• Tidak ada hasil yang ditemukan

View of Expanding Super Edge-Magic Graphs∗

N/A
N/A
Protected

Academic year: 2022

Membagikan "View of Expanding Super Edge-Magic Graphs∗"

Copied!
9
0
0

Teks penuh

(1)

Expanding Super Edge-Magic Graphs

E. T. Baskoro1 & Y. M. Cholily1,2

1 Department of Mathematics, Institut Teknologi Bandung Jl. Ganesa 10 Bandung 40132, Indonesia

Emails : {ebaskoro,yus}@dns.math.itb.ac.id

2 Department of Mathematics, Universitas Muhammadiyah Malang Jl. Tlogomas 246 Malang 65144, Indonesia

Email : [email protected]

Abstract. For a graph G, with the vertex set V(G) and the edge set E(G) an edge- magic total labeling is a bijection f from V to the set of integers

with the property that ) ( ) (G E G , f

, 2 , 1

{ " |V(G)|+|E(G)|} (u)+ f(v)+ f(uv)=k for each uvE(G)and for a fixed integer k. An edge-magic total labeling f is called super edge-magic total labeling if f( GV( ))={1,2," |,V(G)|} and

, 1

| ) (

{| +

= V G |V(

)) ( ( GE

f G)|+ "2, |,V(G)|+|E(G)|}. In this paper we construct the expanded super edge-magic total graphs from cycles C , generalized Petersen graphs and generalized prisms.

n

Keywords: Edge-magic; super edge-magic; magic-sum.

1 Introduction

All graphs considered here are finite, undirected and simple. As usual, the vertex set and edge set will be denoted V and respectively. The symbol

)

(G E(G),

A will be denote the cardinality of the set A. Other terminologies or notations not defined here can be found in [2,7,15].

Edge-magic total labelings were introduced by Kotzig and Rosa [8] as follow.

An edge-magic total labeling on is a bijection from VG f (G)∪E(G) onto

|}

) (

|

| ) (

|, , 2 , 1

{ " V G + E G with the property that, given any edge uv, k

uv f v f u

f( )+ ( )+ ( )=

for some constan k. It will be convenient to call f(u)+ f(v)+ f(uv) the edge sum of uv and k the magic sum of f. A graph is called edge-magic total if it admits any edge-magic total labeling.

This work was supported by Hibah Bersaing XII DP3M-DIKTI, DIP Number : 004/XXIII/1/--/2004.

(2)

Kotzig and Rosa [9] showed that no complete graph with is edge- magic total and neither is and edge-magic total labelings for and

for all feasible values of k, are described in [14].

Kn n>6 K3 4,

K , K5

K6

In [8] it is proved that every cycle every caterpillar (a graph derived from a path by hanging any number of pendant vertices from vertices of the path) and every complete bipartite graph (for any and ) are edge-magic total.

n, C

n ,

Km m n

Wallis et.al. [14] showed that all paths and all n-suns (a cycle C with an additional edge terminating in a vertex of degree 1 attached to each vertex of the cycle) are edge-magic total. It was shown in [16] that the Cartesian product

admits an edge-magic total labeling for odd n.

Pn n

m

n P

C ×

It is conjectured that all trees are edge-magic total [8] and all wheels W are edge-magic total whenever n°3 (mod 4) [4]. Enomoto et.al. [4] showed that the conjectures are true for all trees with less than 16 vertices and wheels W for Philips et.al. [12] solved the conjecture partially by showing that a wheel

n

n

.

≤30 n

n,

W n≡0 or 1 6

(mod 4), is edge-magic total. Slamin et.al [13] showed that for n(mod 8) every wheel W has an edge-magic total labeling. n

An edge-magic total labeling f is called super edge-magic total if and

|}

) (

|, , 2 , 1 { )) (

(V G V G

f = " f(E(G))={|V(G)|+1,| V(G)|+2,",| V(G)|+

n

Km,

1

Enomoto et.al. [4] proved that the complete bipartite graphs is super edge-magic total if and only if

|}.

) (

|E G

=

m or n=1. 2 , 1

They also proved the complete graphs Kn is super edge-magic if and only if n= or 3.

In this paper we will construct the super edge-magic total graphs by hanging any number of pendant vertices from vertices of the cycles, generalized prisms and generalized Petersen graphs.

