• Tidak ada hasil yang ditemukan

3a qu MWAH_aad

N/A
N/A
Protected

Academic year: 2021

Membagikan "3a qu MWAH_aad"

Copied!
17
0
0

Teks penuh

(1)

BAB I. PENDAHULUAN BAB I. PENDAHULUAN Trigliserida

1,2,3-Trigliserida 1,2,3-triacetoxypropanetriacetoxypropane atau yang lebih umum dikenal sebagaiatau yang lebih umum dikenal sebagai triacetin adalah triester gliserol dan asam asetat. Triacetin ini merupakan senyawa triacetin adalah triester gliserol dan asam asetat. Triacetin ini merupakan senyawa kimia yang tidak berwarna dan bersifat kental dengan rumus kimia C

kimia yang tidak berwarna dan bersifat kental dengan rumus kimia C99HH1414OO66..

Triacetin berfungsi sebagai

Triacetin berfungsi sebagai plasticizer plasticizer dan pelarut dalam campuran kosmetik sertadan pelarut dalam campuran kosmetik serta triacetin juga digunakan sebagai perasa dan pemberi aroma.

triacetin juga digunakan sebagai perasa dan pemberi aroma.

Gambar 1.1

Gambar 1.1Rumus Kimia Triacetin (Widayat dkk, 2013)Rumus Kimia Triacetin (Widayat dkk, 2013)

Berdasarkan pertimbangan parameter dalam seleksi proses, proses yang Berdasarkan pertimbangan parameter dalam seleksi proses, proses yang dipilih adalah proses esterifikasi - asetilasi gliserol yang dilakukan secara kontiniu dipilih adalah proses esterifikasi - asetilasi gliserol yang dilakukan secara kontiniu dengan mereaksikan gliserol dengan asam asetat dan asam asetat anhidrat. dengan mereaksikan gliserol dengan asam asetat dan asam asetat anhidrat. Pertimbangannya yaitu sebagai berikut:

Pertimbangannya yaitu sebagai berikut: 1.

1. Konversi yang tinggi mencapai 100%Konversi yang tinggi mencapai 100% 2.

2. Kondisi operasi P = 0.2 - 30 bar, T = 100 - 250Kondisi operasi P = 0.2 - 30 bar, T = 100 - 250ooCC 3.

3. Bahan baku pembuatanBahan baku pembuatan TriacetinTriacetin pada reaksi ini adalah gliserol pada reaksi ini adalah gliserol 4.

4. Pemisahan dan pemurnian dengan proses destilasiPemisahan dan pemurnian dengan proses destilasi 5.

5.  Nilai GPM Rp. 316,000 I Nilai GPM Rp. 316,000 IDR/hariDR/hari

Triacetin diproduksi dari reaksi multi tahap yang melibatkan gliserol, asam Triacetin diproduksi dari reaksi multi tahap yang melibatkan gliserol, asam asetat, dan asam asetat anhidrat sebagai bahan baku. Pada reaksi pertama, gliserol asetat, dan asam asetat anhidrat sebagai bahan baku. Pada reaksi pertama, gliserol diesterifikasi menggunakan

diesterifikasi menggunakan asam asetat dan asam asetat dan dihasilkan dihasilkan mono dmono diacetin. Air yangiacetin. Air yang  juga

 juga terbentuk terbentuk lalu lalu dihilangkan dihilangkan dari dari sistem sistem dengan dengan menggunakan menggunakan distilasidistilasi azeotropic asam asetat/campuran air selama reaksi berlangsung. Pada tahap kedua, azeotropic asam asetat/campuran air selama reaksi berlangsung. Pada tahap kedua,  produk

(2)

asetat anhidrat secara eksotermis. Triacetin dan asam asetat yang terbentuk kembali ke sistem reaksi untuk digunakan sebagai reaktan pada reaksi pertama.

