• Tidak ada hasil yang ditemukan

Ekstraksi Minyak dari Biji Pepaya (Carica Papaya) dengan Metode Soxhlet Extraction dengan Mengunakan N-Butil Asetat

N/A
N/A
Protected

Academic year: 2017

Membagikan "Ekstraksi Minyak dari Biji Pepaya (Carica Papaya) dengan Metode Soxhlet Extraction dengan Mengunakan N-Butil Asetat"

Copied!
16
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 PEPAYA

Pepaya merupakan tanaman asli daerah teropis, buah pepaya pertama kali ditemukan di Southern Mexico dan seluruh Andes di Amerika Selatan oleh Cristoper Colombus. Pada pertengahan abat ke-17 buah pepaya mulai dipasarkan di Hawaii. Pepaya merupakan tanaman berakar tunggal dengan tinggi 20-30 ft, pada batang pohon papaya terdapat lubang atau luka bekas dahan yang telah gugur, pohon pepaya memiliki daun yang lebar hingga (2 ½) kaki dan buah yang berwana hijau hingga coklat dengan diameter 8 inci [25], tanaman ini dapat tumbuh di berbagai tempat. Klasifikasi pepaya (Ca rica Papaya L) dapat dilihat pada Tabel 2.1

Tabel 2.1 Klasifikasi Pepaya (Carica Papaya L) [25] Domain Flowering plant

Kingdom Plantae

Subkingdom Tracheobionta

Klass Magnoliopsida

Subklass Dilleniidae

Divisi Magnoliophyta

Superdivisi Spermatophyta

Filum Steptophyta

Order Brassicales

Famili Caricaceae

Genus Carica

Nama Botanical Carica Papaya Linn

(2)

Gambar 2.1 Produksi Pepaya Global [11] 2.1.1 Susunan Kimia Pepaya

Pada biji pepaya terdapat sebuah senyawa yang dihaluskan diyakini mampu melawan cacing parasit di usus, yaitu benzyl isothiocynate, telah terbukti memiliki efek pada kontraksi pembuluh darah menggunakan arteri karotis dalam model in vitro [31]. Serta memiliki berbagai khasiat yang mampu melancarkan pencernaan. Pepaya mengandung berbagai jenis enzim, vitamin serta asma lemak dan juga berbagai zat-zat kimia lainnya pada berbagai bagian pepaya, seperti pada buah, daun, bunga, biji, akar, dan kulit. Buah pepaya memiliki kandungan 30,1% minyak, 28,1% protein, 19,1% serat, 25,6% karbohidrat, 7,3% kandungan air, dan 8,2% abu [22].

Asia 52.55%

Afrika 13.16% Amerika

Selatan 23.09% Amerika

Utara 0.14%

Amerika Tengah

9.56%

Karibia 1.38%

(3)

Table 2.2 Komposisi Kimia Buah Pepaya [32]

Komposisi Kimia Nilai (%)

Air

Tabel 2.3 Komposisi Kimia Berbagai Bagian Pepaya [22] Bagian Kandungan zat-zat kimia

Buah Protein, lemak, serat, karbohidrat, mineral: kalsium, fosfor, zat besi, vitamin C, tiamin, riboflavin, niasin, dan karoten, asam amino, asam sitrat dan malat (buah hijau), senyawa volatil: linalool, benzylisothiocyanate, cis dan trans-2.6-dimetil-3,6-epoksi-7-okten-2-ol, Alkaloid, carpaine, benzyl-D-glukosida, 2-pentiletil-D-glukosida, 4-hidroksi-fenil-2-etil-D-glukosida dan empat isomer malonated benzil-D-glukosida.

Benih Asam lemak, protein kasar, serat kasar, minyak pepaya,

Carpaine, benzylisothiocyanate, benzylglucosinola te,

glucotropacolin, benzylthiourea, hentriacontane, -sitosterol, caricin dan myrosin enzimmyrosin.

Akar Carposide dan enzyme myrosin.

Daun Alkaloid carpain, pseudocarpain dan dehydrocarpaine I dan II, kolin, carposide, vitamin C dan E.

