• Tidak ada hasil yang ditemukan

Estimasi Prob. Density Function dengan EM

N/A
N/A
Protected

Academic year: 2021

Membagikan "Estimasi Prob. Density Function dengan EM"

Copied!
33
0
0

Teks penuh

(1)

Estimasi

Estimasi

Prob. Density Function

Prob. Density Function

dengan

dengan

EM

EM

Sumber

Sumber

:

:

--

Forsyth & Ponce Chap. 7

Forsyth & Ponce Chap. 7

--

Standford

Standford

Vision & Modeling

Vision & Modeling

Probability Density Estimation

Probability Density Estimation

• Parametric Representations

• Non-Parametric Representations

• Mixture Models

(2)

Metode

Metode

estimasi

estimasi

Non

Non

-

-

parametric

parametric

• Tanpa asumsi apapun tentang distribusi

• Estimasi sepenuhnya bergantung ada DATA

• cara mudah menggunakan: Histogram

Histograms

Histograms

(3)

Histograms

Histograms

• Butuh komputasi banyak, namun sangat umum

digunakan

• Dapat diterapkan pada sembarang bentuk

densitas (arbitrary density)

Histograms

Histograms

Permasalahan:

• Higher dimensional Spaces:

- jumlah batang (bins) yg. Exponential

- jumlah training data yg exponential

- Curse of Dimensionality

• size batang ? Terlalu sedikit: >> kasar

Terlalu banyak: >> terlalu halus

(4)

Pendekatan

Pendekatan

secara

secara

prinsip

prinsip

:

:

• x diambil dari ‘unknown’ p(x)

• probabiliti bahwa x ada dalam region R adalah:

V

x

p

dx

x

p

P

R

)

(

'

)

'

(

=

Pendekatan

Pendekatan

secara

secara

prinsip

prinsip

:

:

V

x

p

dx

x

p

P

R

)

(

'

)

'

(

=

N

K

P

=

• x diambil dari ‘unknown’ p(x)

(5)

Pendekatan

Pendekatan

secara

secara

prinsip

prinsip

:

:

V

x

p

dx

x

p

P

R

)

(

'

)

'

(

=

N

K

P

=

NV

K

x

p

(

)

• x diambil dari ‘unknown’ p(x)

• probabiliti bahwa x ada dalam region R adalah:

Pendekatan

Pendekatan

secara

secara

prinsip

prinsip

:

:

NV

K

x

p

(

)

Dengan Fix V Tentukan K Dengan Fix K Tentukan V Metoda Kernel-Based K-nearest

(6)

Metoda

Metoda

Kernel

Kernel

-

-

Based:

Based:

NV

K

x

p

(

)

Parzen Window:

   < = otherwise 0 2 / 1 | u | 1 ) (u j H

Metoda

Metoda

Kernel

Kernel

-

-

Based:

Based:

NV

K

x

p

(

)

Parzen Window:

   < = otherwise 0 2 / 1 | u | 1 ) (u j H

N

(7)

Metoda

Metoda

Kernel

Kernel

-

-

Based:

Based:

NV

K

x

p

(

)

Parzen Window:

   < = otherwise 0 2 / 1 | u | 1 ) (u j H

= − = N n n x x H K 1 ) (

= − = N n n d H x x Nh x p 1 ) ( 1 ) (

Metoda

Metoda

Kernel

Kernel

-

-

Based:

Based:

NV

K

x

p

(

)

Gaussian Window:

=

= 2 2 1 2 /2

2

||

||

exp

)

2

(

1

1

)

(

h

x

x

h

N

x

p

N n n

π

d

(8)

Metoda

Metoda

Kernel

Kernel

-

-

Based:

Based:

K

K

-

-

nearest

nearest

-

-

neighbor:

neighbor:

NV

K

x

p

(

)

(9)

K

K

-

-

nearest

nearest

-

-

neighbor:

neighbor:

K

K

-

-

nearest

nearest

-

-

neighbor:

neighbor:

Klasifikasi secara Bayesian :

V

N

K

C

x

p

k k k

)

=

|

(

NV

K

x

p

(

)

=

N

C

p

(

)

=

k

(10)

K

K

-

-

nearest

nearest

-

-

neighbor:

neighbor:

Klasifikasi secara Bayesian :

V

N

K

C

x

p

k k k

)

=

|

(

NV

K

x

p

(

)

=

N

N

C

p

k k

)

=

(

K

K

x

C

p

k k

|

)

=

(

“aturan klasifikasi k-nearest-neighbour ”

Probability Density Estimation

Probability Density Estimation

• Parametric Representations

• Non-Parametric Representations

• Mixture Models (Model Gabungan)

(11)