2 Results

For and n≥3 p≥1 we denote by Cn+Ap a graph which is obtained by adding p vertices and p edges to one vertex of cycles C (say ). The vertex set and the edge set of are V

n

1 : vi

v1

}

p n +A

Cn (Cn+Ap)={ ≤i≤ ∪{uj:1≤ jp} and }.

1 { }

1 {vnv1} v1uj: j 1

: i {vivi 1 )

( n

E Cn+Ap = + ≤ ≤ − ∪ ∪ ≤ ≤ p

(3)

Let be a graph derived from a cycle C by hanging p pendant vertices from all vertices of the cycle. Let us denote the vertex set of

y V sun p n, )− (

sun p)−

( b

n, 1 :

,

≥3 n

1 , n i

n, ((n,p)−sun)={vi:1≤in}∪{ui,j ≤ ≤ ≤ jp} 1 : }

1 1

: { ) ) ,

((n p sun vivi 1 i niui,ji and the edge set by E − = + ≤ ≤ − { vvn 1}∪{vn,

).

1 ( ,

((

| | ) ) , ((

| +

Observe that }.

p j

1≤ V n psun = E n p)− ) |=n p

p

n A

C +

n. C

sun The

cycle is super edge-magic total if and only if n is odd (see [4]). Now, we shall investigate super edge-magic total labelings for graphs of and

which are expanded from a cycle ,

3 ,nCn

sun p)− n, (

Define a vertex labeling and an edge labeling f1 f2 of Cn+Ap as follows,





= +

even, is if

odd, is ) if

(

2 1 2

i v i

f i

i n i

j n u

f1( j)= + for 1≤ jp, i p n v

v

f2( i i+1)=2( + )+1− for 1≤in−1, ,

1 2 ) ( 1

2 v v =n+ p+ f n

for 1 j p n u v

f2( 1 j)= +2 +1− ≤ jp.

Theorem 1. If n is odd, n≥3 and p≥1, then graph Cn+Ap is super edge- magic total.

Proof. It is easy to verify that the values of are f1 1, "2, ,n+p and the values of f2 are n+ p+1 ,n+p+2 ," ,2n+2p and furthermore the common edge sum is k=2p+5n2+3. ;

Theorem 2. If n is odd, n≥3 and p≥1,then graph (n,p)−sun is super edge- magic total.

Proof. Label the vertices and the edges of (n,p)−sunin the following way.

) ( )

( 1

3 vi f vi

f = for 1≤in, for 1

1 j p,

) ( 1,

3 u = nj+

f j ≤ ≤

for i j

n u

f3( i,j)= ( +1)+2− 2≤in and 1≤ jp, i

p n v

v

f4( i i+1)=2 ( +1)+1− for 1≤in,

(4)

, 1 2

) ( 1

4 v v = np+n+ f n





≤ +

− +

≤ +

− +

=

− +

=

. 1

and 1 2

even, is if )

1 ( 2

, 1

and 3 odd, is if )

1 ( 2

, 1

and 1 if )

1 ( 2 ) (

2 21 1 ,

4

p j n

i i

nj p

n

p j n

i i

j n np

p j i

nj p

n u

v f

n i j i

i i

We can see that the vertices of n,p)−sun (

( are labeled by values 1 and the edges are labeled by

, , 2 , "

) 1 (p+

n n p+1)+1, n(p+1)+2," ,2n(p+1).

Furthermore, all edges have the same magic number k =2 pn( +1)+ n2+3. ; A generalized Petersen graph P( mn, ), n≥3 and 1m

 

n21

i, 1 i n,

, consists of an outer n-cycle v1,v2,",vn a set of n spokes viz ≤ ≤ and inner edges

,

1 with indices taken modulo n.

m,

i iz

z +in

For n≥5, m=2 and p≥1,we denote by P(n,2)+Ap

} 1

: j p

for a graph which is obtained by adding p vertices and p edges to one vertex of say Hence,

), 2 , (n

P v1.

= ) V( +

(P(n,2) Ap

V P(n,2)) ∪ {uj ≤ ≤ and E( nP( ,2)+Ap)= ))

2 , (n (P

E ∪ {v1uj:1≤ jp}.

Let be a graph derived from , by hanging p pendant vertices from all vertices

) , 2 , (n p

P P(n,2), n≥5

i,

v 1≤in o P(n 1 : {ui,j

f Then the vertex set of is V

).