Kulit sitosterol, glukosa, fruktosa, sukrosa, galaktosa dan xylitol. Getah

Enzim proteolitik, papain dan chemopapain,

(4)

Tabel 2.4 Kandungan Gizi dalam 100 gr Buah Pepaya [22]

Koposisi Kimia Pepaya Matang Pepaya Muda

Protein merupakan daya tarik ekonomis untuk ektraksi minyak skala industri terutama dibandingkan dengan tanaman biji konvensional yang menghasilkan minyak seperti jagung dan kedelai. Kandungan lemak yang begitu tinggi itu terdapat

Table 2.5 Komposisi Asam Lemak/Minyak Biji Pepaya [24]

(5)

2.2 EKSTRAKSI

Salah satu cara pengambilan minyak yang terkandung dalam biji pepaya adalah dengan cara ekstraksi. Ekstraksi merupakan salah satu metode pemisahan berdasarkan perbedaan kelarutan. Secara umum ekstraksi dapat didefinisikan sebagai proses pemisahan zat dari suatu padatan ataupun cairan dengan menambahankan pelarut tertentu untuk mengeluarkan komponen campuran dari zat padat atau zat cair tersebut, proses ekstraksi dalam konteks ini adalah pemisahan senyawa dari substrat. Dalam banyak kasus, ekstraksi adalah proses fisik, dimana senyawa dilarutkan dalam pelarut dan kemudian dipisahkan dari pelarut sebagai produk. Tetapi ada juga kasus dimana pelarut tidak hanya secara fisik berinteraksi dengan substrat, tetapi bereaksi dengan memecah ikatan antara substrat dan senyawa atau bereaksi dengan senyawa itu sendiri [35].

Komponen yang dipindahkan dari zat padat ke dalam pelarut disebut “solute”

sedangkan padatan yang tidak terlarut dalam pelarut disebut “inert” proses tersebut akan menjadi sempurna jika solut dipisahkan dari pelarutnya, misalnya dengan cara distilasi/penguapan [16].

Leaching adalah pemisahan fraksi larut dalam bentuk solusi dari fase padat yang biasanya bersifat permeabel. leaching umumnya melibatkan pelarut yang selektif dengan atau tanpa difusi. Metode yang digunakan untuk leaching biasanya ditentukan oleh jumlah konstituen yang akan dilarutkan, distribusi konstituen dalam padatan, sifat padatan dan ukuran partike. Mekanisme proses leaching pada umumnya ialah zat terlarut ditransfer dari larutan ke permukaan padatan kemudian berdifusi kedalam padatan, pelarut yang berada didalam padatan akan larut oleh zat terlarut kemudian terdifusi menjadi campuran solut-solven ke permukaan padatan dan ditransfer keluar/ kedalam larutan zat terlarut [29].

(6)

………(2.1) dimana:

A adalah luas antarmuka padat-cair,

b adalah ketebalan efektif dari film cairan yang mengelilingi partikel, c adalah konsentrasi zat terlarut dalam sebagian besar solusi pada waktu t, cs adalah konsentrasi larutan jenuh dalam kontak dengan partikel,

M adalah massa zat terlarut ditransfer dalam waktu t, dan k adalah koefisien difusi

Pada umumnya kecepatan transfer solven ke permukaan terjadi sangat cepat dan berlangsung pada saat terjadi kontak antara solut dan solvent. Sedangkan kecepatan difusi campuran solute-solvent ke permukaan solid merupakan tahapan yang mengontrol dalam keseluruhan proses leaching. Kecepatan difusi campuran

solut-solvent ke permukaan solid tergantung dari beberapa faktor yaitu suhu, luas permukaan partikel, pelarut (solvent), perbandingan solut-solvent, proses pencampuran atau pengadukan dan lama pengadukan. Faktor-faktor yang mempengaruhi laju ekstraksi, yaitu: ukuran partikel, pelarut, suhu, dan pengadukan dari fluida (campuran pelarut, solut, dan padatan) [30].

2.3. FAKTOR-FAKTOR YANG MEMPENGARUHI EKSTRAKSI

Pemilihan peralatan untuk proses ekstraksi dipengaruhi beberapa faktor-faktor. Dengan demikian, jika difusi zat terlarut melalui struktur berpori dari padatan sisa adalah faktor pengendali, materi harus ukuran kecil sehingga proses difusi zat terlarut sangat mudah. Di sisi lain, jika difusi zat terlarut dari permukaan partikel sebagian besar adalah faktor pengendali, pengadukan cairan yang diperlukan, ukuran partikel, temperatur ekstraksi, jumlah pelarut, serta waktu ekstraksi [32].

