• Tidak ada hasil yang ditemukan

Production of commercially of important secondary metabolites and antioxidant activity in cell suspension cultures of Arthemisia absinthium L.

N/A
N/A
Protected

Academic year: 2018

Membagikan "Production of commercially of important secondary metabolites and antioxidant activity in cell suspension cultures of Arthemisia absinthium L."

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Industrial

Crops

and

Products

j o u r n al ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Production

of

commercially

important

secondary

metabolites

and

antioxidant

activity

in

cell

suspension

cultures

of

Artemisia

absinthium

L.

Mohammad

Ali

a

,

Bilal

Haider

Abbasi

a,∗

,

Ihsan-ul-haq

b

aDepartmentofBiotechnology,Quaid-i-AzamUniversity,Islamabad45320,Pakistan bDepartmentofPharmacy,Quaid-i-AzamUniversity,Islamabad45320,Pakistan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15February2013

Receivedinrevisedform22May2013 Accepted27May2013

Keywords:

Callus Cellsuspension Phenolics Flavonoids Antioxidant

Artemisia

a

b

s

t

r

a

c

t

AninvitrocultureofArtemisiaabsinthiumL.wasestablishedforproductionofcommercially impor-tantsecondarymetabolites.CalluscultureswereobtainedbyinoculatingleafexplantsonMurashige andSkoog(MS)mediumsupplementedwithThidiazuron(TDZ;0.5–5.0mgl−1)aloneorincombination witheither␣-naphthaleneaceticacid(NAA;1.0mgl−1)orIndoleaceticacid(IAA;1.0mgl−1).The cal-lusobtainedinresponseto1.0mgl−1 TDZand1.0mgl−1NAAwassubculturedonthesamemedium toinvestigateitsbiomassaccumulationandsecondarymetabolitesproductiononweeklybasisfor7 weeks.Forsubmergedcultivation,35dayoldcalliwereculturedonMSbasalmediasupplemented with1.0mgl−1TDZand1.0mgl−1NAA.Growthkineticsandsecondarymetabolitesproductionwere investigatedin3dayoldsuspensionculturesfor42days.Additionally,highperformanceliquid chro-matography(HPLC)basedquantificationofgallicacid,caffeicacidandcatechinwascarriedoutincell suspensioncultures.Seedgerminatedplantletswereusedascontrol.Maximumlevelsoftotalphenolic content3.57mgGAE/gDW(control:2.75mgGAE/gDW),totalflavonoidcontent1.89mgQE/gDW (con-trol:1.20mgQE/gDW),andantioxidantactivity82.7%(control:72.3%)weredisplayedbysuspension cultures.Amongthephenoliccompounds,maximumlevelofgallicacid104␮gg−1(control:21.3␮gg−1), caffeicacid27.40␮gg−1 (control:28.5␮gg−1)andcatechin 92.0␮gg−1 (control:68.10␮gg−1)were detectedinsuspensioncultures.TheresultsindicatethatcellsuspensionculturesofA.absinthiumL. havethepotentialforenhancedproductionofphenolicsand,hence,highestantioxidantactivitythan calluscultureandseedderivedplantlets.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Secondarymetabolitesproduced inplantsarelowmolecular weight(LMW)naturalproducts(Jooetal.,2010).Plantcell cul-tureisanattractivealternativetechnologyforenhancingsecondary metabolitesthatare eitherdifficulttosynthesizechemically or areproduced in limited quantitiesinwildplants. In particular, plant cell suspension cultures containing undifferentiatedcells areattractiveindustrially,especially compared todifferentiated cultures,duetotheirrelativesimilaritytomicrobialcellculture systems(Koleweetal.,2008).

Among different classes of secondary metabolites, plant polyphenolsconstitutethelargestgroupofnaturalantioxidants

(Cie´slaetal.,2012).Phenolicsareconsideredmorepotent

antioxi-dantsthanVitaminCandEandcarotenoids(Rice-Evansetal.,1995,

∗Correspondingauthor.Tel.:+925190644121;fax:+925190644121.

E-mailaddresses:bhabbasi@qau.edu.pk,chinabilal@yahoo.com(B.H.Abbasi).

1996).Thesecompoundsareconsideredtoplayaprotectiverole againstawiderangeofdiseasessuchascoronaryheartdiseaseand certaintypesofcancers(Ibrahimetal.,2012).Additionally,astrong relationshipexistsbetweenthephenoliccompoundsproducedby theinvitroculturesofdifferentplantsandtheirantioxidant activ-ities(Amidetal.,2011;Girietal.,2012;AlKhateebetal.,2012;

Diwanetal.,2012).

