• Tidak ada hasil yang ditemukan

BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord.

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord."

Copied!
13
0
0

Teks penuh

(1)

Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan

linear, matriks diperbesar adalah salah satu cara untuk meringkas suatu sistem persamaan linear, matriks ini pula yang digunakan untuk menyelesaikan sistem tersebut dengan berbagai metode yaitu metode invers matriks, eliminasi gauss, metode crammer. Untuk mempermudahkan proses tersebut penyelesaian digunakan bantuan aplikasi maple 10

Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow,

mulrow, gausselim, gaussjord.

I. PENDAHULUAN

Informasi dalam bidang sains dan matematika seringkali ditampilkan dalam bentuk baris-baris dan kolom-kolom yang membentuk jajar empat persegi panjang

yang disebut “matriks” Matriks seringkali merupakan tabel-tabel data numerik yang

diperoleh melalui pengamatan fisik, tetapi dapat juga muncul dalam berbagai macam konteks matematis.

Charless (1993: 49) mendefinisikan matriks adalah suatu bilangan yang berbentuk persegi panjang. Cara yang biasa digunakan untuk menuliskan sebuah matriks dengan m baris dan n kolom, dan salah satu cara aplikasi penggunaaan matriks untuk mempersingkat sistem persamaan linear cara seperti ini disebut matriks diperbesar (Rorres, 2004: 25).

Aplikasi matriks yang disusun dalam bentuk matriks diperbesar banyak mengilhami penyelesaian sistem persamaan linear, penyelesaian tersebut meliputi aturan Crammer, Eliminasi Gauss, Invers Matriks, dalam penggunaan metode-metode tersebut digunakan berbagai sifat-sifat operasi matriks.

II. PEMBAHASAN

A. Sitem Persamaan Linear

Suatu sistem sebarang dari m persamaan linear dengan n faktor yang tidak diketahui dapat dituliskan sebagai:

(2)

dimana x1, x2, ... xn adalah faktor yang tidak diketahui, dan a dan b dengan subskrip

merupakan konstanta. Sebagai contoh, suatu sistem umum yang terdiri dari tiga persamaan linear dengan empat faktor yang tidak diketahui dapat ditulis sebagai:

Penulisan dua subkrip pada koefisien yang tidak diketahui merupakan yang berguna untuk menyatakan lokasi koefisien dalam sistem tersebut. Subkrip yang pertama pada koefisien aijmenunjukkan persamaan di mana koefisien tersebut berada

dan subskrip yang kedua menunjukkan faktor yang tidak diketahui yang dikalikan dengan koefisien tersebut. Sehingga a12 terletak pada persamaan pertama dan

dikalikan dengan faktor yang tak diketahui x2.

B. Matriks yang Diperbesar

Jika kita dapat mengingat lokasi-lokasi dari +, x dan =, maka suatu sistem persamaan linear yang terdiri dari m peramaan dengan n faktor yang tidak diketahui dapat disingkat dengan hanya menuliskan deretan bilangan-bilangan dalam jajaran empat persegi panjang.

Ini disebut Matriks diperbesar (augment matrix) dari sistem tersebut, (Istilah matriks) digunakan dalam matematika untuk menyatakan jajaran empat persegi panjang dari bilangan-bilangan. Matriks muncul dalam banyak konteks, khususnya dalam penyelesaian sistem persamaan linear.

C. Alternatif Penyelesaian Sistem Persamaan Linear Secara Numerik dengan Maple

1. Invers Matriks

Rorres (2004: 66), Jika A adalah suatu matriks n x n yang dapat dibalik, maka untuk setiap matriks b, n x 1, sistem persamaan Ax=b memiliki tepat satu solusi, yaitu x = A-1b. A dapat dibalik (det (A) 0).

Contoh: 1

Perhatikan sistem persamaan linear

(3)

Dengan menggunakan maple kita dapat menghitung invers (A). > with(linalg): > A:=Matrix(<< 1 | 2 | 3 >,< 2 | 5 | 3 >,< 1 | 0 | 8 >>); > det(A); −1 > invA:=inverse(A); > b:=Vector[column](< 5,3,17 >); > x:=evalm(invA&*b);

Dari hasil tersebut diperoleh nilai

Kelemahan yang terjadi pada metode ini, sistem persamaan linear yang mempunyai solusi banyak tidak dapat diselesaikan karena matriks yang dibentuk tidak mempunyai invers.