2 ,

1 , n i )

, 2 , p (n

P (P(n,2,p)) V(P(n,2))∪ ≤ ≤ ≤ jp} :

{viui,j

=

}.

( ( ))

,p E P n p

and the edge set is E( nP( ,2 = ,2))∪ 1≤in ,1 j≤ ≤

In [11] it is proved that generalized Petersen graphs are edge-magic total. Fukuchi [6] showed that are super edge-magic total.

) 2 , (n P )

2 , (n P

Theorem 3. If n is odd, n≥5 and p≥1, then the graph P(n,2)+Ap has a super edge-magic total labeling.

Proof. Consider a bijection, f5:V(P(n,2)+Ap)→{1 ,2," ,2n+p} where,





= ++

, 1 odd, is if

, 1 2

even, is ) if

(

2

3 2

5 i i n

n i i

v n

f n i

i i

(5)





=

+

+

+

+

4), (mod 0 if

4), (mod 3 if

4), (mod 2 if

4), (mod 1 if )

(

4 4 4 4 4 3 4 4 2 4 4 5

i i i i z

f

i n

i n

i n

i n

i

j n u

f5( j)= 2 + for 1≤ jp.

We can observe that under the labeling f5, {f5(vi)+ f5(vi+1): 1≤in}= }

1 :

{5n2+1+iin and {f5(zi)+ f5(zi+2):1≤in}={n2+1+i: 1≤in} with indices taken modulo n. Moreover, {f5(vi)+ f5(zi):1≤in}={3n+21+i:1≤in} and jp}={7n2+1+ j: ≤ p}.

}

n ∪{f5(zi) f5( :1 i n} 1 j

2) zi 1

: ) ( ) (

{f5 v1 + f5 uj ≤ 1 : ) (

) f5 v 1 i vi + i+ ≤ ≤

The elements of the set (

{f5 + + ≤ ≤ ∪ { f5(vi)+ f5(zi):

}

n

≤ ∪{f5(v1) f5(

1 i + uj):1≤ jp} form an arithmetic sequence n2+1+1, ,

+2

21 +

n ",7n2+1, 7n2+1+1,",7n2+1+ p. ,

+1

p 2 +2,",

We are able to arrange the values 2n+ n+ p 5n 2+ p to the edges of P(n,2)+Ap

) 2 , ( ( nP E xy

in such way that the resulting labeling is total and every edge ∈ +Ap), f5(x)+

. 2 )

(

) f5 xy 112 3 p

y + = n+ +

5(

f Thus we arrive at the desired result. ;

Theorem 4. If n is odd, n and then the graph has a super edge-magic total labeling.

≥5 p≥1, P(n,2,p)

Proof. Define a bijection, f6:V(P(n,2,p))→{1 ,2," ,n(p+2)} as follows, )

( )

( 5

6 vi f vi

f = and f6(zi)= f5(zi) for 1≤in, for 1

1 j p,

) 1 ( ) ( 1,

6 u =n j+ +

f j ≤ ≤

i j

n u

f6( i,j)= ( +2)+2− for 2≤in and 1≤ jp.

We can see that under the vertex labeling f6 the values f6(x)+ f6(y) of all edges constitute an arithmetic sequence xyE(P(n,2,p)) n2+1+1, n2+1+2 ", ,

21,

7n+ 7n2+1+1,", 7n2+1+np. If we complete the edge labeling with the consecutive values in the set {n(p+2)+1 ,n(p+2)+2 ,n(p+2)+3 " , , 5n+

= +

}

2np then we can obtain total labeling where f6(x)+ f6(y) f6(xy) np

+2

n 2 3

11 + for every edge xyE(P(n,2,p)). ;

(6)

In the sequel we shall consider a graph of a generalized prism which can be defined as the Cartesian product Cn×Pm of a cycle on n vertices with a path on m vertices.

