• Tidak ada hasil yang ditemukan

BAB II DASAR TEORI. S 12 Gambar 2-1. Jaringan Dua Port dan Parameter-S

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II DASAR TEORI. S 12 Gambar 2-1. Jaringan Dua Port dan Parameter-S"

Copied!
9
0
0

Teks penuh

(1)

2.1 PARAMETER S

Parameter S digunakan untuk memperoleh karakteristik dari suatu jaringan dua port yang beroperasi pada frekuensi tinggi. Parameter lain seperti H, Y, dan Z tidak bisa merepresentasikan jaringan dua port pada ferkuensi gelombang mikro karena hasilnya kurang akurat.

Gambar 2-1. Jaringan Dua Port dan Parameter-S

Hal-hal yang menyebabkan parameter H, Y, dan Z tidak bisa diukur adalah :

1. Sulit menentukan tegangan dan arus pada frekuensi tinggi untuk saluran transmisi non-TEM (Misal : Waveguide), karena tidak adanya peralatan yang bisa mengukur total tegangan dan arus pada port jaringan.

2. Dibutuhkan open dan short circuit untuk memperoleh parameter Z dan Y. Hal tersebut akan menyebabkan ketidakstabilan pada perangkat aktif.

Dari gambar 2-1 persamaan parameter S didefinisikan :

2 22 1 21 2 2 12 1 11 1 S a S a ; b S a S a b = + = + (2.1-1)

dimana a dan 1 b adalah tegangan maju dan balik pada port 1 sedangkan 1 a dan 2 b 2 adalah tegangan maju dan balik pada port 2. S adalah koefisien hamburan (Transmisi dan pantul) pada jaringan dua port. Dalam menentukan nilai parameter S, dapat diperoleh dari persamaan :

S12 Jaringan 2 port 1 2 S21 S11 S22 a1 b1 a2 b2

(2)

1 0 2 1 1 11 = =Γ = a a b

S = koefisien pantul pada port 1 jika a2 = 0

21 0 1 1 2 21 T a b S a = = =

= koefisien transmisi dari port 1 ke port 2 jika a2 = 0

12 0 1 2 1 12 T a b S a = = =

= koefisien transmisi dari port 2 ke port 1 jika a1 = 0

2 0 1 2 2 22 = =Γ = a a b

S = koefisien pantul pada port 2 jika a1 = 0 (2.1-2)

2.2 PENYEPADAN IMPEDANSI

Satu fungsi dari suatu saluran gelombang mikro adalah sebagai penyepadan impedansi. Suatu saluran gelombang mikro dikatakan ideal bila penyaluran dalam saluran tersebut memenuhi beberapa kriteria sebagai berikut :

1. Tidak ada pantulan, yaitu bila impedansi pada sumber, beban, dan impedansi karakteristiknya sepadan.

2. Terjadi pemindahan daya maksimum, jika conjugate match. 3. Tidak terjadi rugi (loss) selama berlangsungnya penyaluran.

Dalam kenyataannya, tidak semua kriteria tersebut dapat dicapai. Tetapi untuk mendapatkan kondisi yang sepadan, dimana harga impedansi sumber (Zs), impedansi beban (ZL) dan impedansi karakteristiknya (Zo) adalah sama, dapat dicapai dengan

menggunakan rangkain penyepadan impedansi. Fungsi utama dari rangkaian penyepadan impedansi adalah untuk dapat mentrasformasikan impedansi agar tidak terjadi pantulan. Gambar 2-2 memperlihatkan model dari suatu penguat gelombang mikro dengan rangkaian penyepadan impedansinya.

Eg Penyepadan input Penyepadan output Device Zo Zo

(3)

2.3 KOMPONEN PASIF

2.3.1 Saluran mikrostrip

Saluran mikrostrip terdiri dari strip konduktor dan bidang tanah yang dipisahkan oleh bahan dengan karakteristik bahan tertentu. Medan elektrik dan magnetik yang merambat, tidak seluruhnya terkandung dalam bahan, sehingga propagasi gelombang pada saluran mikrostrip tidak murni mode transverse electromagnetic (TEM), akan tetapi mode quasi TEM. Dalam mode quasi TEM, kecepatan propagasi gelombang pada saluran mikrostrip dirumuskan : re p c v = ε (2.3-1) dengan 8 10 , 3 =

c m/s adalah kecepatan cahaya di ruang hampa udara dan ε adalah re konstanta dieletrik relatif efektif pada bahan.

w t r ε Strip konduktor Ground plane Jenis material h w t h +V E H y x (a) Bentuk fisis (b) Jalur medan E dan H

Gambar 2-3. Saluran mikrostrip

Panjang gelombang sebuah saluran mikrostrip dinyatakan dengan :

(

)(

)

2 1 1255 . 0 / 1 63 . 0 1      − ∈ + ∈ ∈ = h w r r r o λ λ untuk ≥0.6 h w (2.3-2) atau

(

)(

)

2 1 0297 . 0 / 1 60 . 0 1      − ∈ + ∈ ∈ = h w r r r o λ λ untuk ≤0.6 h w (2.3-3) dimana : f c o =

λ (panjang gelombang di ruang bebas) c = 3 x 108

r

m/s

(4)

2.3.1.1 Bahan Dielektrik dan Impedansi Karakteristik

Bahan dielektrik terletak antara konduktor strip dengan ground plane, biasa disebut dengan bahan yang besarnya tergantung pada pabrik yang memproduksi.