2. Metode Crammer

Rorres (2004: 123), Jika Ax = b adalah suatu sistem dari n persamaan lineat dengan n faktor yang tidak diketahui sedemikian sehingga det 0, maka sistem ini memiliki solusi yang unik, solusinya adalah

di mana Aj adalah matriks yang diperoleh dengan mengganti entri-entri pada kolom

ke-j dari A dengan entri-entri pada matriks.

A :=

é

ê

ê

êê

ë

1

2

3

2

5

3

1

0

8

ù

ú

ú

úú

û

invA :=

é

ê

ê

êê

ë

K40 16

9

13

K5 K3

5

K2 K1

ù

ú

ú

úú

û

b :=

é

ê

ê

êê

ë

5

3

17

ù

ú

ú

úú

û

x := [ 1 K1 2 ]

(4)

Contoh: 2

Dengan menggunakan aturan Crammer untuk menyelesaikan:

Penyelesaian: >with(linalg); >egns:={x+2*z=6,-3*x+4*y+6*z=30,-x-2*y+3*z=8}; > A:=genmatrix(egns,[x,y,z],flag); > egns:={x+2*z=6,-3*x+4*y+6*z=30,-x-2*y+3*z=8}; > p:=genmatrix(egns,[x,y,z],flag); > M := Matrix(3,4,[[1,0,2,6],[-3,4,6,30],[-1,-2,3,8]]); > A:=SubMatrix(M,[1,2,3],[1,2,3]);

egns := {x C 2 z = 6, K3 x C 4 y C 6 z = 30, Kx K 2 y

C 3 z = 8 }

A :=

é

ê

ê

êê

ë

1

0

2

6

K3

4

6 30

K1 K2

3

8

ù

ú

ú

úú

û

egns := {x C 2 z = 6, K3 x C 4 y C 6 z = 30, Kx K 2 y

C 3 z = 8 }

p :=

é

ê

ê

êê

ë

1

0

2

6

K3

4

6 30

K1 K2

3

8

ù

ú

ú

úú

û

M :=

é

ê

ê

êê

ë

1

0

2

6

K3

4

6 30

K1 K2

3

8

ù

ú

ú

úú

û

(5)

> Ax:=SubMatrix(M,[1,2,3],[4,2,3]); > Ay:=SubMatrix(M,[1,2,3],[1,4,3]); > Az:=SubMatrix(M,[1,2,3],[1,2,4]); > x:=det(Ax)/det(A); > y:=det(Ay)/det(A); > z:=det(Az)/det(A); Jadi nilai

Kesulitan terjadi pada saat penyelesaian mempunyai solusi banyak

A :=

é

ê

ê

êê

ë

1

0

2

K3

4

6

K1 K2

3

ù

ú

ú

úú

û

Ax :=

é

ê

ê

êê

ë

6

0

2

30

4

6

8 K2

3

ù

ú

ú

úú

û

Ay :=

é

ê

ê

êê

ë

1

6

2

K3 30

6

K1

8

3

ù

ú

ú

úú

û

Az :=

é

ê

ê

êê

ë

1

0

6

K3

4 30

K1 K2

8

ù

ú

ú

úú

û

x :=

K10

11

y :=

18

11

z :=

38

11

(6)

3. Eliminasi Gauss

Eliminasi Gauss diperkenalkan Karl Friendrich Gauss (1777 – 1855) dengan melakukan mengubah matriks diperbesar dari suatu sistem persamaan linear menjadi matriks eselon baris tereduksi. Rorres (2004: 13) setiap matriks memiliki bentuk eselon baris tereduksi yang unik; artinya kita akan memperoleh eselon baris tereduksi yang sama untuk matriks yang tertentu bagaimanapun variasi operasi baris yang

dilakukan. (Bukti hasil ini terdapat pada artikel “The Reduced Row Echelon Form of

a Matrix Is Unique: A Simple Proof,” oleh Thomas Yuster, Matematichs Maganize, Vol 57 No 2 1984: 93-94), Sebaliknya Bentuk eselon baris dari matriks tertentu adalah tidak unik: urutan-urutan operasi baris yang berbeda akan menghasilkan bentuk-bentuk eselon baris yang berbeda pula.