Let }V(Cn×Pm)={vi,k:1≤in and 1≤km

m)

×P {vi,kvi 1,k :1 i n and 1 k m}

be the vertex set and (Cn

E = + ≤ ≤ ≤ ≤ ∪{vi,kvi,k+1:1≤in and ,

≥3

n m≥2

Ap

}

−1

≤ m

, Cn Pm

1≤ k

≥1 p

be the edge set, where i is taken modulo n. For and we will consider a graph ( × )+

+

m)

P

= n

i ip

A

1 m

n P

C

(respectively a graph ) which is obtained by adding p vertices and p edges to one vertex of

× (Cn

× , say (respectively to all vertices f ). Thus V

v1,m

Pm ((Cn Pm) Ap) V(Cn Pm)

,m,

viin },

1

: j p

uj

1 o

Cn× × + = × ∪{ ≤ ≤

}, 1

, 1

: { ) (

) )

(( ,

1

p j n i u P C V A P

C

V n n m i j

i ip m

n× +

= × ∪ ≤ ≤ ≤ ≤

=

= +

× ) )

((Cn Pm Ap

E E(Cn×Pm)∪{v1,muj:1≤ jp}, and }.

1 , 1

: {

) (

) )

(( , ,

1

p j n i u

v P C E A P

C

E n n m im i j

i ip m

n× +

= × ∪ ≤ ≤ ≤ ≤

=

Figueroa-Centeno et.al. [5] showe that the generalized prism Cn×Pm is super edge-magic if n is odd and m≥2.

The next two theorems show super edge-magic total labelings of graphs and

p m

n P A

C × )+

( ( ) .

1

=

+

× n

i ip m

n P A

C

Theorem 5. If n is odd, n≥3, m≥2 and p≥1, then the graph (Cn×Pm)+Ap has a super edge-magic total labeling.

Proof. If m is even, m≥2, 1≤km, 1≤in, then we construct a vertex labeling f7 in the following way,

(7)





+

− + +

+

= +

+

even, is and even is if )

1 (

even, is and odd is if

odd, is and even is if

odd, is and odd is if )

1 ( ) (

2 2

2 1 21 ,

7

k i

k n

k i

nk

k i

nk

k i

k n v

f

i n i

n i

i

k i

j mn u

f7( j)= + for 1≤ jp.

If m is odd, m≥3,1≤km,1≤in, then we define a vertex labeling as follows,

f8





+

− +

=

− +

− +

=

+

+

even, is and even is if )

1 (

even, is and odd is if )

1 (

even, is and 1 if

odd, is and even is if )

1 (

odd, is and odd is if )

1 ( )

(

2 1 21 2

2

, 8

k i

k n

k i

k n

k i

nk

k i

k n

k i

k n

v f

i n i i

i n

k i

j mn u

f8( j)= + for 1≤ jp.

It is easy to verify that for each edge xyE((Cn×Pm)+Ap) the values and form an arithmetic sequence

) ( )

( 7

7 x f y

f + f8(x)+ f8(y) n2+1+1, n2+1+2, ,

" 2mnn21, mn2 −n23 ,",2mnnp1+p.

Let f9 be a bijection from E((Cn×Pm)+Ap) onto {1 ,2 ," ,2nmn+p}.

mn f9+

We can combine the vertex labeling (or ) and the edge labeling

such that the resulting labeling is total and the edge sum for each edge is equal to

f7 f8 +p

) ) ((Cn Pm Ap

xyE × + 3mn+32n+2 p. ;

Theorem 6. If n is odd, and then the graph has a super edge-magic total labeling.

,

≥3

n m≥2, p≥1, (Cn×Pm)+

= n

i ip

A

1

Proof. Define vertex labeling f10and f11 such that : if m is even, 1

) ( )

( , 7 ,

10 vik f vik

f = ≤km, 1≤in,

if m is odd, 1 )

( )

( , 8 ,

11 vik f vik

f = ≤km, 1≤in,

1 ) 1 (

) ( )

( 1, 11 1,

10 u = f u =n m+ j− +

f j j for 1≤ jp,

(8)

2 ) ( ) ( )

( , 11 ,

10 u = f u =n m+ ji+

f i j i j for 2≤in and 1≤ jp.

We can see that vertices of are labeled by values 1, 2, 3,

and for all edges and

constitute an arithmetic sequence

=

+

× n

i ip m

n P A

C

1

) (

) ( y )

( ,n m+p

"

11}

, 10

∈{ t

) (x f

ft + t

=

+

×

n

i ip m

n P A

C xy

1

) (

, , 2 , 1 21

21+ + + "

+ n

n 2mn

+

21 n np .

We can complete the edge labeling of

with values in the set

=

+

× n

i ip m

n P A

C

1

) (

)}

1 2 ,

2 ) ( , 1 ) (

{n m+p + n m+ p + ",n(3m+ p− consecutively such that the common edge sum is k= mn3 +2pnn23.