Artemisia absinthium L., commonly known as “Wormwood” has been used as herbal medicine throughout Europe, Middle East, North Africa, and Asia (Sharopov et al., 2012). A very populardrinkabsinthe, prepared fromA. absinthium L., is con-sidered to stimulate creativity and excitement (Gambelunghe

andMelai,2002).Theplanthastraditionallybeenusedas

anti-helmintic,choleretic,antiseptic, balsamic, depurative, digestive, diuretic, emmenagogueand intreating leukaemia andsclerosis

(Canadanovic-Brunetetal.,2005).Recently, theaerialpartofA.

absinthium L. has shown to possess anti-snake venom activity

(Nalbantsoy et al., 2013). Antimalarial and anticanceractivities

areamongtheprominentbiologicaleffectsreportedfordifferent

(2)

speciesofthegenusArtemisia(Hernandezetal.,1990;Zafaretal.,

1990;Canadanovic-Brunetetal.,2005;Irshadetal.,2011;Shafi

etal.,2012).

In vitro studies of the genus Artemisia have mainly been focusedonenhancedproductionofartemisinin;strategiesshould be adopted to enhance medicinally important phenolics and flavonoidsin thespeciesofthis commerciallyimportantgenus. Thisstudyaimedtoestablishcellsuspensioncultureandto inves-tigatephenolicsandflavonoidsandantioxidant potentialinthe suspensionculturesofA.absinthiumL.

2. Materialsandmethods

2.1. Seedgerminationandexplantinoculation

SeedsofA. absinthium L.were obtainedfromNational Agri-culture Research Centre (NARC) Islamabad, Pakistan. Following a singlewashwithrunningtapwater seedswereimmersedin ethanol (3min), followed by treatment with mercuric chloride (2min)andthenwashedwithautoclavedwateranddriedon ster-ilized filter papers. MS0 (Murashige and Skoog basal medium; PhytotechnologyLabs,USA;MurashigeandSkoog,1962) contain-ing3%sucroseand0.8%(w/v)agar(PhytotechnologyLabs,USA) wasusedforseedgermination.

2.2. Callusinductionandbiomassyield

Tostudytheeffectsofplantgrowthregulatorsoncallus induc-tion,approximately1.5cmoftheleafsectionsfrom28-daysold seed germinated plantlets were incubated on Murashige and Skoog(MS) (1962)mediasupplementedwithTDZ(0.5,1.0,2.0, 3.0, 4.0, 5.0mgl−1) alone and in combination with 1.0mgl−1 of NAA or 1.0mgl−1 IAA. Before autoclaving (121C, 20min,

Systec VX 100, Germany), pH of all media was adjusted to 5.8 (Eutech Instruments pH 510, Singapore). All cultures were placedin16hphotoperiodwithlightintensityof40␮molm−2s−1 and temperature of the growth room was maintained at 25±1◦C.MurashigeandSkoogbasalmedium(MS0)wasusedas

control.

Differentialcallusformationfrequencyand changesincallus morphologywererecordedonweeklybasis.Furthermore,growth curvewasestablishedforthebiomassaccumulationoftherapidly growingfriablecallus,obtainedinresponseto1.0mgl−1TDZand 1.0mgl−1NAA.Forthispurpose,1.0gofthecallussectionswere subculturedonMSmediacontaining1.0mgl−1TDZand1.0mgl−1 NAA.Investigationsofthebiomassaccumulationwereperformed withanintervalof7daysfor49daysperiod.Triplicateflaskswere usedinallexperiments.

2.3. Cellsuspensioncultureandgrowthkinetics

To establishcell suspension culture,35-day old proliferated calliweretransferredto500mlErlenmeyerflaskscontainingMS basalmediasupplementedwithcombinationof1.0mgl−1TDZand 1.0mgl−1NAA.Thecultureswereplacedingyratoryshaker(25C,

120rpm) in dark for thedevelopment of stock cellsuspension culturesasinoculumcultures.Finecellsuspensioncultureswere collectedafteraperiodof14days.Subsequentexperimentswere carriedoutin250mlErlenmeyerflaskscontaining50mlMSmedia with30gl−1sucrose,1.0mgl−1TDZand1.0mgl−1NAAin combi-nationand1.5gfreshcellsuspensionwasinoculatedineachflask. Observationsanddatarecordingofthegrowthkineticswere per-formedwithanintervalofthreedaysfor42daysperiod.Triplicate flaskswereusedinallexperiments.

2.4. Analyticalmethods

For fresh weight (FW) determination, calli were harvested fromthemediaandweighedwhilecellsuspensionswerefiltered through0.45␮mstainlesssteelsieve(Sigma),washedwith dis-tilledwater,pressedgentlyonfilterpapertoremoveexcesswater andweighed.Subsequently,calliandcellsuspensioncultureswere ovendried(60◦C,24h)fordryweight(DW)determination.

Extractionofcalli,cellsuspensionculturesamplesandinvitro seedderivedplantlets(control)wasperformedaccordingtothe protocoldescribedbyGirietal.(2012)withminormodification. Briefly,eachfinelygrounddriedsample(100mg)wasmixedwith 80%(v/v)methanol(10ml).Themixturesweresonicated(10min; Toshiba,Japan)3timeswitharestingperiodof30mininbetween andcentrifuged(8000rpm,10min).Thesupernatantswere col-lectedandeitherimmediatelyusedforanalysisorstoredat4◦C.