Pada prinsipnya ekstraksi adalah melarutkan dan menarik senyawa dengan menggunakan pelarut yang tepat. Ada tiga tahapan proses pada waktu ekstraksi yaitu:

1. Penetrasi pelarut kedalam pori padatan

(7)

3. Difusi bahan yang terekstraksi ke luar padatan

Proses di atas diharapkan terjadinya kesetimbangan antara zat terlarut dan pelarut. Kecepatan untuk mencapai kesetimbangan umumnya tergantung pada suhu, ukuran partikel, dan gerakan partikel. Prinsip yang utama adalah yang berkaitan dengan kelarutan, yaitu senyawa polar lebih mudah larut dalam pelarut polar dan senyawa nonpolar akan mudah larut dalam pelarut nonpolar [25].

2.3.1 Ukuran Partikel

Ukuran partikel mempengaruhi laju ekstraksi dalam beberapa cara. Semakin besar area permukaan antara padat dan cair, oleh karena itu semakin tinggi tingkat transfer material, maka semakin kecil jarak terlarut yang berdifusi dalam padatan. Di sisi lain, permukaan mungkin tidak begitu efektif digunakan jika sirkulasi cairan terhambat dan pemisahan partikel dari cairan berdrainase terhadap residu padatan. Diharapkan kisaran ukuran partikel harus kecil sehingga setiap partikel membutuhkan waktu yang sama untuk ekstraksi [30].

Secara umum, penurunan ukuran partikel berbannding lurus dengan kenaikan laju ekstraksi. Pemeningkat perpindahan massa dengan diameter partikel yang lebih kecil, dan panjang jalur transportasi senyawa dalam substrat padat dipersingkat jika senyawa tidak hanya terdifusi di permukaan, tetapi juga hadir dalam padat substrat [16].

2.3.2 Suhu Ekstraksi

(8)

Temperatur yang lebih tinggi (viskositas pelarut lebih rendah, kelarutan solute lebih besar) pada umumnya menguntungkan unjuk kerja ekstraksi. Namun, temperatur ekstraksi tidak boleh melebihi titik didih pelarut karena akan menyebabkan pelarut menguap. Biasanya temperatur ekstraksi yang paling baik adalah sedikit di bawah titik didih pelarut [16].

Kelarutan bahan yang diekstraksi akan meningkat dengan suhu untuk memberikan tingkat yang lebih tinggi dari ekstraksi, koefisien difusi meningkat dengan kenaikan suhu dan ini juga akan meningkatkan laju ekstraksi [30]. Dalam beberapa kasus, batas atas temperatur ditentukan oleh pertimbangan sekunder, seperti kebutuhan untuk menghindari aksi enzim selama ekstraksi gula.

2.3.3 Pelarut

Pada proses ekstraksi pelarut bertujuan untuk mengekstrak zat terlarut dari satu fase cair yang lain. Hal ini dapat dilakukan untuk memisahkan dua zat terlarut yang berbeda untuk memurnikan fasa cairan dari kontaminasi. Sebuah sistem ekstraksi pelarut mengandung dua fasa cair yang bercampur, satu fase rafinat dan satu cair organik, pengencer, dan satu atau lebih zat terlarut. Selain itu, sistem ekstraksi di sebagian besar satu atau lebih ekstraktan ditambahkan ke pengencer untuk meningkatkan ekstraksi dan pemisahan. Kadang-kadang pengubah fase digunakan untuk mencegah pembentukan tahap ketiga mengganggu [12].

Jenis pelarut merupakan faktor penting dalam ekstraksi minyak dari biji pepaya. Hal-hal yang perlu diperhatikan dalam pemilihan pelarut adalah selektivitas, kemampuan mengekstrak, toksisitas, kemudahan untuk diuapkan, dan harga pelarut. Sejumlah solvent yang digunakan dalam ekstraksi adalah faktor lain yang dipertimbangkan. Pemilihan solvent pengekstrak harus berdasarkan sifat alami dari sampel. Selain itu, efisiensi ekstraksi dan matriks yang tak larut, pemilihan ini harus mempertimbangkan aspek-aspek lain. Solvent harus lebih banyak daripada jumlah sampel. Volume solvent yang rendah terkadang berguna untuk menghasilkan konsentrasi yang lebih tinggi dalam penganalisaan [27]

Ada beberapa faktor spesifik yang dipertimbangkan dalam pemilihan solvent

(9)

Kemampuan untuk menghilangkan dan konsentrat solute dari komponen Lainnya [33].