Terdapat banyak metode pendekatan empirik dalam menghitung nilai εeff

dan impedansi karakteristik dari suatu saluran, diantaranya adalah sebagai berikut :               − +       + − + + = −1/2 2 1 04 . 0 12 1 2 1 2 ) 1 ( h w w h r r eff ε ε ε (2.3-4)

dan Error! Bookmark not defined.

( )

   + = − h w w h Z0 60εeff 1/2ln 8 0.25 ohm ; w/h ≤ 1 2 1 12 1 2 1 2 1 −       + − + + = w h r r eff ε ε ε (2.3-5)

( )

[

]

      + + + = − h w h w Z eff 444 . 1 ln 667 . 0 393 . 1 120 12 0 ε π dan ohm ; w/h > 1

Sintesis saluran mikrostrip diperlukan jika menentukan besar w /h

dengan diketahui besar impedansi karakteristik Z . Mencari solusi 0 Z dari 0

persamaan 2.3-5 merupakan hal yang sulit, sehingga diperlukan persamaan empirik sintesis. Jika diketahui besar Z maka diperoleh besar 0 w /h dengan persamaan di bawah ini :

Jika Z0 dan εr diketahui, maka w/h dan ε dapat diketahui. eff

(

)

1 ' ' exp 4 1 8 exp −       − = H H h w (2.3-6) ' H

dimana sebagai fungsi dari Z0 :

(

)

      +       + − + + = π ε π ε ε ε 4 ln 1 2 ln 1 1 2 1 9 . 119 1 2 0 ' r r r r Z H (2.3-7)

(5)

Selain itu kita juga dapat menggunakan rumus di bawah ini untuk nilai w/h<1.3 (ketika Z0 > (63-2εr) ohm) : 2 ' 4 ln 1 2 ln 1 1 2 1 1 2 1 −             +       + − − + = π ε π ε ε ε ε r r r r eff H (2.3-8) ' H sebagai fungsi w/h :         +       + =ln 4 16 2 2 ' w h w h H (2.3-9)

Untuk strip yang lebar (ketika Z0 < (44-2εr) ohm) :

(

)

(

)

{

}

(

)

      − + − − + − − − = r r r d d d h w ε πε ε π ε ε ε 517 . 0 293 . 0 1 ln 1 1 2 ln 1 2 (2.3-10) dimana r Z d ε π ε 0 2 95 . 59 = (2.3-11) 555 . 0 10 1 2 1 2 1 −       + − + + = w h r r eff ε ε ε (2.3-12)

(

0.109 0.004

) (

{

log10

)

1

}

96 . 0 + − + 0 − = Z r r r eff ε ε ε ε

Apabila Z0 diketahui pertama kali :

(2.3-13)             + + = h t n t w weff 1  2 π

Tingkat akurasi dari formulasi ini adalah 1%. Untuk memperoleh akurasi yang lebih baik lagi, harus dilakukan perhitungan secara berulang-ulang.

Jika t < h dan t < w/2, maka : untuk π 2 1 ≥ h w (2.3-14)                 + + = w t n t w weff π π 4 1  untuk π 2 1 ≤ h w (2.3-15)

(6)

1 2 4 6 16 1.0 10 0.1 5 10 100 1000 w/h

Z

8 10 12

Gambar 2-4. Perbandingan Z0 Saluran Mikrostrip dengan w/h

2.3.1.2 Rugi-Rugi dalam Saluran Mikrostrip

Masalah rugi-rugi dalam saluran mikrostrip dipengaruhi oleh faktor geometri, bahan, dan jenis konduktor yang digunakan. Untuk bahan non-ferromagnetic, terdapat dua macam rugi-rugi yang ditimbulkan oleh saluran mikrostrip, yaitu : rugi dielektrik pada bahan ; rugi ohmic pada strip konduktor dan ground plane. Total rugi-rugi per satuan panjang dinyatakan dalam :

c d α α

α = + (2.3-16)

dengan α dan d α adalah konstanta rugi dielektrik dan ohmic. c Konstanta rugi-rugi dielektrik dinyatakan dalam persamaan :

ωε σ θ θ µε ω ε µ σ αd = = tan Np/cm , tan = d 2 2 (2.3-17)

Konstanta rugi-rugi konduktivitas dinyatakan dalam persamaan : cm dB w Z Rs c / 686 , 8 0 = α untuk >1 h w (2.3-18) dengan Rs = πfµ σ adalah resistansi kulit permukaan dalam Ω.

(7)

2.4 Hybrid Coupler

Hybrid Coupler merupakan komponen yang tidak dapat diabaikan dalam aplikasi gelombang mikro, contohnya hybrid coupler digunakan dalam diskriminator frekuensi,penguat balance, balance mixer, pengendali level otomatis, dan lain-lain.