For total phenolic content determination, Folin-Ciocalteu reagentwasusedaccordingtotheprotocolofVeliogluetal.(1998). Absorbancewasmeasuredat725nmbyusingUV/VIS–DAD spec-trophotometer(HaloDR-20,UV–VISspectrophotometer, Dynam-ica Ltd., Victoria, Australia). The calibrationcurve (0–50␮g/ml, R2=0.968)wasplottedbyusinggallicacidasstandardandtheTPC wasexpressedasgallicacidequivalents(GAE)/gofdryweight.

Fortotalflavonoidcontentdetermination,thealuminium chlo-ride colorimetric method as described by Chang et al. (2002) wasused.Absorbanceofthereactionmixtureswasmeasuredat 415nmbyusingUV/VIS–DADspectrophotometer.Thecalibration curve(0–40␮g/ml,R2=0.998)wasplottedbyusingquercetinas standard.TheTFCwasexpressedasquercetinequivalents(QE)/g ofdryweight.

Quantitativeanalysisofphenoliccompoundswascarriedoutby usingHPLC–DADattachedwithDiscoveryC-18analyticalcolumn, bythemethoddescribedbyZuetal.(2006)withminor modifi-cation.Methanol–acetonitrile–water–aecticacid(10:5:85:1)were used as mobile phase A and methanol-acetonitrile-acetic acid (60:40:1)wereusedasmobilephaseB.Agradientoftime0–20min for0–50%B,20–25minfor50–100%Bandthenisocratic100%Btill 30minwasused.Injectionvolumewas20␮landflowratewas 1.0ml/min.Gallicacidwasanalyzedat257nm,catechinat279nm andcaffeicacidat325nm.Everytimecolumnwasreconditioned for10minbeforethenextanalysis.

Forantioxidantactivitydetermination,theDPPHfree radical scavengingassay(FRSA)asdescribedbyAbbasietal.(2010)was used.Absorbanceofthemixtureswasrecordedat517nmby spec-trophotometer.Forbackgroundcorrection,amethanolicsolution ofDPPHthathaddecayedwithnoresultantpurplecolour(2mgof butylatedhydroxyanisole(BHA)dissolvedin4mlofmethanolwith 0.5mlofDPPHsolutionadded)wasusedinsteadofpuremethanol. Theradicalscavengingactivitywascalculatedbythefollowing for-mulaandexpressedas%ageofDPPHdiscoloration:

%scavengingDPPHfreeradical=100×

1−AE

AD

whereAEisabsorbanceofthesolutionwhenanextractwasadded ataparticularconcentrationandADistheabsorbanceoftheDPPH solutionwithnothingadded.

2.5. Experimentaldesignanddataanalysis

(3)

Table1

EffectsofdifferentconcentrationsofTDZaloneandincombinationwithIAAandNAAoncallusformationfrequency,callusmorphologyandcallusgrowth(freshweightand dryweight).Valuesaremean±standarderrorofthreereplicates.

S.no. Growthregulator(mgl−1) Callus(%) Callusmorphology FW(gl−1) DW(gl−1)

(Windowsversion7.5.1,SPSSInc.,Chicago)wasusedtodetermine thesignificanceatP<0.05.

3. Resultsanddiscussion

3.1. Callusformationandgrowthkinetics

TheleafexplantsofA.absinthiumL.treatedwith1.0mgl−1TDZ incombinationwith1.0mgl−1 NAAresultedintohighestcallus formationfrequency(83.3%)andmaximumcallusbiomass(FW: 132gl−1)withyellowishfriablefeaturesafter5weeksofculture

(Table1).WhenTDZwasusedalone,maximumcallusformation

frequencyof80.3%wasobservedon1.0mgl−1TDZ.Thecalluswas greenandfriable.However,greencompactorbrownishcompact calliwereproducedinresponsetocombinationofTDZandIAA.NAA incombinationwithTDZwasmoreresponsiveforcallogensisthan IAAincombinationwithTDZ.Furthermore,combinationofTDZ andNAAwasmoreefficientforcallusformationcomparedtoTDZ alone.Previously,bestcallogenicresponseshavebeenobservedon BAincombinationwithNAA(Ninetal.,1997;Ziaetal.,2007a,b) which,inaccordancewithourresults,showthatthecombination ofcytokininsandauxinsissuperiorininducingfriablecalliinleaf explantsofA.absinthiumL.

Biomassformation of thecallus cultureshowed a 7-daylag phase with relatively slow growth (Fig. 1). Almost threefold increaseindrybiomass(DW:5.67gl−1)wasachievedonday14 and,asawhole,fourandhalf-foldincrease(DW:8.73gl−1)indry biomasswasobservedonday42of culture.Declinephasewas observedafter42daysofculture,characterizedbydecreaseindry biomass(DW:7.77gl−1)onday49.