=

+

× n

i ip m

n P A

C

1

) (

Thus the total labeling of is super edge-magic and the theorem is proved. ;

References

1. Bača, M., Consecutive-magic labeling of generalized Petersen graphs, Utilitas Math. 58 (2000), pp. 237-241.

2. Bača, M., MacDogall, J. A., Miller, M., Slamin & Wallis, W. D., Survey of certain valuations of graphs, Discussiones Math. Graph Theory 20 (2000), pp. 219-229.

3. Bača, M., Lin, Y., Miler, M. & Simanjuntak, R., New constructions of magic and antimagic graphs labelings, Utilitas Math. 60 (2001), pp. 229- 239.

4. Enomoto, H., Lladó, A. S., Nakamigawa, T. & Ringel, G., Super edge- magic graphs, SUT J. Math. Vol. 34 (1998), pp. 105-109.

5. Figueroa-Centeno, R. M., Ichishima, R. & Muntaner-Batle, F. A., The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001), pp. 153-168.

6. Fukuchi, Y., Edge-magic labelings of generalized Petersen graphs P(n,2), Ars Combin. 59 (2001), pp. 253-257.

7. Hartsfield, N. & Ringel, G., Pearls in Graph Theory, Academic Press, New York, 2nd Edition, 2001.

8. Kotzig, A. & Rosa, A., Magic valuations of finite graphs, Canad. Math.

Bull. 13 (1970), pp. 451-461.

(9)

9. Kotzig, A. & Rosa, A, Magic valuations of complete graphs, Publ. CRM 175 (1972).

10. Miller, M. & Bača, M., Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000), pp. 135-139.

11. Ngurah, A. A. G. & Baskoro, E. T., On magic and antimagic total labeling of generalized Petersen graphs, Utilitas Math. 63 (2003), pp. 97- 107.

12. Phillips, N. C. K., Rees, R. S. & Wallis, W. D., Edge-magic total labeling of wheels, Bull. ICA 31 (2001), pp. 21-30.

13. Slamin, Bača, M., Lin, Y., Miller, M. & Simanjuntak, R., Edge-magic total labelings of wheels, fans and frienship graphs, Bull. ICA 35 (2002), pp. 89-98.

14. Wallis, W.D., Baskoro, E. T., Miller, M. & Slamin, Edge-magic total labelings, Australasian J. Combin. 22 (2000), pp. 177-190.

15. Wallis, W. D., Magic Graphs, Birkhäuser, Boston-Basel-Berlin, 2001.

16. Wijaya, K. & Baskoro, E. T., Edge-magic labelings of a product of two graphs, Proc. Seminar MIPA, ITB Bandung (2000), pp. 140-144.

Referensi

Dokumen terkait

Yang dimaksud dengan “keadaan tertentu” antara lain dalam hal seluruh anggota Direksi mempunyai benturan kepentingan. dengan Emiten atau Perusahaan Publik, atau dalam

Dalam mata kuliah ini dibahas hakekat, rasionel dan manfaat etnomatematika; dimensi, perspektif dan kedudukan etnomatematika; subjek, objek, pendekaan dan metode

1. Kepala Sekolah hendaknya bisa menerapkan kombinasi kedua gaya kepemimpinan baik Transformasional maupun Transaksional sesuai dengan situasi dan sifat tugas

Berdasarkan Penetapan Pemenang No: 07/POKJA-ULP II/BRG/PSTW/ PPKDP / 10/2015 Tanggal 09 Oktober 2015 bahwa pemilihan Penyedia Barang Paket Pekerjaan Pengadaan

Ketiga, orang-orang yang menjadi korban penyelundupan membayar mahal untuk sampai ke negara/tempat tujuan mereka, dan keuntungan dari perdagangan orang ini sangat

Pada hari ini Sabtu tanggal Tiga bulan Juni tahun Dua Ribu Tujuh Belas (Sabtu, 03-06-2017), pada pukul 10.00 WIB s/d 11.00 WIB, kami yang bertandatangan dibawah ini

Konsep yang diusung pada desain Grha Mercedes- Benz Hartono Raya Motor ini mengacu pada konsep yang telah dimiliki oleh Mercedes-Benz itu sendiri.. Three Pointed

Abstrak - Galeri Kebaya Indonesia ini didesain dengan suasana modern yang memiliki museum yang berisi tentang perkembangan kebaya Indonesia dari masa ke masa