2. Ketersediaan

Solvent harus tersedia selama proses ekstraksi [33]. 3. Kemampuan melarut dalam umpan

Diperlukannya pemulihan solvent dari rafinat atau penyegaran kembali solvent

yang digunakan [33]. 4. Perbedaan Densitas

Perbedaan densitas yang terlalu rendah antara fasa-fasa akan menghasilkan masalah dalam pemisahan. Perbedaan densitas yang terlalu tinggi dapat menyulitkan untuk menentukan proses ekstraksi yang terbaik yang diinginkan [33]. Dengan meningkatnya densitas, laju ekstraksi akan meningkat pada suhu yang konstan. Hasil ekstraksi akan berbeda untuk densitas yang sama pada suhu yang berbeda [33].

5. Sifat Fisik

Solvent yang terlalu kental akan menghalangi perpindahan massa dan kapasitasnya. Tegangan permukaan yang terlalu rendah akan mendorong kearah masalah pengemulsian. Titik didih solvent harus berbeda dengan titik didih solute [33].

6. Toksisitas

Toksisistas harus dipertimbangkan untuk kesadaran kesehatan dan kemurnian dari produk yang dihasilkan [33].

7. Tidak Bersifat Korosif

Disyaratkan menggunakan konstruksi material yang mahal untuk peralatan proses ekstraksi.

8. Mudah untuk dipulihkan

Pemulihan dan pemurnian solvent yang sempurna dibutuhkan sebaik mungkin ketika solvent dikembalikan lagi ke dalam ekstraktor untuk meminimalisasikan kehilangan banyak solvent [33].

(10)

metanol), isopropanol dan etil asetat digunakan dalam ekstraksi oleoresin dari bumbu-bumbu.

Pelarut terbagi menjadi 3 kelas. Pelarut Kelas 1 tidak boleh digunakan dalam pembuatan zat obat, bahan pembantu dan produk obat, karena toksisitas tidak dapat diterima atau efek merusak lingkungan [14]. Namun jika penggunaannya tidak dapat dihindari untuk menghasilkan produk obat dengan kemajuan yang signifikan, maka konsentrasi harus dibatasi seperti yang ditunjukkan pada Tabel 2.5, kecuali dibenarkan. Pelarut 1,1,1-Trichloroethane termasuk dalam Tabel 2.6, karena bahaya terhadap lingkungan. Batas menyatakan 1.500 ppm didasarkan pada review data keselamatan.

Tabel 2.6 Pelarut Kelas 1 yang Harus Dihindari dalam Bidang Farmasi dan Makanan [14]

Pelarut Batas konsentrasi

(ppm) Keterangan

Benzene 2

Dapat menyebabkan kanker

Carbon tetrachloride 4

Beracun dan berbahaya pada lingkungan

1,2-Dichloroethane 5 Beracun

1,1-Dichloroethene 8 Beracun

1,1,1Trichloroethane 1,500

Berbahaya pada lingkungan

(11)

Tabel 2.7 Pelarut Kelas 2 DiBatasi dalam Produk Farmasi [14]

Pelarut PDE (mg/day) Batas konsentrasi (ppm)

Acetonitrile 4,1 410

Chlorobenzene 3,6 360

Chloroform 0,6 60

Cyclohexane 38,8 3,880

Cumene 0,7 70

1,2-Dichloroethene 18,7 1,870

Dichloromethane 6,0 600

1,2-Dimethoxyethane 1,0 100

N,N-Dimethylacetamide 10,9 1,090

N,N-Dimethylformamide 8,8 880

1,4-Dioxane 3,8 380

2-Ethoxyethanol 1,6 160

Ethyleneglycol 6,2 620

Formamide 2,2 220

Hexane 2,9 290

Methanol 30,0 3,000

2-Methoxyethanol 0,5 50

Methylbutyl ketone 0,5 50

Methylcyclohexane 11,8 1,180

N-Methylpyrrolidone 5,3 530

Nitromethane 0,5 50

Pyridine 2.0 200

Sulfolane 1,6 160

Tetrahydrofuran 7,2 720

Tetralin 1,0 100

Toluene 8,9 890

1,1,2-Trichloroethene 0,8 80

Xylene1 21,7 2,170

(12)

jumlah banyak. N-butil asetat sangat cocok digunakan sebagai pelarut dalam industi makanan [14].