3.2. Cellsuspensionculturedevelopmentandgrowthkinetics

BiomassformationofthecellsuspensioncultureofA.absinthium L.displayedarelativelyquickgrowthcurveandwascharacterized byalagphaseof6daysforfreshanddrybiomass,followedbya longlogphaseof21days,andasubsequentstationaryphase dur-ing42dayperiodofstudy(Fig.2).Almostdoublinginfreshweight (63gl−1)anddryweight(4.07gl−1)wererecordedonday9of cul-ture.However,maximumfreshweightanddryweightdisplayed bycultureatday27were171gl−1and9.20gl−1,respectively. Fur-thermore,cellsuspensioncultureswerefoundtobemilkywhite, greenandbrownishincolourduringlog,stationaryand decline phases,respectively(Fig.3).

0 7 14 21 28 35 42 49

Culture time (days)

F

Fig.1.GrowthkineticsofcalluscultureofArtemisiaabsinthiumL.onMSmedium supplementedwith 1.0mgl−1TDZ+1.0mgl−1NAA.Values are mean±standard

(4)

Fig.3. Cellsuspensionculturesduring(A)logphase,(B)stationaryphaseand(C)declinephase.

3.3. Totalphenoliccontent(TPC)andtotalflavonoidcontent (TFC)incallusandcellsuspensioncultures

Phenolics and flavonoids induction in callus culture of A. absinthiumL.wasnotfoundtobestrictlygrowthdependent(Fig.4). Initialincrease in TPC and TFC wasobserved in the log phase (day21),withrespectivepeakvaluesof1.48mgGAE/gDW (4.9-foldincrease)and0.48mgQE/gDW(4.1-foldincrease)onday35. Earlier studies have been undertaken on the investigations of totalphenoliccontentincalluscultureofvariousmedicinalplants

(Schmeda-Hirschmann et al.,2005; Nazet al.,2008; Giri etal.,

2012).Ourresultswereconsistentwiththepreviousreportsfor highestlevelsofflavonoidsproductionincallusculturesof differ-entmedicinalspeciesduringthelogphaseoftheculture(Fuetal.,

2005;Antognonietal.,2007;Andreazza etal.,2009;Tanetal.,

2010).

A considerable increase with more than doubling in TPC andTFCwasobservedin6-dayoldsuspensioncultures(Fig.5). On contrary to callus profile, peak values of total phenolics with 3.57mgGAE/gDW (day 30) and total flavonoids with 1.89mgQE/gDW(day33)wereobservedintheearlystationary phaseofthegrowthcurve.Previously,thecellculturesofArtemisia fragidaandSilybummarianumwerereportedtobemore produc-tiveforphenolicacidsamongninedifferentplantspecies(Riedel et al., 2010). Furthermore, thepresence of different secondary

0 7 14 21 28 35 42 49

Fig.4. Totalphenoliccontent(mggallicacid/gdryweight)andtotalflavonoid con-tent(mgquercetin/gdryweight)incallusculturewithrespecttogrowthcurve (DW).Valuesaremean±standarderrorofthreereplicates.

metabolites including phenolics and flavonoids in the in vitro culturesofA.annuahasbeenreviewed(Bhakunietal.,2001).

3.4. Antioxidantactivity

TheDPPHfreeradicalscavengingactivityincalluscultureswas foundtobeindependentofcallusbiomassaccumulation.However, itwasfoundtobedependentonsecondarymetabolites produc-tionduringtheculturegrowth.Highestantioxidantactivity(63.3%) andmaximumaccumulationoftotalphenolics(1.48mgGAE/gDW) andtotalflavonoids(0.48mgQE/gDW) wererecordedin35day oldcalli(Fig.6).Declineinantioxidantactivitywasrecordedafter 35 daysof culture.Theseresultsshowa positive correlationof phenoliccompoundsandantioxidantactivityincallusculturesof A.absinthiumL.

Ontheotherhand,theDPPHradicalscavengingactivityincell suspensioncultureswasnotfoundtobestrictlyculturegrowth associated.Maximumbiomassaccumulation(DW:9.03gl−1)was observedonday27whilehighestantioxidantactivity(82.7%)was foundin30-dayoldsuspensioncultures,instationaryphase. How-ever,antioxidantactivitywasfoundtobeassociatedwithtotal phenolics production (Fig.7). Maximum total phenolic content (3.57mgGAE/gDW)inconjunctionwithhighestantioxidant activ-itywasrecordedin30-dayoldsuspensionculturesinstationary phase.Declineinactivitywasrecordedafter39daysand59%of

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

Fig.5. Totalphenoliccontent(mggallicacid/gdryweight)andtotalflavonoid con-tent(mgquercetin/gdryweight)incellsuspensioncultureofArtemisiaabsinthium

(5)

0 7 14 21 28 35 42 49

Fig.6. DPPHradicalscavengingactivity(%)withrespecttototalphenoliccontent andtotalflavonoidcontentincallusculturesofArtemisiaabsinthiumL.Valuesare mean±standarderrorofthreereplicates.Columnswithsimilaralphabetsarenot significantlydifferentatP<0.05.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

Fig.7. DPPHradicalscavengingactivity(%)withrespecttototalphenoliccontent andtotalflavonoidcontentincellsuspensionculturesofArtemisiaabsinthiumL. Valuesaremean±standarderrorofthreereplicates.Columnswithsimilaralphabets arenotsignificantlydifferentatP<0.05.

radicalscavengingactivitywasobservedin42dayoldsuspension cultures.

