm > 30 mm

Alur Penurunan < 30 mm 30 mm > 30 mm

Sumber : Departemen Pekerjaan Umum, 1995.

Langkah – langkah untuk menghitung PCI sebagai berikut : 2.4.1.1. Menentukan densitas kerusakan

(35)

Densitas(%) = x100% Lp

Lk

...( Rumus 2.1 )

Dimana :

Lk : Luas kerusakan Lp : Luas perkerasan 2.4.1.2. Mencari deduct value (DV)

Mencari deduct value (DV) yang berupa grafik jenis kerusakan. Cara untuk menentukan DV yaitu dengan memasukkan persentase densitas pada grafik masing – masing jenis kerusakan kemudian menarik garis vertikal sampai memotong tingkat kerusakan (low, medium, high), selanjutnya ditarik garis horizontal dan akan didapat DV. Contoh grafik yang digunakan untuk mencari nilai DV ditunjukkan pada Gambar 2.2.

Sumber : U.S. Department of Defense, 2001

(36)

2.4.1.3. Menjumlahkan total deduct value

Total deduct value yang diperoleh pada suatu segmen jalan yang ditinjau sehingga diperoleh total deduct value (TDV).

2.4.1.4. Mencari corrected deduct value

Corrected deducted value (CDV) dengan jalan memasukkan nilai DV ke

grafik CDV dengan cara menarik garis vertikal pada nilai TDV sampai memotong garis q kemudian ditarik garis horizontal. Nilai q merupakan jumlah masukan dengan DV>5.

Sumber : U.S. Department of Defense, 2001

Gambar 2.3. Grafik Corrected Deduct Value

2.4.1.5. Menghitung nilai kondisi perkerasan

(37)

PCI = 100 – CDV ... ( Rumus 2.2 ) PCI = nilai kondisi perkerasan

CDV = Corrected Deduct Value

Nilai tersebut menunjukkan kondisi perkerasan pada segmen yang ditinjau, apakah baik, sangat baik atau bahkan buruk sekali dengan menggunakan paramater Gambar 2.4.

2.4.1.6. Prioritas penanganan kerusakan

Nilai kondisi perkerasan untuk tiap segmen yang diperoleh kemudian dipergunakan untuk menentukan prioritas penanganan kerusakan. Untuk mengetahui nilai kondisi perkerasan keseluruhan dengan menjumlahkan semua nilai kondisi perkerasan pada tiap segmen dan membaginya dengan total jumlah segmen.

(38)

FAILED

Gambar 2.4. Indeks dan Kondisi Lapis Permukaan Jalan

2.5. Indirect Tensile Strength ( ITS )

Indirect Tensile Strength Test menggunakan prinsip pembebanan Marshall

(39)

Gambar 2.5. Alat uji Indirect Tensile Strength

Berdasarkan beban maksimum yang bekerja pada benda uji pada saat mengalami kegagalan, ITS dihitung dengan persamaan berikut :

ITS = t d P

. .

max . 2

p ………...……..….. ( Rumus 2.4 )

Dimana :

ITS : Indirect Tensile Strength (kPa) Pmax : maksimal pembebanan (kN) t : tinggi rata – rata benda uji (m) d : diameter benda uji (m)

(40)

Gambar 2.6. Pembebanan dan kerusakan benda uji pada

Indirect Tensile Strength

2.6. Indirect Tensile Stiffness Modulus ( ITSM )

Indirect Tensile Stiffness Modulus Test merupakan cara pengujian laboratorium

paling konvensional untuk menghitung stiffness modulus campuran aspal. Menurut standar, indirect tensile stiffness modulus test ini merupakan tes nondestruktif dan telah diidentifikasi sebagai metode untuk menghitung rata – rata

stiffness modulus dari material.

(41)

Gambar 2.7. Alat uji Indirect Tensile Stiffness Modulus

Dengan uniaksial sinusiodal pembebanan berulang, stiffness modulus secara umum didefinisikan sebagai perbandingan antara tegangan maksimum dengan regangan maksimum. Indirect Tensile Stiffness Modulus dalam MPa dihitung dengan persamaan berikut :

ITSM =

) . (

) 27 , 0 (

t D

Ln +

... ( Rumus 2.5 )

Dimana :

L : nilai maksimal pembebanan vertikal (N)

D : rata – rata amplitudo dari deformasi horizontal yang diperoleh dari dua atau lebih aplikasi pembebanan (mm)

t : rata – rata tebal benda uji (mm)

(42)

2.7. Program Komputer BISAR (Bitumen Stress Analysis in Road)

BISAR (Bitumen Stress Analysis in Road) produk Shell digunakan untuk mengestimasi ketebalan perkerasan aspal dan unbound granular layer. Program ini menghitung stress, strain dan displacement pada tiap posisi pada multi layer sistem. (Setyawan, 2003).

Beban yang bekerja adalah beban vertikal pada area yang berbentuk lingkaran. Pengaruh dari pembebanan tersebut akan dihitung dan resultan dari beban tersebut akan digunakan untuk menghitung angka stress dan strain. Pada penghitungan ini, tiap lapisan mempunyai ketebalan yang beragam akan merespon pembebanan tersebut sesuai dengna karakteristiknya masing – masing. Untuk setiap lapisan perkerasan data ketebalan, modulus elastisitas, angka poisson ratio harus diketahui terlebih dahulu.