Algoritma Eliminasi Gauss (Rorres, 2004: 9) adalah: mengubah matriks menjadi matriks sehingga memenuhi sifat-sifat sebagai berikut:

(1) Jika satu baris tidak seluruhnya nol, maka bilangan tak nol pertama pada baris itu adalah 1. Bilangan 1 ini disebut 1 utama (leading 1).

(2) Jika terdapat baris yang seluruhnya terdiri dari nol, maka baris-baris ini akan dikelompokkan bersama-sama pada bagian paling bawah dari matriks.

(3) Jika terdapat dua baris berurutan yang tidak seluruhnya terdiri dari nol, maka 1 utama pada baris yang lebih rendah terdapat pada kolom yang lebih kanan dari 1 utama pada baris yang lebih tinggi.

(4) Setiap kolom yang memiliki 1 utama memiliki nol pada tempat-tempat lainya. Dari algoritma tersebut kita dapat menyelesaikan sistem persamaan linear berikut:

Contoh 3:

Dengan menggunakan eliminasi Gauss untuk menyelesaikan:

Penyelesaian:

> with(linalg):

> egns:={x+y+2*z=9,2*x+4*y-3*z=1,3*x+6*y-5*z=0};

Mengubah matriks menjadi matriks diperbesar

> A:=genmatrix(egns,[x,y,z],flag);

egns := {x C y C 2 z = 9, 3 x C 6 y K 5 z = 0, 2 x

C 4 y K 3 z = 1 }

A := é ê ê êê ë 1 1 2 9 3 6 K5 0 2 4 K3 1 ù ú ú úú û

(7)

Menambahkan -3 kali baris 1 ke baris 2 dari matriks A

> addrow(A,1,2,-3);

Menambahkan -2 kali baris 1 ke baris 3 dari matriks diatas (%)

> addrow(%,1,3,-2);

Mengalikan 1/3 pada baris 2 dari matriks diatas (%)

> mulrow(%,2,1/3);

Menambahkan -2 kali baris 2 ke baris 3 dari matriks diatas (%)

> addrow(%,2,3,-2);

Mengalikan 3 pada baris 3 dari matriks di atas (%)

> mulrow(%,3,3);

Menambahkan 11/3 kali baris 3 ke baris 2 dari matriks diatas (%)

> addrow(%,3,2,11/3); é ê ê êê ë 1 1 2 9 0 3 K11 K27 2 4 K3 1 ù ú ú úú û é ê ê êê ë 1 1 2 9 0 3 K11 K27 0 2 K7 K17 ù ú ú úú û é ê ê ê êê ë 1 1 2 9 0 1 K11 3 K9 0 2 K7 K17 ù ú ú ú úú û

é

ê

ê

ê

êê

ë

1

1

2

9

0

1

K11

3

K9

0

0

1

3

ù

ú

ú

ú

úú

û

é ê ê ê ê ê ê ë 1 1 2 9 0 1 K11 3 K9 0 0 1 3 1 ù ú ú ú ú ú ú û

(8)

Menambahkan -2 kali baris 3 ke baris 1 dari matriks diatas (%)

> addrow(%,3,1,-2);

Menambahkan -1 kali baris 2 ke baris 1 dari matriks diatas (%)

> addrow(%,2,1,-1);

Mengecek dengan perintah eliminasi gauss secara langsung.

> gaussjord(A);

Dari hasil di atas diperoleh hasil

Contoh 4:

Selesaikan sistem persamaan linear homgen berikut dengan menggunakan eliminasi Gauss-Jordan Penyelesaian: > with(linalg): > egns:={2*p+2*q-r+t=0,-p-q+2*r-3*s+t=0,p+q-2*r-t=0,r+s+t=0};

é

ê

ê

êê

ë

1

1

2

9

0

1

0

2

0

0

1

3

ù

ú

ú

úú

û

é

ê

ê

êê

ë

1

1

0

3

0

1

0

2

0

0

1

3

ù

ú

ú

úú

û

é

ê

ê

êê

ë

1

0

0

1

0

1

0

2

0

0

1

3

ù

ú

ú

úú

û

é

ê

ê

êê

ë

1

0

0

1

0

1

0

2

0

0

1

3

ù

ú

ú

úú

û

(9)

Menyatakan sistem persamaan ke matriks diperbesar

> A:=genmatrix(egns,[p,q,r,s,t],flag);

Menyatakan sistem persamaan ke matriks diperbesar dengan menghilangkan kolom terakhir

> B:=genmatrix(egns,[p,q,r,s,t]);

Menguji sistem persamaan apakah solusinya banyak.