3.5. HPLCbasedquantificationofphenoliccompoundsincell suspensionculture

Gallic acid was found to be the major phenolic compound whichaccumulatedinconjunctionwithbiomassaccumulationin cellculture(Table2).Overallaccumulationofgallicacidranged from 43.3␮gg−1 to 104␮gg−1DW (control: 21.3␮gg−1DW) and maximumaccumulation wasobserved during theonset of stationaryphase(day-30)ofculturewhichissignificantlyhigher thanthecontentfoundincontrol.Theseresultsareincorrelation withourfindingsofmaximumTPCaccumulationin30dayoldcell suspensioncultures.Caffeicacidwasthesecondmajorphenolic compoundobservedintermsofitsaccumulationinthelogphase of cultureand ranged from1.03␮gg−1DW to27.40␮gg−1DW (control:28.4␮gg−1DW). However,itsmaximumaccumulation wasrecordedinthemidlogphase(day24).Catechinwas accu-mulatedonlyinthestationaryphase(day36and42)ofculture

Table2

Quantificationofgallicacid,caffeicacidandcatechinincellsuspensionculturesof

ArtemisiaabsinthiumL.Valuesaremean±standarderrorofthreereplicates. Phenoliccompounds(␮gg−1)

Day Gallicacid Caffeicacid Catechin

Control(SDPa) 21.3

aSDP,seedderivedplantlets. bND,notdetected.

with the values 75.3␮gg−1DW and 92.0␮gg−1DW (control: 68.1␮gg−1DW)onday-36andday-42,respectively.

The phenolic compounds detectedin the present study are medicinallyimportantphytochemicals.Gallicacidisalow molec-ularweightantioxidant(LMWA)havingantiapoptotic(Sohietal., 2003),neuroprotective(Luetal.,2006)andanticarcinogenic prop-erties(Tomas-BarberanandClifford,2000).Similarly,Caffeicacid hasexhibitedpharmacologicalantioxidant,anticancerand antimu-tagenic activities(Okutan et al., 2005) and catechin prevented oxidativeinjuryinhumangastricepithelialcells(Grazianietal.,

2005).

3.6. Relationshipbetweentotalphenoliccontent,totalflavonoid content,phenoliccompoundsandantioxidantactivityincell suspensionculture

Manyreportsareavailableontheprotectiveeffectsofnatural antioxidantsagainstoxidativestressrelateddisorderslikeageing, degenerativediseases andcancer(Cozzietal.,1997).According

toBidcholetal.(2011),phenolic compoundsmayhavea direct

contributionintheantioxidantactivity.Theantioxidantpotential invariousmedicinalplantshasbeenshowntobemainlydueto phenoliccompounds(Jayasingheetal.,2003;Alietal.,2006;Kim

etal.,2006;Alietal.,2007).Althoughartemisininhasbeenreported

tobethemajorcompound againstmalariain Artemisiaspecies, reportsareavailableonthesynergisticeffectsofdietaryflavonoids aloneandincombinationsagainstthisdisease(LehaneandSaliba,

2008;Ferreiraetal.,2010).Inthepresentstudy,apositive

cor-relationwasobservedamongTPC(3.57mgGAE/gDW),gallicacid accumulation(104␮gg−1)andantioxidantactivity(82.7%)in30 dayoldsuspension cultures.Our resultsarein agreementwith apreviousreportwhereapositivecorrelationbetweenhighTPC andTFCandantiradicalandantioxidantactivitiesinA.absinthium L.wasobserved(Canadanovic-Brunetet al.,2005).Senguletal.

(2009)havealsoreportedapositivecorrelationbetweentotal

(6)

Table3

Comparativeanalysisoftotalphenoliccontent,totalflavonoidcontentandantioxidantactivityinseedderivedplantlets,calluscultureandcellsuspensionculture.Values aremean±standarderrorofthreereplicates.

Tissuetype Totalphenoliccontent(mgGAEg−1) Totalflavonoidcontent(mgQEg−1) Antioxidantactivity(%)

Seedderivedplantlets 2.75±0.077 1.200±0.121 72.3±1.068

Callus 1.48±0.101 0.48±0.011 63.3±1.760

Cellsuspension 3.57±0.088 1.77±0.168 82.7±3.530

antioxidant activity than callus and seed germinated plantlets

(Table3).