BISAR menghitung besarnya stress dan strain berdasarkan beban vertikal dan tegangan vertikal yang bekerja pada satu bidang contact area untuk disebarkan oleh tiap lapis perkerasan. Dimana dimensi dari contact area tersebut dapat digambarkan sebagai satu persegi dan dua setengah lingkaran. Sebelum digunakan sebagai input data, satuan beban dikonversikan menjadi kN sedangkan satuan tegangan vertikal menjadi MPa. Dari data karakteristik tiap lapisan didapat angka stress, strain, dan displacement pada setiap peninjauan posisi pada pertengahan

antar lapisan dan batas antar lapisan.

(43)

compressive stress dan strain berpengaruh pada bagian atas lapis sub grade,

seperti ditunjukkan pada Gambar 2.8.

Gambar 2.8. Fatigue cracking dan critical strain

2.8. Prediksi Umur Layan (Nf)

Prosedur desain lapis perkerasan sangat tergantung pada hubungan prediksi temperatur, karakterisitik material dari aspal jenis AC ( Asphalt Concrete ) dan subgrade, fatigue pada critical strains dan analisa campuran terhadap lalu lintas

jalan. Kingham fatigue criteria dihasilkan dari analisa perhitungan ketebalan lapisan aspal. Kriteria fatigue ini dimodifikasi untuk menganalisa tensile strain (fatigue cracking) pada Asphalt Institute method, dimana akan menghasilkan

fatigue criteria yang menunjukkan jumlah repetisi beban pada suhu campuran

(44)

Dimana :

a : 1,86351 x 10+17 b : 1,01996

c : 4,995 d1 : 1,45

q : temperature perkerasan (oF)

(45)

BAB III

METODE PENELITIAN

3.1. Umum

Dalam penelitian ini digunakan metode eksperimental, yang berarti mengadakan kegiatan percobaan untuk mendapatkan hasil. Di mana data – data dari mix desain perkerasan eksisting (gradasi, jenis aspal dan agregat) didapatkan dari Departemen Pekerjaan Umum Surakarta Subdin Bina Marga. Penelitian ini bertujuan untuk mengetahui kerusakan serta penyebab dan prediksi usia layan dari perkerasan pada jalan Brigjend. Katamso.

3.2. Tempat dan Waktu Penelitian

Pelaksanaan penelitian ini bertempat di Laboratorium Perkerasan Jalan Raya Fakultas Teknik Universitas Sebelas Maret Surakarta dan Pusat Penelitian dan Pengembangan Jalan (Puslitbang Jalan) DPU di Bandung. Dilaksanakan mulai September 2007 sampai dengan Februari 2008.

3.3. Teknik Pengumpulan Data

Data yang dipakai dalam penelitian ini adalah data primer hasil Laboratorium dan data sekunder dari instansi terkait baik tertulis maupun lisan Teknik pengumpulan data secara langsung, meliputi :

(46)

2). Pengujian sifat – sifat agregat ( abrasi, berat jenis ). 3). Pengujian Marshall

4). Pengujian ITS, ITSM terhadap benda uji yang dibuat di Puslitbang Jalan. 5). Survei data lalu lintas harian.

6). Pengolahan data hasil pengujian ITSM dengan program BISAR untuk mencari prediksi umur layan.

3.4. Alat Pengujian

Alat yang digunakan dalam penelitian antara lain :

1) Satu set alat uji coring untuk mengambil sampel perkerasan jalan Brigjend Katamso.

2) Alat Uji Berat Jenis Agregat Kasar

Peralatan yang digunakan untuk pengujian berat jenis agregat kasar terdiri dari:

a. Timbangan kapasitas 5 kg dengan ketelitian 100 mg. b. Bejana

c. Tangki air d. Ayakan

3) Alat Uji Berat Jenis Filler

Peralatan yang digunakan untuk pengujian berat jenis filler terdiri dari:

a. Picnometer

(47)

e. Aquades

4) Alat uji Marshall ( di Laboratorium Jalan Raya UNS ) Peralatan yang dipakai untuk pengujian Marshall yaitu: a. Kepala penekan berbentuk lengkung (Breaking Head)

b. Cincin penguji kapasitas 2500 kg (5000 lbs) dengan ketelitian 12,5 kg (25 lbs), dilengkapi dengan arloji tekan dengan ketelitian 0,0025 cm (0,0001”) c. Arloji penunjuk kelelahan dengan ketelitian 0,0025 cm (0,001”) dan

perlengkapannya

d. Cetakan benda uji berbentuk silinder dengan diamter 10 cm, tinggi 7,5 cm (3 inch) lengkap dengan alat pelat atas dan leher sambung

e. Oven yang dilengkapi dengan pengatur suhu untuk memanasi sampai 200oC

f. Bak perendam (waterbath) dilengkapi dengan pengatur suhu minimum 20oC

5) Alat Penunjang

Alat penunjang diperlukan terdiri dari: a. Cetakan benda uji (mould)

b. Alat penumbuk (compactor) yang mempunyai permukaan tumbuk rata berbentuk silinder, dengan berat 4,536 kg (10 lbs), tinggi jatuh bebas 45,7 cm (18 inch).