Pada penelitian ini menggunakan pelarut n-Butil Asetat yang memiliki sifat fisika dan kimia seperti table 2.8:

Tabel 2.8 Sifat Fisika dan Kimia N-Butil Asetat [8] dan [9]

Parameter n-Butil Asetat

Struktur

Rumus Molekul C6H12O2

Nama Umum Eter asetat, asetatdien, , etil ester, etill etanoat, napta

Berat Molekul 116

Sifat Fisik Jernih, tidak mudah menguap, cairan yang dapat terbakar; bau seperti buah-buahan

Titik leleh -730C

Titik Didih 1260C

Kelarutan dalam Air 10 % pada 250C

Kelarutan Larut dengan alkohol, aseton, kloroform, eter Densitas Relatif 0.902 pada 200C

Densitas Uap Relatif 3.04

Tekanan Uap 1,39 mmHg pada 200C

Log Pow 1,4

Tabel 2.9 Penggunaan Pelarut Dan Hasil Yang Diperoleh Pada Ekstraksi Minyak Biji Pepaya [23]

Pelarut Hasil (g g-1)

Etanol 151

Aseton 286

n-Heksan 285

Etil Asetat 290

(13)

2.3.4 Pengadukan

Dalam pemisahan yang mengunakan pengadukan, waktu kontak dapat dibuat lebih cepat untuk setiap pendekatan yang diinginkan untuk keseimbangan, secara ekonomi efisiensi dapat mencapai 80-90% [5].

Pengadukan pada pelarut penting karena hal ini meningkatkan difusi dan transfer materi dari permukaan partikel untuk sebagian besar dari solusi, seperti yang dibahas dalam bagian berikut. Selanjutnya, agitasi suspensi partikel halus mencegah sedimentasi dan lebih efektif penggunaan terbuat dari permukaan antar muka [30].

2.4 SOXHLET EXTRACTION

Leaching memungkinkan analit yang akan diekstrak dan dipisahkan dari matriks padat dan juga dari senyawa lain yang dapat mengganggu dalam proses analisis. Salah satu bentuk ekstraksi padat-cair adalah ekstraksi soxhlet. Teknik dasar ini dikembangkan pada tahun 1879 oleh Franz Ritter Von Soxhlet, Dia adalah seorang kimiawan Jerman dan fisiologi gizi, yang dikenal sekarang sebagai soxhlet extraction. Teknik ini pertama kali digunakan untuk menentukan kandungan lemak dalam susu. Sejak itu, teknik ekstraksi soxhlet telah mendapatkan pengakuan luas di bidang ekstraksi. Saat ini teknik ekstraksi soxhlet konvensional digunakan sebagai teknik standar untuk mengekstraksi analit dari padat sampel terhadap efisiensi teknik

(14)

Gambar 2.2 Persiapan sampel pada Proses ektraksi menggunakan metode soxshlet extraction [39].

Soxhlet extra ction adalah teknik standar dimana pelarut segar dikontakkan dengan sampel secara berkala [7]. Menurut [18] proses ekstraksi minyak biji papaya dilakukan dengan metode Soxhlet Extraction mengunakan pelarut non polar,

Gambar 2.3 Soxhlet Extraction Convensional [4]

Condensor

Shipon

Heater Extractor

Sampel

Destilation

Persiapan sampel pada Proses ektraksi menggunakan metode soxshlet extrection

Sampel padatan/cairan

Sampel biologi: daging, lemak, susu, sayur-sayuran, duah, dan sebagainya

Homogenisasi Pengilingan sampel padatan

pra pengeringan dengan zat anhidrat

(15)

Dari gambar 2.3 dapat dijelaskan bahwa untuk ekstraksi, material padatan yang akan diekstrak diletakkan di dalam suatu thimble yang terbuat dari kertas saring yang tebal atau di dalam suatu tabung yang terdapat di tengah bagian dari Soxhlet. Thimble

biasanya dibuat dari selulosa dan bersifat permeable ke Pelarut. Sampel yang digunakan harus dihancurkan untuk menghasilkan partikulat yang baik dengan luas permukaan yang besar sebelum melakukan Soxhlet extraction. Solvent yang digunakan untuk ekstraksi ditambahkan pada bagian tengah dari Soxhlet sampai batas dari siphon ke dalam bagian bawah round-bottom flask. Pelarut didistilasi dari

bottom flask dengan menggunakan suatu peralatan panas umum laboratorium yaitu

hot plate. Intensitas pemanasan mengendalikan aliran solvent melalui sistem.