4. Conclusion

Thepresentreportdescribesestablishmentofcellsuspension culturesofA.absinthiumL.fortheenhancedproductionof pheno-licsandflavonoids.Cellsuspensioncultureswerefoundtoproduce significantlyhigherlevelsoftotalphenolics,totalflavonoidsand gallicacidandshowedhigherantioxidantactivitythantheseed derived plantlets. Furthermore, a positive correlation between phenolicsandantioxidantactivitywasfoundinsuspension cul-tures.Itcanbeconcludedthattheinvitrocultures, particularly cellsuspensionculture ofA. absinthiumL. hasthepotentialfor scaleupstudiesoncommerciallevelbypharmaceuticalindustries, inorder tofurtherenhancethemedicinallyimportant phenolic compounds.

References

Abbasi,B.H.,Khan,M.A.,Mahmood,T.,Ahmad,M.,Chaudhary,M.F.,Khan,M.A.,2010. Shootregenerationandfree-radicalscavengingactivityinSilybummarianumL. PlantCellTissueOrganCult.101(3),371–376.

AlKhateeb,W.,Hussein,E.,Qouta,L.,Alu’datt,M.,Al-Shara,B.,Abu-zaiton,A.,2012. Invitropropagationandcharacterizationofphenoliccontentalongwith antiox-idantandantimicrobialactivitiesofCichoriumpumilumJacq.PlantCellTissue OrganCult.1–8(110),103L110.

Ali,M.B.,Hahn,E.J.,Paek,K.Y.,2007.Methyljasmonateandsalicylicacidinduced oxidativestressandaccumulationofphenolicsinPanaxginsengbioreactorroot suspensioncultures.Molecules12(3),607–621.

Ali,M.B.,Khatun,S.,Hahn,E.J.,Paek,K.Y.,2006.Enhancementofphenylpropanoid enzymesandlignininPhalaenopsisorchidandtheirinfluenceonplant acclima-tisationatdifferentlevelsofphotosyntheticphotonflux.PlantGrowthRegul. 49,137–146.

Amid,A.,Johan,N.N.,Jamal,P.,Zain,W.N.W.M.,2011.Observationofantioxidant activityofleaves,callusandsuspensioncultureofJusticiagendarusa.Afr.J. Biotechnol.10(81),18653–18656.

Andreazza,N.L.,Abreu,I.N.,Sawaya,A.C.,Eberlin,M.N.,Mazzafera,P.,2009. Pro-ductionofimidazolealkaloidsincellculturesofjaborandiasaffectedbythe mediumpH.Biotechnol.Lett.31(4),607–614.

Antognoni,F.,Zheng,S.,Pagnucco,C.,Baraldi,R.,Poli,F.,Biondi,S.,2007. Induc-tionofflavonoidproductionbyUV-BradiationinPassifloraquadrangulariscallus cultures.Fitoterapia78(5),345–352.

Bhakuni,R.S.,Jain,D.C.,Sharma,R.P.,Kumar,S.,2001.Secondarymetabolitesof Artemisiaannuaandtheirbiologicalactivity.Curr.Sci.80(1),35–48. Bidchol,A.M.,Wilfred,A.,Abhijna,P.,Harish,R.,2011.Freeradicalscavenging

activ-ityofaqueousandethanolicextractofBrassicaoleraceaL.var.italica.Food BioprocessTech.4(7),1137–1143.

Canadanovic-Brunet,J.M.,Djilas,S.M.,Cetkovic,G.S.,Tumbas,V.T.,2005.Free-radical scavengingactivityofwormwood(ArtemisiaabsinthiumL.)extracts.J.Sci.Food Agric.85(2),265–272.

Chang,C.,Yang,M.,Wen,H.,Chern,J.,2002.Estimationoftotalflavonoidcontent inpropolisbytwocomplementarycolorimetricmethods.J.FoodDrugAnal.10, 178–182.

Cie´sla,Ł.,Kowalska,I.,Oleszek,W.,Stochmal,A.,2012.Freeradicalscavenging activ-itiesofpolyphenoliccompoundsisolatedfrommedicagosativaandmedicago truncatulaassessedbymeansofthin-layerchromatographyDPPH•rapidtest.

Phytochem.Anal.,http://dx.doi.org/10.1002/pca.2379.

Cozzi,R.,Ricordy,R.,Aglitti,T.,Gatta,V.,Petricone,P.,DeSalvia,R.,1997. Ascor-bicacidandb-caroteneasmodulatorsofoxidativedamage.Carcinogenesis18, 223±228.

Diwan, R., Shinde, A., Malpathak, N., 2012. Phytochemical composition and antioxidant otential of Ruta graveolens L. in vitro culture lines. J. Bot., http://dx.doi.org/10.1155/2012/685427.

Ferreira,J.F.,Luthria,D.L.,Sasaki,T.,Heyerick,A.,2010.FlavonoidsfromArtemisia annuaL.asantioxidantsandtheirpotentialsynergismwithartemisininagainst malariaandcancer.Molecules15(5),3135–3170.