(48)

d. Timbangan yang dilengkapi dengan penggantung benda uji berkapasitas 2 kg dengan ketelitian 1 gr.

e. Pengukur suhu berkapasitas 250o C. f. Dongkrak untuk melepas benda uji.

g. Alat lain seperti panci, kompor, sendok, spatula dan sarung tangan.

Pada penelitian ini digunakan Material Testing Apparatus (MATTA) di Puslitbang Jalan Bandung, meliputi:

6) Alat Uji Indirect Tensile Strength (ITS)

7) Alat Uji Indirect Tensile Stiffness Modulus (ITSM)

3.5. Bahan Penelitian

Bahan yang digunakan dalam penelitian terdiri dari : a. Agregat

Dalam penelitian ini digunakan agregat yang berasal dari PT. Bangun Persada, daerah Masaran, Kab. Sragen dengan nilai abrasi 24,6 %. Sifat – sifat telah diuji di Laboratorium Bahan Fakultas Teknik UNS.

b. Aspal

Digunakan aspal panas dengan nilai penetrasi 60/70 dengan sifat – sifat yang telah diteleiti di Laboratorium Perkerasan Jalan Raya UNS.

3.6. Prosedur Pengujian Karakteristik Bahan

3.6.1. Pengujian Aspal

(49)

3.6.2. Pengujian Berat Jenis Agregat Kasar

Langkah pengujian berat jenis agregat kasar sebagai berikut : a. Mengambil kerikil kering oven

b. Menimbang kerikil seberat 5000 gr (A)

c. Memasukkan kerikil ke dalam container dan direndam selama 24 jam d. Setelah 24 jam, container dan kerikil ditimbang dalam keadaan

terendam air (B)

e. Mengangkat container dari dalam air kemudian mengeringkan kerikil dengan dilap.

f. Menimbang kerikil dalam kondisi SSD (E) g. Menimbang container dalam air (C)

h. Menghitung berat agregat dalam air dengan cara mengurangkan hasil penimbangan langkah ke-4 dengan berat container (D).

3.6.3. Pengujian Berat Jenis Filler

Langkah untuk pengujian berat jenis filler sebagai berikut :

a. Timbang picnometer dalam keadaan kosong dan kering (a gram) b. Picnometer diisi aquades sampai penuh lalu ditimbang dan suhunya

diukur (b gram).

c. Picnometer diisi contoh filler yang telah dioven selama 24 jam (contoh dimasukkan ke dalam picnometer sebanyak 1/3 volume picnometer). d. Picnometer yang telah berisi filler ditimbang (c gram).

(50)

f. Selanjutnya picnometer diketuk – ketuk sampai gelembung udara tidak ada dalam air, aquades kelihatan jernih kemudian diisi aquades sampai penuh dan ditimbang (d gram).

g. Mengukur suhu aquades dalam picnometer.

3.7. Jumlah Benda Uji

Untuk mendapatkan hasil penelitian, maka dilakukan pembuatan benda uji. Benda uji kondisi eksisting dan benda uji campuran baru (fresh) untuk pengujian Marshall dan ITS dan ITSM masing – masing 3 benda uji.

3.8. Prosedur Pengujian Benda Uji

3.8.1. Pengujian Marshall

Benda uji yang telah dibuat, dilakukan pengujian dengan alat uji Marshall dengan langkah sebagai berikut:

a. Benda uji dibersihkan dari kotoran yang menempel. b. Benda uji diberi tanda pengenal.

c. Tiap benda uji diukur tingginya 4 kali pada tempat yang berbeda kemudian dirata – rata dengan ketelitian 0,1 mm.

d. Benda uji ditimbang dalam keadaan kering.

(51)

f. Kepala penekan Marshall dibersihkan dan permukaannya diolesi dengan oli agar benda uji mudah dilepas.

g. Setelah benda uji dikeluarkan dari waterbath, segera diletakkan pada alat uji Marshall yang dilengkapi dengan arloji kelelahan (flow meter) dan arloji pembebanan/stabilitas.

h. Pembebanan dilakukan sampi mencapi kondisi maksimum, yaitu pada saat arloji pembebanan berhenti dan berbalik arah, saat itu pula flow meter dibaca.

i. Benda uji dikeluarkan dari alat uji Marshall dan pengujian benda uji berikutnya mengikuti prosedur di atas.

3.8.2. Pengujian Indirect Tensile Strength (ITS)

Pengujian ITS dilaksanakan dengan prosedur menurut BS-99/108553 BS EN 12697-23. ” Determination of Indirect Tensile Strength of Bitumens Specimens” (BSI 1999). Test ini dilakukan dengan suhu standar 30oC. Langkah pengujian ITS sebagai berikut:

a. Membersihkan benda uji dari kotoran yang menempel.

b. Mengkondisikan suhu ruang pegujian dan benda uji sesuai dengan suhu yang dikehendaki.

(52)

d. Membaca dial ITS, deformasi horizontal kanan dan kiri, dan deformasi vertikal pada dial flow.