Hybrid coupler direalisasikan dengan menyambung langsung elemen-elemen sirkit menggunakan saluran transmisi. Dan hybrid coupler memiliki 4 kutub dan impedansi karakteristik yang sepadan di keempat kutubnya.

2.4.1 Hybrid 90o

Hybrid 90o merupakan alat yang memiliki empat port yang mampu beroperasi pada frekuensi 10kHz hingga 40GHz. Alat ini dapat melaksanakan dua fungsi yang komplementer, yaitu :

1. Power Divider : membagi sama besar sebuah sinyal input ke dalam dua sinyal output dimana salah satu sinyal output mengalami pergeseran fasa sebesar 90º terhadap sinyal output yang lainnya. Dengan demikian, sinyal output tersebut memperlihatkan suatu hubungan kuadratur, yaitu masing-masing fasa berbeda satu kuadran dengan kata lain berbeda 90º.

2. Combiner : menggabungkan/mengkombinasikan dua amplitudo yang sama, quadrature-phased sinyal input menjadi sebuah sinyal output.

Hybrid 90o menggunakan elemen-elemen yang terhubung secara langsung dan dapat diimplementasikan menggunakan pendekatan terdistribusi.

Tipe branch-line dari hybrid diperlihatkan gambar 2-5. Branch-line hybrid memiliki bandwidth yang kecil, mendekati 10%.

(8)

(a) Branch-line coupler satu tingkat (b) Bentuk sirkular branch-line coupler Gambar 2-5. Branch-line coupler

Faktor coupling ditentukan oleh rasio impedansi dari shunt arm dan series arm dan dioptimalkan untuk mencapai bandwidth yang dibutuhkan. Parameter-parameter dari branch-line coupler ditunjukkan pada persamaan di bawah:

0 21 Z Z j S =− r , p r Z Z S31 =− , S41=0 (2.4-1) 1 2 31 2 21 + S = S , atau 1 2 2 0 = + p r r Z Z Z Z (2.4-2) 2.4.2 Hybrid Coupler 180o

Hybrid coupler 180o atau biasa disebut rat-race hybrid serupa dengan hybrid coupler 90o menggunakan elemen sirkit disambungkan langsung dengan saluran transmisi. Rat-race hybrid ini merupakan jenis branch line coupler khusus dengan keliling kelipatan gasal 1,5λ, sehingga respon phasa 0o atau 180o. Dan rat-race hybrid ini memiliki lebar pita lebih lebar (≥ 20%) daripada hybrid coupler 90o.

1 2 3 4 Z0 Z0 Z0 Z0 Zp Zr Series arm Shunt arm θ θ Zr Z0 Zp

1

2

3

4

θ θ θ θ

(9)

Versi paling sederhana seperti gambar dibawah ini :

Gambar 2-6. Rat-race hybrid convensional

Pada frekuensi tengah, parameter S, sebagai berikut :

2 0 21 Z Z j S =− , 1 0 41 Z Z j S =− , S31 =0 (2.4-3) 1 2 41 2 21 + S = S (2.4-4)

Gambar

Gambar 2-1.  Jaringan Dua Port dan Parameter-S
Gambar 2-2  memperlihatkan model dari suatu penguat gelombang mikro dengan  rangkaian penyepadan impedansinya
Gambar 2-4.  Perbandingan Z 0  Saluran Mikrostrip dengan w/h 2.3.1.2  Rugi-Rugi dalam Saluran Mikrostrip
Gambar 2-6.  Rat-race hybrid convensional  Pada frekuensi tengah, parameter S, sebagai berikut :

Referensi

Dokumen terkait

Penelitian ini bertujuan untuk mengetahui kepadatan populasi orangutan Sumatera ( Pongo abelii ) berdasarkan sarang yang terdapat di kawasan hutan rawa Tripa Babahrot serta

Tujuan dari penelitian ini adalah untuk mengetahui kepadatan populasi orangutan berdasarkan jumlah sarang di desa Aek Nabara, kawasan Cagar Alam Dolok Sibual Buali,

Rencana Terpadu dan Program Investasi Infrastruktur Jangka Menengah Bidang Cipta Karya atau disingkat sebagai RPI2JM Cipta Karya adalah dokumen rencana dan program

Pada unsur N terlihat pada analisa tanah sebelum perlakuan dan sesudah perlakuan menunjukkan peningkatan (Tabel 1) yang menunjukkan bahwa jumlah dosis yang diberikan

Pendidikan antikorupsi terintegrasi dalam pembelajaran PKn untuk menanamkan karakter kejujuran siswa yang dikembangkan guru PKn yaitu melalui pengembangan disain

Berdasarkan hasil penelitian dapat disimpulkan bahwa pemberian filtrat batang gulma siam (Chromolaena odorata) berpengaruh terhadap aktivitas antifeedant ulat grayak

Dengan demikian dapat disimpulkan bahwa H 0 ditolak dan H a diterima, yang artinya terdapat pengaruh positif antara kepuasan kerja terhadap organizational citizenship

Berdasarkan hasil analisis dan pembahasan yang telah dijelaskan, dibuat kesimpulan bahwa Free Cash Flow tidak berpengaruh signifikan terhadap nilai