> rank(A)-rank(B);

Menyelesaikan sistem persamaan dengan menggunakan eliminasi gauss

> gausselim(A);

Menyelesaikan sistem persamaan dengan menggunakan eliminasi gauss jordan

> gaussjord(A);

egns := {2 p C 2 q K r C t = 0, Kp K q C 2 r K 3 s C t = 0, r

C s C t = 0, p C q K 2 r K t = 0 }

A :=

é

ê

ê

ê

ê

êê

ë

2

2 K1

0

1

0

K1 K1

2 K3

1

0

0

0

1

1

1

0

1

1 K2

0 K1

0

ù

ú

ú

ú

ú

úú

û

B :=

é

ê

ê

ê

ê

êê

ë

2

2 K1

0

1

K1 K1

2 K3

1

0

0

1

1

1

1

1 K2

0 K1

ù

ú

ú

ú

ú

úú

û

0

é

ê

ê

ê

ê

ê

ê

ë

2

2 K1

0

1

0

0

0

1

1

1

0

0

0

0

K9

2

0

0

0

0

0

0

0

0

ù

ú

ú

ú

ú

ú

ú

û

(10)

Menentukan hasil penyelesaian dengan berbagai parameter.

> backsub(%);

Jadi solusi umumnya adalah

Kasus 1

Untuk nilai berapakah, sistem persamaan berikut:

Memiliki solusi trivial

Penyelesaian:

> with(linalg):

> egns:={(lambda-3)*x+y=0,x+(lambda-3)*y=0};

Mengubah matriks menjadi matriks diperbesar

> A:=genmatrix(egns,[x,y],flag);

Menyelesaikan sistem dengan eliminasi gauss jordan

> gausselim(A);

Menentukan nilai untuk sistem yang memiliki non trivial

> factor(-8-(lambda)^2+6*(lambda));

Menentukan hasil faktor dari sistem di atas.

> fsolve(%);

é

ê

ê

ê

ê

êê

ë

1

1

0

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

ù

ú

ú

ú

ú

úú

û

[ K_t

2

K _t

1

_t

2

K_t

1

0

_t

1

]

egns := { ( l K 3 ) x C y = 0, x C ( l K 3 ) y = 0 }

A :=

é

ê

ë

l K 3

1

0

1

l K 3 0

ù

ú

û

é

êê

ë

1

l K 3

0

0 K8 K l

2

C 6 l 0

ù

úú

û

K ( l K 2 ) ( l K 4 )

2., 4.

(11)

Kasus 2

Untuk nilai berapakah sistem berikut ini tidak memiliki solusi? Tepat hanya satu solusi? Takterhingga banyaknya solusi?

Penyelesaian:

> with(linalg):

> egns:={x+2*y-3*z=4,3*x-y+5*z=2,4*x+y+(a^2-14)*z=a+2};

> A:=genmatrix(egns,[x,y,z],flag);

> B:=gausselim(A);

Setelah dilakukan eliminasi gauss diperolah persamaan yaitu a2 – 16, selanjutnya

persamaan ini difaktorkan dengan perintah.

> factor(a^2-16);

> fsolve(%);

Nilai a = 4 dan a = -4 disubtitusi pada a2– 16 dan a – 4 diperoleh: > f := a -> (a^2-16); > f(4); 0 > f(-4);

egns := {x C 2 y K 3 z = 4, 3 x K y C 5 z = 2, 4 x C y

C ( a

2

K 14 ) z = a C 2 }

A :=

é

ê

ê

êê

ë

1

2

K3

4

3 K1

5

2

4

1

a

2

K 14 a C 2

ù

ú

ú

úú

û

B :=

é

ê

ê

êê

ë

1

2

K3

4

0 K7

14

K10

0

0

a

2

K 16 a K 4

ù

ú

ú

úú

û

( a K 4 ) ( a C 4 )

K4., 4.

f := a/a

2

K 16

(12)

0 > f := a -> (a-4); > f(4); 0 > f(-4); −8

Selanjutnya untuk nilai a = 4 yang diperoleh disubtitusi ke matriks hasil eliminasi gauss.