3.8.3. Pengujian Indirect Tensile Stiffness Modulus (ITSM) Langkah pengujian ITSM sebagai berikut:

a. Membersihkan benda uji dari kotoran yang menempel.

b. Mengkondisikan suhu ruang dan benda uji sesuai dengan suhu yang dikehendaki.

c. Mengatur besarnya beban yang akan dikenakan pada benda uji sehingga nilai coefisien varian kurang dari 5%.

d. Mengisi data – data benda uji pada komputer.

Selama pengujian, waktu dihitung mulai dari pembebanan sampai dengan angka maksimum yang telah diatur pada 124+/- 4 ms. Data yang dihasilkan pada tes ini langsung menunjukkan nilai stiffness modulus dari benda uji.

3.9. Prosedur Penggunaan Program Bisar

Analisa data menggunakan program BISAR dilakukan dengan langkah – langkah sebagai berikut:

1. Pilih menu project, new.

2. Masukkan dan tentukan jumlah roda single atau double. 3. Pilih data – data yang akan diinput, yaitu:

(53)

4. Masukkan data vertikal load/stress yang sudah dihitung sebelumnya diprogram Excel.

5. Masukkan radius, yaitu jari – jari contact area

6. Masukkan data y axis, yaitu jarak dari nilai separu lebar roda sampai dengan titik yang akan ditinjau arah horizontal.

7. Pada menu layer, masukkan data karakteristik setiap lapisan (tebal, poisson ratio, modulus elastisitas).

8. Pada menu position masukkan posisi yang akan ditinjau.

Gambar 3.1. Posisi peninjauan distribusi beban

(54)

3.10. Tahap Penelitian

Mulai

Perumusan masalah dan penetapan tujuan

Penyusunan metode penelitian

Pengumpulan Data : - Uji coring

- Lalu Lintas Harian Rencana - Jenis kerusakan yang terjadi - Material perkerasan

Pembuatan benda uji + benda uji coring

ITS ITSM

Analisis dengan BISAR

(55)

Gambar 3.2. Diagram alir tahap – tahap penelitian

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1. Hasil Pemeriksaan Bahan

4.1.1. Hasil Pemeriksaan Agregat

Pemeriksaan terhadap keausan dengan menggunakan mesin Los Angeles, berat jenis semu, dan penyerapan terhadap air dilakukan di laboratorium dengan hasil yang menunjukkan bahwa agregat yang diperiksa telah memenuhi syarat yang ditentukan. Hasil pemeriksaan bahan ditampilkan pada Tabel 4.1.

Tabel 4.1. Hasil pemeriksaan agregat

No Jenis pemeriksaan Syarat * Hasil

1

Keausan dengan menggunakan

mesin Los Angeles max. 40% 24,6 %

2 Peresapan terhadap air max. 3% 2,9 %

3 Berat jenis semu agregat kasar min. 2,5 2,75

4 Berat jenis semu agregat halus min. 2,5 2,81

Ket : * AASHTO T96-7

(56)

4.1.2. Hasil Pemeriksaan Aspal

Adapun sifat yang diperiksa yaitu penetrasi aspal, titik lembek, titik nyala, titik bakar, daktilitas dan berat jenis aspal. Dari hasil pemeriksaan ini diketahui bahwa aspal memenuhi syarat untuk dijadikan bahan pengikat. Hasil pemeriksaan aspal ditampilkan pada Tabel 4.2.

Tabel 4.2. Hasil pemeriksaan aspal

No Jenis pemeriksaan Syarat Hasil

1 Penetrasi 100 gr, 25 °C, 5 detik (0,1mm) 60-79 70.6

2 Titik Lembek ( °C ) 48 - 58 51

3 Titik Nyala ( °C ) > 200 282,5

4 Titik Bakar ( °C ) > 201 317

5 Daktilitas, 25 °C, 5 cm/menit ( cm ) > 100 >150

6 Berat jenis ( gr/cc ) > 1 1,0226

Sumber : Dwi Eko, 2006

4.1.3. Hasil Pemeriksaan Filler

(57)

4.2. Data Eksisting Jalan

4.2.1. Struktur Perkerasan Jalan

Ruas jalan Brigjend Katamso Surakarta merupakan perkerasan tipe AC (Asphalt Concrete). Di bawah lapisan permukaan terdapat dua lapis pondasi yaitu lapis pondasi atas dan lapis pondasi bawah. Lapis pondasi atas jalan merupakan lapisan struktur utama di atas lapis pondasi bawah (atau di atas lapis tanah dasar apabila tidak dipasang lapis pondasi bawah). Sedangkan lapis pondasi bawah adalah lapisan konstruksi yang meneruskan beban dari lapis pondasi atas. Lapis terbawah adalah lapis tanah dasar (sub grade). Ketebalan masing – masing untuk ruas jalan Brigjend. Katamso sebagai berikut :

Surface course (wearing+ binder course) = 5 cm*

Base course ( pondasi atas ) = 20 cm*

Sub base course ( pondasi bawah ) = 30 cm**

Ket : * Coring ** Bina Marga

(58)

Pengujian Marshall dilakukan terhadap benda uji hasil coring untuk mendapatkan nilai stabilitas. Kemudian dilakukan perhitungan untuk mendapatkan Marshall quotient. Pengujian sampel pertama mendapatkan nilai stabilitas 75 lb dan flow 5,9 mm.