Mixture

Mixture

-Models (Model

-

Models (Model Gabungan

Gabungan):

):

Gaussians:

- Mudah

- Low Memory

- Cepat

- Good Properties

Non-Parametric:

- Umum

- Memory Intensive

- Slow

Mixture Models

Campuran

Campuran

fungsi

fungsi

Gaussian (mixture of

Gaussian (mixture of

Gaussians):

Gaussians):

x p(x)

(12)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x)

Jumlah dari Gaussians tunggal

Keunggulan: Dapat mendekati bentuk densitas

sembarang (Arbitrary Shape)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x)

Generative Model:

z

(13)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x)

=

=

M j

j

P

j

x

p

x

p

1

)

(

)

|

(

)

(





=

2 /2 2 2

2

||

||

exp

)

2

(

1

)

|

(

j d j

x

j

x

p

σ

µ

πσ

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Maximum Likelihood:

=

=

=

N n n

x

p

L

E

1

)

(

ln

ln

(14)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Maximum Likelihood:

=

=

=

N n n

x

p

L

E

1

)

(

ln

ln

0

=

k

E

µ

E k µ

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Maximum Likelihood:

=

=

=

N n n

x

p

L

E

1

)

(

ln

ln

0

=

E

=

= n N n n x x j P 1 ) | ( µ

(15)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ

=

=

M k n n n

k

P

k

x

p

j

P

j

x

p

x

j

P

1

)

(

)

|

(

)

(

)

|

(

)

|

(

(16)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ         − − = 2 2 2 / 2 2 || || exp ) 2 ( 1 ) | ( j j n d j n x j x p σ µ πσ

=

=

M k n n n

k

P

k

x

p

j

P

j

x

p

x

j

P

1

)

(

)

|

(

)

(

)

|

(

)

|

(

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ     − − = 2 || || 1 xn µj

=

=

M k n n n

k

P

k

x

p

j

P

j

x

p

x

j

P

1

)

(

)

|

(

)

(

)

|

(

)

|

(

(17)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Maximum Likelihood:

=

=

=

N n n

x

p

L

E

1

)

(

ln

ln

0

=

k

E

µ

E k µ

Tidak ada

solusi pendek !

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Maximum Likelihood:

=

=

=

N n n

x

p

L

E

1

)

(

ln

ln

E

Gradient Descent

(18)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Maximum Likelihood:

=

=

=

N n n

x

p

L

E

1

)

(

ln

ln

)

,...,

,

,...,

,

,...,

(

1 M 1 M 1 M k

f

E

µ

µ

σ

σ

α

α

µ

=

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

Optimasi secara Gradient Descent:

• Complex Gradient Function

(highly nonlinear coupled equations)

• Optimasi sebuah Gaussian tergantung dari seluruh

campuran lainnya.

(19)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x)

-> Dengan strategi berbeda:

Observed Data:

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x)

Observed Data:

(20)

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x) y Variabel Hidden 1 2 Observed Data:

Campuran

Campuran

fungsi

fungsi

Gaussian:

Gaussian:

x p(x) y Variabel Hidden 1 2 Observed Data:

(21)

Contoh

Contoh

populer

populer

ttg. Chicken and Egg

ttg

. Chicken and Egg

Problem:

Problem:

x p(x) 1 1 1111 1 2 2 2222 2 y

Anggap

kita tahu

Max.Likelihood

Utk. Gaussian #1

Max.Likelihood

Utk. Gaussian #2

Chicken+Egg Problem:

Chicken+Egg Problem:

x p(x) Anggap kita tahu

P(y=1|x)

P(y=2|x)

(22)

Chicken+Egg Problem:

Chicken+Egg Problem:

x p(x)

1 1 1111 1 2 2 2222 2 y

Tapi yg ini kita tidak tau sama sekali ? ?

Chicken+Egg Problem:

Chicken+Egg Problem:

x p(x)

(23)

Clustering:

Clustering:

x

1 1 1111 1 2 2 2222 2 y

Tebakan benar ?

K-mean clustering / Basic Isodata

Pengelompokan

Pengelompokan

(Clustering):

(Clustering):

Procedure: Basic Isodata

1. Choose some initial values for the means

Loop: 2. Classify the n samples by assigning them to the class of the closest mean.

3. Recompute the means as the average of the samples in their class.

4. If any mean changed value, go to Loop;

M

µ µ ,...,1

(24)

Isodata

Isodata

:

:

Inisialisasi

Inisialisasi

1

µ

2

µ

Isodata

Isodata

:

:

Menyatu

Menyatu

(Convergence)

(Convergence)

1

µ

2

(25)

Isodata

Isodata

:

:

Beberapa

Beberapa

permasalahan

permasalahan

Ditebak

Ditebak

Eggs / Terhitung

Eggs /

Terhitung

Chicken

Chicken

x p(x) Max.Likelihood Utk. Gaussian #1 Max.Likelihood Utk. Gaussian #2

(26)

GaussianAproximasi

GaussianAproximasi

yg

yg

.