> M:=matrix(3,4,[1,2,-3,4,0,-7,14,-10,0,0,0,0]);

> gaussjord(M);

> backsub(%);

Dari hasil di atas menunjukkan bahwa untuk a = 4 diperoleh bahwa solusinya banyak.

> N:=matrix(3,4,[1,2,-3,4,0,-7,14,-10,0,0,0,-8]); > gaussjord(%);

f := a/a K 4

M :=

é

ê

ê

êê

ë

1

2 K3

4

0 K7

14 K10

0

0

0

0

ù

ú

ú

úú

û

é

ê

ê

ê

ê

ê

ê

ë

1

0

1

8

7

0

1 K2

10

7

0

0

0

0

ù

ú

ú

ú

ú

ú

ú

û

é

êë

8

7

K _t

1

10

7

C 2 _t

1

_t

1

ù

úû

N :=

é

ê

ê

êê

ë

1

2 K3

4

0 K7

14 K10

0

0

0

K8

ù

ú

ú

úú

û

(13)

> backsub(%);

Error, (in linalg:-backsub) inconsistent system

Untuk nilai a = -4 tidak ada solusi, sedangkan a untuk satu salusi.

III. KESIMPULAN

Berbagai cara yang digunakan untuk menentukan solusi suatu sistem persamaan linear, kelebihan dan kekurangan tersebut dapat ditutupi satu sama lain, tinggal kita sebagai pemakai jeli dalam mengaplikasikannya, perkembangan teknologi tidak membuat kita semakin malas untuk mencoba dengan cara manual, tetapi menjadi suatu tantangan dan menjadi alat pengetes dari apa yang kita peroleh dengan metode manual, terkadang ada persoalan-persoalan yang kita dapatkan tidak bisa diselesaikan dengan teknologi yang berkembang saat ini, demikian sebaliknya.

é

ê

ê

êê

ë

1

0

1

0

0

1 K2

0

0

0

0

1

ù

ú

ú

úú

û

Referensi

Dokumen terkait

Ada beberapa pengertian kegiatan reflektif dalam pembelajaran, (1) Kegiatan refleksi pembelajaran adalah sebuah kegiatan yang dilakukan dalam proses belajar mengajar

Dalam suatu sistem tenaga listrik banyak terdapat peralatan listrik yang harus dilindungi dari pengaruh surja Petir akan tetapi disini ditekankan pada suatu peralatan utama

Masih banyak perilaku oknum fiskus yang tidak terpuji dalam mengemban amanat sebagai abdi negara dan abdi masyarakat, yang akan berdampak negatif terhadap UU yang telah dibuat

Tulisan “APLIKASI ADMINISTRASI SISTEM UNTUK MENINGKATKAN KINERJA PEMELIHARAAN FULL MISSION SIMULATOR F-16A WING – 3 LANUD ISWAHJUDI” ini secara langsung telah merubah konsep

memberikan rahmatNya sehingga penulis dapat menyelesaikan skripsi yang berjudul “ Gambaran Gangguan Fungsi Paru Pada Pekerja Bagian Produksi yang Terpajan Amoniak di PT Socfindo

Karya sastra, terutama puisi yang disusun dalam bahasa sehari-hari, memainkan peran dominan dalam menggambarkan peristiwa Arab Spring, karena kemampuannya yang

Kerentanan adalah sebuah kondisi manusia atau proses yang dihasilkan dari faktor fisik, ekonomi, sosial dan lingkungan yang menentukan kemungkinan dan skala

Untuk mengantisipasi trend masyarakat di era globlisasi para pendakwa harus dapat mempersiapkan materi-materi dakwah yang lebih mengarah pada antisipasi kecenderungan- kecenderungan