Pembacaan stabilitas = 75 lb

Tabel 4.3 Data Hasil Marshall test sampel kondisi perkerasan eksisting

(59)

3 68 4,7 5,05 1,47 933,74 1372,59 292,04

Rata - rata 1415,97 280,17

Kemudian dilakukan pengujian extraction test untuk mengetahui kadar aspal dan gradasi agregat yang digunakan. Data ini akan dibandingkan dengan data pengujian di laboratorium (kondisi perencanaan) untuk mengetahui berapa persen kerusakan yang sudah terjadi dan seberapa besar kemampuan perkerasan untuk menahan beban.

Perhitungan kadar aspal sampel kondisi eksisting:

a Berat bowl extraction = 1693,5 gr

b Berat bowl extraction dan benda uji sebelum extraction = 2392 gr c Berat bowl extraction dan agregat hasil extraction = 2334,5 gr d Berat benda uji sebelum di extraction (b-a) = 698,5 gr e Berat agregat setelah di extraction (c-a) = 641 gr f Berat filter sebelum dipakai = 46,5 gr g Berat filter setelah dipakai = 49 gr

h Selisih berat filter (g-f) = 2,5 gr

i Berat mangkuk penguapan = 324,5 gr

j Berat mangkuk penguapan + abu = 356 gr k Berat abu dalam mangkuk penguapan (j-i) = 31,5 gr l Berat total agregat (e + h + k) = 675 gr m Berat aspal dalam campuran (d-l) = 23,5 gr n Prosentase aspal dalam campuran = 3,36 %

(60)

Tabel 4.4 Data analisa saringan extraction test sampel perkerasan eksisting 1

Sieve No 3/4” 1/2” 3/8” #4 #8 #30 #50 #100 #200 Pan Total

Berat tertahan 0 60 64 107,3 66 89 67 47,4 54 23,5 578,2

% tertahan 0 10,4 11,1 18,6 11,4 15,4 11,6 8,2 9,4 3,9 100

% lolos 100 89,6 78,5 59,9 48,5 33,1 21,5 13,3 3,9 0

JMF 100 74 56 37 25 13 9 6,5 3,5 0

Tabel 4.5 Data analisa saringan extraction test sampel perkerasan eksisting 2

Sieve No 3/4” 1/2” 3/8” #4 #8 #30 #50 #100 #200 Pan Total

Berat tertahan 0 66 81 174 91 168 59 69 40 56 804

% tertahan 0 8,2 10,1 21,6 11,3 20,9 7,3 8,6 4,9 7,1 100

% lolos 100 91,8 81,7 60,1 48,8 27,9 20,6 12 7,1 0

JMF 100 74 56 37 25 13 9 6,5 3,5 0

4.2.2. Data Lalu Lintas

Penelitian mengenai lalu lintas yang melewati ruas jalan Brigjend Katamso dilakukan dengan cara survei untuk menganalisis kinerja perkerasan pada ruas jalan tersebut. Selain itu juga mengumpulkan data lalu lintas kepada pihak-pihak yang terkait seperti Bina Marga.

(61)

Lalu Lintas Harian Rata-rata yang diperoleh dari survei disajikan dalam Tabel 4.6.

Tabel 4.6 Lalu Lintas Harian Rata-Rata Tahun 2007

Jenis Kendaraan Jumlah Kendaraan

MOBIL PENUMPANG 2329

Pick up 2291

TRUK KECIL 2061

BUS BESAR 13

TRUK 3/4 2 AS 737

TRUK FUSO 770

TRUK GANDENG 23

TRAILER1,2-2 328

TRAILER 1,2-2,2 173

Sumber : Prasetyo, 2008

(62)

105229,39 233458,57

4.3. Penentuan Kondisi Perkerasan Jalan

4.3.1. Kondisi Perkerasan Jalan

(63)

Gambar 4.2 Lokasi Penelitian

Gambar 4.3 Jenis kerusakan (1) retak kulit buaya, (2) pergeseran (shoving), (3) amblas, (4) gelombang

Kerusakan yang terjadi pada ruas jalan Brigjend. Katamso dapat ditunjukkan pada Tabel 4.7.

U

1 1

2

(64)
(65)

Beban yang berlebihan (overloading) pada ruas jalan tersebut kemungkinan penyebab kerusakan. Perkerasan yang tidak kuat menahan beban menyebabkan terjadinya pergeseran aspal sepanjang ruas jalan Brigjend Katamso.

Jembatan timbang yang ada tidak berpengaruh terhadap penertiban jumlah beban yang dapat diangkut oleh kendaraan. Kebijakan pembatasan muatan harus benar – benar diterapkan sehingga perkerasan jalan tidak akan mengalami kerusakan yang besar yang berakibat kurang nyaman dan aman untuk melintasi ruas jalan tersebut. ( Faishal, 2008)

Kondisi lingkungan diruas jalan Brigjend Katamso juga berpengaruh terhadap kerusakan yang terjadi pada ruas jalan tersebut. Drainase yang tertutup beton berakibat terjadinya genangan pada musim hujan yang akhirnya akan menyebabkan kerusakan pada lapis permukaan seperti retak, lubang. Kendaraan yang mengerem dan berhenti di lampu merah kemudian melakukan akselerasi awal saat lampu hijau membuat perkerasan mengalami pergeseran.