Fu,C.X.,Zhao,D.X.,Huang,Y.,Ma,F.S.,2005.Cellularaggregatesizeasthe criti-calfactorforflavonoidproductionbysuspensionculturesofSaussureamedusa. Biotechnol.Lett.27(2),91–95.

Gambelunghe,C.,Melai,P.,2002.Absinthe:enjoyinganewpopolarityamongyoung people?ForensicSci.Int.130(2),183–186.

Giri,L.,Dhyani,P.,Rawat,S.,Bhatt,I.D.,Nandi,S.K.,Rawal,R.S.,Pande,V.,2012.Invitro productionofphenoliccompoundsandantioxidantactivityincallussuspension culturesofHabenariaedgeworthii:arareHimalayanmedicinalorchid.Ind.Crops Prod.39,1–6.

Graziani,G.,D’Argenio,G.,Tuccillo,C.,Loguercio,C.,Ritieni,A.,Morisco,F.,Blanco, C.D.V.,Fogliano,V.,Romano,M.,2005.Applepolyphenolextractsprevent dam-agetohumangastricepithelialcellsinvitroandtoratgastricmucosainvivo. Gut54,193–200.

Hernandez,H.,Mendiola,J.,Torres,D.,Garrido,N.,Perez,N.,1990.Effectofaqueous extractsofArtemisiaontheinvitrocultureofPlasmodiumfalciparum.Fitoterapia 41(6),540–541.

Ibrahim,M.H.,Jaafar,H.Z.,Karimi,E.,Ghasemzadeh,A.,2012.Primary,secondary metabolites,photosyntheticcapacityandantioxidantactivityoftheMalaysian HerbKacipFatimah(LabisiaPumilaBenth)exposedtopotassiumfertilization undergreenhouseconditions.Int.J.Mol.Sci.13(11),15321–15342.

Irshad,S.,Mannan,A.,Mirza,B.,2011.AntimalarialactivityofthreePakistani medic-inalplants.Pak.J.Pharm.Sci.24(4),589.

Jayasinghe,C.,Jayasinghe,C.,Goto,N.,Aoki,T.,Wada,S.,2003.Phenolicscomposition andantioxidantactivityofsweetbasil.J.Agric.FoodChem.51,4442–4449. Joo,S.S.,Kim,Y.,Lee,D.I.,2010.Antimicrobialandantioxidantpropertiesof

sec-ondarymetabolitesfromwhiteroseflower.PlantPathol.J.26(1),57–62. Kim,H.J.,Chen,F.,WangXiChoi,J.H.,2006.Effectofmethyljasmonateonphenolics,

isothiocyanate,andmetabolicenzymesinradishsprout(RaphanussativusL.).J. Agric.FoodChem.54,7263–7269.

Kolewe,M.E.,Gaurav,V.,Roberts,S.C.,2008.Pharmaceuticallyactivenatural prod-uctsynthesisandsupplyviaplantcellculturetechnology.Mol.Pharm.5, 243–256.

Lehane,A.M.,Saliba,K.J.,2008.Commondietaryflavonoidsinhibitthegrowthofthe intraerythrocyticmalariaparasite.BMCRes.Notes1,26.

Lu,Z.,Nie,G.,Belton,P.S.,Tang,H.,Zhao,B.,2006.Structure–activityrelationship analysisofantioxidantabilityandneuroprotectiveeffectofgallicacid deriva-tives.Neurochem.Int.48(4),263–274.

Murashige,T.,Skoog,F.,1962.Arevisedmediumforrapidgrowthandbioassays withtobaccotissuecultures.Physiol.Plant.15(3),473–497.

Nalbantsoy,A.,Erel,S.B.,Köksal,C.,Göc¸men,B.,Yıldız,M.Z.,Karabay,Y.N.,2013.Viper VenominducedinflammationwithMontiviperaxanthina(Gray,1849)andthe anti-snakevenomactivitiesofArtemisiaabsinthiumL.inRat.Toxicon65,34–40. Naz,S.,Ali,A.,Iqbal,J.,2008.Phenoliccontentinvitroculturesofchickpea(Cicer ari-etinumL.).Duringcallogenesisandorganogenesis.Pak.J.Bot.40(6),2525–2539. Nin,S.,Bennici,A.,Roselli,R.,Mariotti,D.,Sciff,S.,Magherini,A.R.,1997. Agrobc-teriummediatedtransformationonArtemisiaabsinthiumL.,(wormwood)and productionofsecondarymetabolites.PlantCellRep.16,725–730.

Okutan,H.,Ozcelik,N.,Yilmaz,H.R.,Uz,E.,2005.Effectsofcaffeicacidphenethyl esteronlipidperoxidationandantioxidantenzymesindiabeticratheart.Clin. Biochem.38(2),191.