.

baik

baik

x p(x)

• Namun tidak optimal!

• Permasalahan: Highly overlapping Gaussians

Expectation Maximization (EM)

Expectation Maximization (EM)

• EM adalah formula umum dari problem seperti “Chicken+Egg” (Mix.Gaussians, Mix.Experts, Neural Nets,

HMMs, Bayes-Nets,…)

• Isodata: adalah contoh spesifik dari EM

• General EM for mix.Gaussian: disebut Soft-Clustering • Dapat konvergen menjadi Maximum Likelihood

(27)

Ingat

Ingat

rumusan

rumusan

ini

ini

?:

?:

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ         − − = 2 2 2 / 2 2 || || exp ) 2 ( 1 ) | ( j j n d j n x j x p σ µ πσ

=

=

M k n n n

k

P

k

x

p

j

P

j

x

p

x

j

P

1

)

(

)

|

(

)

(

)

|

(

)

|

(

Soft Chicken and Egg Problem:

Soft Chicken and Egg Problem:

x p(x) P(1|x) 0.1 0.3 0.7 0.1 0.01 0.0001 0.99 0.99 0.99 0.5 0.001 0.00001

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ

(28)

Soft Chicken and Egg Problem:

Soft Chicken and Egg Problem:

x p(x) P(1|x)

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ 0.1 0.3 0.7 0.1 0.01 0.0001 0.99 0.99 0.99 0.5 0.001 0.00001 Anggap kita tahu:

Weighted Mean of Data

Soft Chicken and Egg Problem:

Soft Chicken and Egg Problem:

x p(x) P(1|x)

= = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ 0.1 0.3 0.7 0.1 0.01 0.0001 0.99 0.99 0.99 0.5 0.001 0.00001 Step-2: Hitung ulang posteriors

(29)

Langkah

Langkah

prosedur

prosedur

EM:

EM:

Procedure: EM

1. Choose some initial values for the means

E-Step: 2. Compute the posteriors for each class and each sample:

M-Step:3. Re-compute the means as the weighted average of their class:

4. If any mean changed value, go to Loop; otherwise, stop. M µ µ ,...,1 ) | (j xn P ∑ ∑ = = = N n n n N n n j x j P x x j P 1 1 ) | ( ) | ( µ

EM

EM

dan

dan

Gaussian mixture

Gaussian mixture

)

,

(

max

arg

( 1) ) (i

=

Q

θ

θ

i

θ

θ

− = −

=

N i n N n n i n i j

x

j

p

x

x

j

p

) 1 ( 1 ) 1 ( ) (

)

,

|

(

)

,

|

(

θ

θ

µ

(30)

EM

EM

dan

dan

Gaussian mixture

Gaussian mixture

)

,

(

max

arg

( 1) ) (i

=

Q

θ

θ

i

θ

θ

= − = −

=

N n i n N n T i j n i j n i n i j

x

j

p

x

x

x

j

p

1 ) 1 ( 1 ) ( ) ( ) 1 ( ) (

)

,

|

(

)

)(

)(

,

|

(

θ

µ

µ

θ

EM

EM

dan

dan

Gaussian mixture

Gaussian mixture

)

,

(

max

arg

( 1) ) (i

=

Q

θ

θ

i

θ

θ

= −

=

N n i n i j

p

j

x

N

1 ) 1 ( ) (

1

(

|

,

θ

)

α

(31)

Contoh

Contoh

-

-

contoh

contoh

EM:

EM:

Training Samples

Contoh

(32)

Contoh

Contoh

-

-

contoh

contoh

EM:

EM:

Training Samples End Result of EM

Contoh

(33)

Contoh

Contoh

-

-

contoh

contoh

EM:

EM:

Color Segmentation

Contoh

Contoh

-

-

contoh

contoh

EM:

EM:

Referensi

Dokumen terkait

Bagaimana cara mengukur performa algoritma estimasi derau tanpa bantuan data tambahan menggunakan masukan sinyal DVB-T dengan parameter SNR dan jumlah simbol yang

Bagaimana cara mengukur performa algoritma estimasi derau tanpa bantuan data tambahan menggunakan masukan sinyal DVB-T dengan parameter SNR dan jumlah simbol yang

Penghitungan stok kapital dengan menggunakan metode PIM dilakukan dengan cara mengakumulasikan data investasi (PMTB) dengan mempertimbangkan asumsi umur aset, pola distribusi umur