Soxhlet dilengkapi dengan kondenser. Pelarut dikondensasikan kembali ke dalam bagian tengah dari peralatan. Suhu dari kondenser harus rendah untuk menghindari banyak Pelarutyang hilang. Proses diulang dalam sejumlah proses ekstraksi, Pelarut terakumulasi di bagian tengah dari peralatan secara berkala dikembalikan kembali ke dalam flask dimana Pelarut dipanaskan. Efisiensi ekstraksi dengan menggunakan peralatan Soxhlet sangat baik (mendekati 100%), dan prosedurnya dapat dengan mudah digunakan untuk menganalisa secara kuantitatif dengan pemulihan yang baik [27].

2.4.1 Faktor-faktor yang Mempengaruhi Soxhlet Extraction

Ada 3 faktor yang dapat mempengaruhi kinerja dari metode Soxhlet extraction

yaitu meliputi (1) Pemilihan Pelarut, (2) Sifat Matriks, dan (3) Kondisi Operasi [36].

2.4.1.1 Pemilihan Pelarut

(16)

2.4.1.2 Sifat Matriks

Soxhlet extraction bergantung dari sifat matriks dan ukuran partikel ketika difusi internal sebagai tahap akhir selama proses ekstraksi [36].

2.4.1.3 Kondisi Operasi

Selama proses ekstraksi, solvent biasanya dipulihkan dengan cara evaporasi. Suhu ekstraksi dan evaporasi memiliki dampak dalam kualitas produk [36].

2.5 EDIBLE OIL

Lemak dan minyak nabati adalah suatu substansi yang diperoleh dari tanaman yang terdiri dari trigliserida dan menghadirkan sejumlah komponen utama dari lemak dan minyak edible. Komponen kecil dari lemak dan minyak yang edible terbentuk dari mono dan dietil-gliserol, asam lemak bebas, fosfatida, sterol, fat-soluble, vitamin, tokoferol, pigmen, wax, dan fatty alcohol. Cara moderen dalam pemerosesan minyak nabati adalah melalui ekstraksi kimia dan menggunakan pelarut pengekstrak , suatu proses yang menghasilkan yield tertinggi dari minyak dalam waktu yang singkat [54]. Untuk pemerosesan minyak diperoleh dari biji dilakukan beberapa tahap yaitu: pemerosesan secara umum, degumming, refining/netralisasi,

bleaching, dan deodorization [55]. Untuk mengetahui edible oil dapat dilihat dari Tabel 2.10.

Tabel 2.10 Parameter Edible Oil

Parameter Standar Edible Oil

Bilangan Peroksida (meq/kg minyak) 10 [49]

Bilangan Iodin (g/mg) 80-109 [49]

Spesific gravity (SG) 0,9-1,16 [47]

Kadar Asam Lemak Bebas (%) 0,5-1% [46]

Refractive Index (200C) 1,457 [46]

Total Fenol (mg/g) 220 [46]

Gambar

Tabel 2.1 Klasifikasi Pepaya (Carica Papaya L) [25]
Gambar 2.1 Produksi Pepaya Global [11]
Tabel 2.3 Komposisi Kimia Berbagai Bagian Pepaya [22]
Tabel 2.4 Kandungan Gizi dalam 100 gr Buah Pepaya [22]
+6

Referensi

Dokumen terkait

Padahal sasaran utama dari pelayanan KB adalah Pasangan Usia Subur (PUS) yaitu berkisar dari 20-35 tahun. Rentang usia ini optimal untuk wanita hamil dan melakukan

And he proceeded to relate what had happened — how the Sword of Leah had been shattered in their escape from the Pit and its Shadowen, how the Federation had tracked them to the Jut

Pada Penulisan Ilmiah ini penulis mencoba untuk membahas tentang pembuatan aplikasi modul belajar basis data, bagaimana kita memadukan gambar, teks, suara dan animasi ke dalam

Hendro Gunawan, MA

Dalam penulisan ilmiah ini, penulis membuat website Valentino Rossi dengan menggunakan bahasa pemograman XML (Extensible Markup Language) yaitu bahasa markup yang dirancang khusus

Hendro Gunawan, MA

Didalam Penulisan Ilmiah ini, yang akan dibahas adalah pembuatan aplikasi perangkat lunak yang dapat digunakan untuk melihat halaman atau informasi yang terdapat dalam sebuah

Hendro Gunawan, MA