4.3.2. Analisis Kondisi Perkerasan

(66)

1. Membuat catatan kondisi dan kerusakan jalan seperti ditunjukkan pada Tabel 4.8.

Tabel 4.8. Catatan Kondisi dan Hasil Pengukuran Kerusakan

Sta Kelas Ukuran

2. Memasukkan nilai luasan kerusakan ke dalam tabel PCI (Tabel 4.9.) untuk selanjutnya memasukkan nilai densitas kerusakan, mencari deduct value (DV), mencari corrected deduct value (CDV) dan

menghitung nilai kondisi perkerasan (PCI). Perhitungan segmen lainnya dapat dilihat pada Lampiran.

(67)

SURVAI PEMELIHARAN JALAN

* Mencari densitas = ( Total Kuantitas Kerusakan / Luas Segmen ) x 100%

PERHITUNGAN NILAI KONDISI PERKERASAN ( PCI ; Pavement Condition Index )

Jenis Kelas Total Kuantitas Densitas* Deduct

Tabel 4.10. Nilai PCI Rata – Rata Ruas Jalan

(68)

1. Sta.0+00 s/d 0+100 36 Poor

2. Sta.0+100 s/d 0+200 32 Poor

3. Sta.0+200 s/d 0+300 48 Fair

4. Sta.0+300 s/d 0+400 60 Good

5. Sta.0+400 s/d 0+500 65 Good

6. Sta.0+500 s/d 0+600 37 Poor

7. Sta.0+600 s/d 0+700 29 Poor

Total 307

Rata - rata PCI 43,86 Fair

Rata – rata PCI yang diperoleh kemudian dimasukkan ke dalam parameter Indeks dan Kondisi Lapis Permukaan Jalan sehingga didapatkan tingkat kerusakan jalan. Dari nilai rata – rata PCI 43,86 didapatkan kondisi jalan Fair. Tetapi pada beberapa segmen perlu segera untuk dilakukan perbaikan agar kerusakan tidak semakin parah.

4.4. Hasil Pengujian Benda Uji Gradasi Bina Marga

Gradasi agregat yang digunakan berasal dari gradasi standar Bina Marga DPU Surakarta untuk Asphalt Concrete (AC).

Tabel 4.11. Persen berat lolos agregat gradasi Bina Marga

Ukuran ayakan Syarat Persen berat lolos

(69)

inch mm

Gambar 4.4 Grafik gradasi AC Tipe Bina Marga

(70)

dilakukan menggunakan Marshall Test untuk menentukan ketahanan (stabilitas) terhadap kelelahan plastis pada campuran aspal.

Dari pengujian Marshall didapat nilai stabilitas, flow, porositas, densitas dan Marshall quotient. Nilai stabilitas menunjukkan kemampuan perkerasan untuk

menahan deformasi akibat beban yang bekerja. Kebutuhan akan stabilitas meningkat seiring bertambahnya beban kendaraan pada lalu lintas yang melintasinya. Volume lalu lintas yang tinggi membutuhkan stabilitas yang besar.

Kelelahan/flow menunjukkan besarnya deformasi yang terjadi akibat beban yang bekerja pada sampel. Nilai kelelahan dipengaruhi oleh plastisitas aspal. Sifat plastis aspal yang tinggi akan menghasilkan campuran yang semakin fleksibel.

Nilai porositas yang tinggi menunjukkan banyaknya pori yang terdapat pada campuran aspal. Semakin bertambah kadar aspal maka kadar pori yang terdapat pada campuran aspal akan semakin berkurang. Densitas menunjukkan kepadatan campuran. Besarnya densitas berbanding terbalik dengan nilai porositas.

Tabel 4.12. Data lapis perkerasan jalan Brigjend. Katamso Kota Surakarta

Lapisan Tebal (cm) Modulus Elastisitas (Mpa)

Surface Course (AC) 5* Perkerasan Eksisting = 2898,333

Kondisi Perencanaan = 3212,333

Base Course 20* 940

Sub Base Course 30** 550

Sub Grade - 60

Ket : * Coring

(71)

Tabel 4.13. Hasil uji Marshall gradasi Bina Marga ( kondisi perencanaan )

Tabel 4.14. Rekapitulasi hasil uji Marshall gradasi Bina Marga

Data Kadar aspal ( % ) Spesifikasi

Marshall 6,7

Densitas (gr/cc) 2,363 2 – 3

Porositas (%) 5,206 3 – 5

Stabilitas (kg) 1495,808 min 550

Flow (mm) 4,3 2 - 4

MQ (kg/mm) 348,946 200 - 350

Sedangkan hasil uji ITS yang dilakukan di Puslitbang Jalan DPU di Bandung untuk benda uji sesuai gradasi standar Bina Marga ditunjukkan pada Tabel 4.15.