Rice-Evans,C.A.,Miller,N.J.,Bolwell,P.G.,Bramley,P.M.,Pridham,J.B.,1995.The rel-ativeantioxidantactivitiesofplant-derivedpolyphenolicflavonoids.FreeRadic. Res.22,375–383.

Rice-Evans,C.A.,Miller,N.J.,Paganga,G.,1996.Structure–antioxidantactivity rela-tionshipsofflavonoidsandphenolicacids.FreeRadic.Biol.Med.20,933–956. Riedel,H.,Cai,Z.,Kütük,O.,Smetanska,I.,2010.Obtainingphenolicacidsfromcell

culturesofvariousArtemisiaspecies.Afr.J.Biotechnol.9(51),8805–8809. Schmeda-Hirschmann,G.,Jordan,M.,Gerth,A.,Wilken,D.,2005.Secondary

metabo-litecontentinrhizomes,callusculturesandinvitroregeneratedplantletsof Solidagochilensis.Z.Naturforsch.C60(1–2),5–10.

Sengul,M.,Yildiz,H.,Gungor,N.,Cetin,B.,Eser,Z.,Ercisli,S.,2009.Totalphenolic content,antioxidantandantimicrobialactivitiesofsomemedicinalplants.Pak. J.Pharm.Sci.22(1),102–106.

Shafi,G.,Hasan,T.N.,Syed,N.A.,Al-Hazzani,A.A.,Alshatwi,A.A.,Jyothi,A., Mun-shi,A.,2012.Artemisiaabsinthium(AA):anovelpotentialcomplementaryand alternativemedicineforbreastcancer.Mol.Biol.Rep.39,7373–7379. Sharopov,F.S.,Sulaimonova,V.A.,Setzer,W.N.,2012.Compositionoftheessential

oilofArtemisiaabsinthiumfromTajikistan.Rec.Nat.Prod.6(2),127–134. Sohi,K.K.,Mittal,N.,Hundal,M.K.,Khanduja,K.L.,2003.Gallicacid,an

antioxi-dant,exhibitsantiapoptoticpotentialinnormalhumanlymphocytes:aBcl-2 independentmechanism.J.Nutr.Sci.Vitaminol.49(4),221.

Tan,S.H.,Musa,R.,Ariff,A.,Maziah,M.,2010.Effectofplantgrowthregulatorson cal-lus,cellsuspensionandcelllineselectionforflavonoidproductionfromPegaga (CentellaasiaticaL.urban).Am.J.Biochem.Biotechnol.6(4),284–299. Tomas-Barberan,F.,Clifford,M.N.,2000.Dietaryhydroxybenzoicacidderivatives

(7)

Velioglu,Y.S.,Mazza,G.,Gao,L.,Oomah,B.D.,1998.Antioxidantactivityandtotal phenolicsinselectedfruits,vegetables,andgrainproducts.J.Agric.FoodChem. 46,4113–4117.

Zafar,M.M.,Hamdard,M.E.,Hameed,A.,1990.ScreeningofArtemisiaabsinthium forantimalarialeffectsonPlasmodiumbergheiinmice:apreliminaryreport.J. Ethnopharmacol.30,223–226.

Zia,M.,Mannan,A.,Chaudhary,M.F.,2007a.Effectofgrowthregulatorsandamino acidsonartemisininproductioninthecallusofArtemisiaabsinthium.Pak.J.Bot. 39(2),799–805.

Zia,M.,Rehman,R.,Chaudhary,M.F.,2007b.Hormonalregulationfor calloge-nesisandorgangenesisofArtemisiaabsinthiumL.Afr.J. Biotechnol.6(16), 1874–1878.

Referensi

Dokumen terkait

Perumusan masalah dari kegiatan ini adalah bagaimana mengoptimalkan perpaduan motif tradisional dengan motif modern dengan harga yang relatif bersaing ,bagaimana

Diajukan untuk Memenuhi Salah Satu Mata Kuliah Manajemen

Terdapat enam tingkatan makna dalam teori manajemen koordinasi makna, yaitu isi, tindak tutur, kontrak atau hubungan, episode, skrip kehidupan, dan pola-pola budaya....

Ganti nama Sheet3 dengan Daftar Analisa dan Buat Kolom No, Uraian, Koef, Harga Satuan Upah Bahan, Harga Satuan Pekerjaan, kali-kan.. Koef dengan Harga Satuan Upah dan Bahan

[r]

Berdasarkan Berita Acara Evaluasi Penawaran Kegiatan Rehabilitasi / Pemeliharaan Jaringan Irigasi untuk Pekerjaan Rehabilitasi Jaringan Irigasi D.I Sarem Kecamatan

mobile robot beroda dua yang tidak akan dapat berjalan seimbang tanpa adanya sistem kontrol yang baik. Dalam menyeimbangkan balancing robot dibutuhkan suatu metode

I99l.&#34;Masalah Kekurangan Vitamin A dan Xeroftalmia di Empat Propinsi Wilayah Indonesia Bagian Titnur&#34;.. Gizi