Tabel 4.15. Hasil uji ITS berdasar gradasi Bina Marga

Kode Diameter Tebal Koreksi Dial Kalibrasi ITS

Benda uji Rata-Rata Tebal

(72)

ITS Lab1 10,160 5,671 1,208 68 406,584 532,870

ITS Lab2 10,160 5,826 1,155 69 400,605 502,982

ITS Lab3 10,160 5,696 1,221 67 340,813 528,000

Rata-rata 521,284

Gambar benda uji sebelum dan sesudah pengujian Indirect Tensile Strength pada Gambar 4.5.

Sebelum pengujian Setelah pengujian

Gambar 4.5 Benda uji kondisi perencanaan sebelum dan sesudah pengujian ITS

Seperti terlihat pada gambar benda uji setelah pengujian ITS bahwa pada permukaan benda uji mengalami retak atau kerusakan karena adanya beban tarik yang diberikan pada benda uji tersebut. Hasil uji Indirect Tensile Strength yang dilakukan di Puslitbang Jalan DPU di Bandung sampel kondisi eksisting dilihatkan pada Tabel 4.16.

Tabel 4.16. Hasil uji ITS sampel kondisi eksisting

Kode Diameter Tebal Koreksi Dial Kalibrasi ITS

Sampel Rata-rata Tebal

(cm) (cm) (lb) (kg) (Kpa)

ITS CD1 10,160 5,017 1,505 42 251,126 463,431

ITS CD2 10,160 5,134 1,443 49 292,980 506,504

(73)

Gambar sampel kondisi eksisting sebelum dan sesudah pengujian ITS pada Gambar 4.6 dan Gambar 4.7.

Gambar 4.6 Sampel kondisi eksisting sebelum pengujian ITS

Gambar 4.7 Sampel kondisi eksisting setelah pengujian ITS

Seperti terlihat pada gambar bahwa sampel kondisi eksisting mengalami kerusakan setelah pengujian lebih besar dibanding dengan benda uji kondisi perencanaan. Hal ini di karenakan benda uji kondisi eksisting yang sudah termakan usia jalan serta berbagai pengaruh dari lingkungan di sekitar jalan tersebut. Sehingga perkerasan jalan Brigjend Katamso harus segera dilakukan perbaikan untuk meningkatkan daya dukung perkerasan, yang diharapkan dapat menahan beban yang lebih besar

4.5. Perbandingan Kondisi Eksisting dan Lab

(74)

Tabel 4.17. Perbandingan uji Marshall perkerasan kondisi eksisting

dengan kondisi perencanaan

Stabilitas (kg) Kadar aspal (%) No

Eksisting Perencanaan Eksisting Perencanaan

1 1029,85 1506,886 3,36 6,7

2 961,19 1587,358 3,27 6,7

Rata-rata 995,52 1480,176 3,32 6,7

Benda uji kondisi eksisting setelah dilakukan uji extraction didapat kadar aspal 3,32%. Kadar aspal yang rendah tersebut diakibatkan pelayanan selama umur jalan. Dari tabel di atas terlihat bahwa stabilitas kondisi eksisting lebih rendah dibanding benda uji kondisi perencanaan masing – masing 1029,85 kg dan 961,19 kg, akibatnya perkerasan tidak kuat menahan beban yang ada. Sehingga perlu segera dilakukan pemeliharaan perkerasan jalan untuk meningkatkan daya dukung perkerasan.

Tabel 4.18. Perbandingan uji ITS perkerasan kondisi eksisting dan

kondisi perencanaan

ITS (kPa) Kadar aspal (%) No

Eksisting Perencanaan Eksisting Perencanaan

1 463,431 532,870 3,36 6,7

2 506,504 528,000 3,27 6,7

Rata-rata 484,967 530,435 3,32 6,7

(75)

bahwa nilai ITS sampel kondisi eksisting lebih rendah di banding benda uji kondisi perencanaan masing – masing 484,967 kPa dan 530,435 kPa. Sehingga struktur perkerasan tidak akan mampu menahan beban yang bekerja yang berakibat terjadinya kerusakan struktur perkerasan.

Penurunan kadar aspal antara pekerasan kondisi eksisting dan kondisi perencanaan mencapai 49,55 %. Untuk mencegah agar tidak terjadi kerusakan perkerasan yang lebih besar, maka perlu segera dilakukan perbaikan atau pemeliharaan terhadap ruas jalan Brigjend. Katamso sehingga akan didapat suatu jalan yang aman dan nyaman.

4.6. Analisa BISAR

Dari hasil pengujian ITSM didapat nilai modulus elastisitas sebagai input data pemakaian program BISAR. BISAR menghitung besarnya stress, strain dan displacement berdasarkan beban vertikal dan tegangan vertikal pada satu bidang

contact area untuk disebarkan oleh tiap lapis perkerasan. Hasil analisa BISAR

ditampilkan pada Tabel 4.20 sampai dengan Tabel 4.22 dan Gambar 4.9 sampai Gambar 4.13.

Tabel 4.19. Hasil Analisa ITS dan ITSM

(76)

Gambar 4.8. Struktur eksisting perkerasan dan titik peninjauan BISAR

Tabel 4.20. Hasil perhitungan horisontal dan vertikal stress

Position Stress YY Stess ZZ

Number Eksisting Perencanaan Eksisting Perencanaan

(MPa) (MPa) (MPa) (MPa)

1 -9,83E+00 -1,04E+01 -5,77E+00 -5,77E+00

2 -1,48E+00 -1,53E+00 -1,83E-01 -1,96E-01

3 1,01E+00 1,51E+00 -4,84E+00 -4,77E+00

4 -1,43E+00 -1,38E+00 -4,84E+00 -4,77E+00

5 -3,46E-01 -3,31E-01 -6,89E-01 -6,88E-01

6 5,34E-01 5,35E-01 -8,53E-01 -8,42E-01

7 1,22E-01 1,25E-01 -8,53E-01 -8,42E-01

8 1,51E-01 1,52E-01 -1,96E-01 -1,94E-01

9 4,41E-01 4,38E-01 -8,55E-02 -8,44E-02

(77)

-1,20E+01

Gambar 4.9. Hasil perhitungan horisontal stress

-6,00E+00

Gambar 4.10. Hasil perhitungan vertikal stress

Tabel 4.21. Hasil perhitungan horisontal dan vertikal strain

Position Strain YY Strain ZZ

(78)

mstrain mstrain mstrain mstrain

(79)

-4,50E+02

Gambar 4.12. Hasil perhitungan vertikal strain

Tabel 4.22. Hasil perhitungan displacement

Position Displacement UZ

Number Eksisting Perencanaan

(80)

0,00E+00

Gambar 4.13. Hasil perhitungan displacement

Semakin besar nilai horizontal strain, maka pada titik tersebut merupakan posisi kritis. Pertemuan antara dua material (pada sambungan) yang memiliki nilai modulus kekakuan yang berbeda juga menyebabkan posisi tersebut merupakan posisi kritis. Posisi kritis nilai horizontal strain terjadi pada bagian bawah wearing course yang ditunjukkan pada posisi 3 dan bagian atas lapis pondasi atas yang

ditunjukkan posisi 4. Nilai horizontal strain yang terjadi pada wearing course menyebabkan lapisan tersebut mengalami deformasi. Kemampuan perkerasan untuk menahan besarnya regangan akan mempengaruhi umur dari wearing course. Semakin kecil nilai horizontal strain, maka ketahanan perkerasan akan lebih tinggi (durable).

(81)

menyebabkan pada lapisan tersebut menjadi lemah sehingga akan terjadi retak. Sementara pada bagian atas dari sub grade (posisi 10) nilai vertical strain untuk sampel kondisi eksisting dan benda uji kondisi perencanaan masing – masing -1,51E+02 mstrain dan -1,49E+02 mstrain. Hal ini menunjukkan bahwa pada bagian atas dari subgrade terjadi deformasi. Sehingga perlu segera dilakukan perbaikan pada lapisan perkerasan di atas lapisan subgrade agar pada lapisan subgrade tidak mengalami kerusakan atau deformasi yang lebih besar.

4.7. Prediksi Usia Layan

Dari hasil stress dan strain dari program BISAR, dapat dihitung usia layan perkerasan dengan Rumus 2.6.

Tabel 4.23. Hasil prediksi umur layan surface course

Kondisi Eksisting Perencanaan

a 1,86E+17 1,86E+17

b 1,01996 1,01996

c 4,995 4,995

d1 1,45 1,45

q 86 86

Horizontal strain 8,26E+01 8,09E+01

Nf (Prediksi umur layan) MSA 5,82E+08 6,46E+08

Gambar

Tabel 2.1. Kelas Kerusakan Jalan
grafik CDV dengan cara menarik garis vertikal pada nilai TDV sampai
Gambar 2.4.  Indeks dan Kondisi Lapis Permukaan Jalan
Gambar 2.5.  Alat uji Indirect Tensile Strength
+7

Referensi

Garis besar

Dokumen terkait

Berdasarkan monitoring permohonan perizinan peralatan sampai Triwulan IV tahun 2008, jumlah pemohon Izin Pemasukan dan Penggunaan Peralatan IUPHHK-HA sesuai Peraturan Menhut Nomor

Beliau menuturkan bahwa agama akan negatif terhadap wisata walaupun tujuan baik untuk menyenangkan manusia dan masyarakat tetapi dilakukan dengan cara-cara yang menyimpang

Sedangkan dari hasil analisis (NASA-TLX) pada pekerja diperoleh skor rata-rata sebesar 79, 29 % yang dikategorikan sebagai pekerjaan dengan beban kerja

Terlihat bahwa siklus II kegiatan guru dan siswa sudah melaksanakan pembelajaran dengan menerapkan model kontekstual dengan berbantuan media benda konkret secara

Berdasarkan seluruh analisis di atas dapat diketahui bahwa pembelajaran dengan metode pembelajaran Two Stay Two Stray (TSTS) dengan media LKS dan molymod dapat

Penggunaan metode secara molekular dilakukan karena dapat mendeteksi suatu organisme lebih spesifik yaitu dengan menggunakan DNA, selain itu waktu yang digunakan

Tujuan penelitian ini adalah melakukan evaluasi permasalahan yang terjadi di lapangan dengan dilaksanakan perencanaan bangunan groundsill di bagian hilir Bendung

It is necessary to investigate the learning styles at the eighth grade students in Junior High School 20 Pekanbaru based on Visual, Auditory and Kinesthetic