Reaksi esterifikasi yang terjadi adalah sebagai berikut :

C3H8O3 + CH3COOH C5H10O4 + H2O

Gliserol Asam asetat Monoacetin Air

C5H10O4 + CH3COOH C7H12O5 + H2O

Monoacetin Asam asetat Diacetin Air

C7H12O5+ CH3COOH C9H14O6 + H2O

Diacetin Asam asetat Triacetin Air

Secara sederhana reaksi diatas dapat ditulis sebagai berikut :

C3H8O3 + 3 CH3COOH C9H10O6 + H2O

Gliserol Asam asetat Triacetin Air

Gliserol direaksikan dengan asam asetat di dalam bubble column dan kemudian direaksikan dengan asam asetat anhidrat di dalam cascading reactor vessel . Produk atas dari bubble column dialirkan menuju kolom azeotrop dimana ditambahkan butil asetat untuk membantu memutuskan titik azeotrop sehingga asam asetat dapat sepenuhnya di-recovery. Air dapat dihilangkan dari sistem reaksi dengan cara distilasi azeotrop campuran asam asetat/air yang dihasilkan selama reaksi. Crude triacetin meninggalkan reaktor kemudian dimurnikan dalam dua buah unit distilasi dan deodorizer. Asam asetat yang tidak bereaksi di-recovery dan di umpankan kembali ke kolom gelembung. Secara garis besar proses pembuatan triacetin dengan proses esterifikasi-asetilasi terdiri dari 4 tahapan, yaitu:

H2SO4

H2SO4

(3)

1. Tahap Penyimpanan Bahan Baku

Bahan baku gliserol diperoleh dari PT. Ecogreen Oleochemicals, Batam yang disimpan pada fase cair dengan suhu 30C dan tekanan 1 atm dalam tangki  penyimpanan T-01 dan asam asetat diperoleh dari PT. Indo Acidatama, Jawa Tengah yang disimpan pada fase cair dengan suhu 30 C dan tekanan 1 atm dalam tangki penyimpanan T-02. Bahan baku gliserol diperoleh dari pasaran dengan kemurnian minimal 99,5% dan asam asetat dengan kemurnian 99,8%.

2. Tahap Pembentukan Produk

Triacetin diproduksi dengan menggunakan reaksi esterifikasi-asetilasi antara gliserol, asam asetat dan asam asetat anhidrat. Gliserol diumpankan kebagian atas reaktor Bubble Column dan uap asam asetat dimasukkan dari bawah kolom. Katal is yang digunakan pada proses ini adalah katalis H2SO4. Katalis tersebut di campur

terlebih dahulu dengan gliserol sebelu di umpankan ke dalam reaktor  Bubble Column. Kolom gelembung dioperasikan pada suhu 120 C dan tekanan 1 atm. Pada reactor Bubble Column pertama, gliserol diesterifikasi dengan asam asetat dengan konversi sebesar 60%. Produk atas gelembung dialirkan menuju kolom azeotrop untuk me-recovery asam asetat dengan menambahkan butil asetat yang berfungsi untuk memecahkan titik azeotrop campuran asam asetat-air. Sedangkan produk  bawah kolom gelembung adalah monoacetin, diacetin, gliserol, asam asetat, dan air.

Kemudian produk bawah akan dialirkan menuju reaktor CSTR.

Reaktor CSTR  terdiri dari 4 reaktor. Aliran produk bawah dari  Bubble Column memasuki reaktor CSTR kemudian direaksikan dengan asetat anhidrat dan membentuk triacetin. Reaktor CSTR dioperasikan pada suhu 120C dan tekanan 1 atm. Material dari reaktor ke 4 memasuki menara distilasi pertama . Menara distilasi  pertama dioperasikan pada suhu 200°C pada tekanan 3 atm. Pada menara distilasi

 pertama akan dipisahkan asam asetat + air. Produk atas yaitu asam asetat + air kemudian di alirkan ke kolom azeotrop untuk dipisahkan, sedangkan produk bawah yaitu triacetin, H2SO4, dan impurities akan dialirkan menuju menara distilasi kedua

(4)

3. Tahap Pemurnian Produk

Tahap ini bertujuan untuk memperoleh produk Triacetin hingga mencapai kemurnian 99% berat. Produk keluar reaktor berupa campuran Gliserol, Asam Asetat, Air, Monoacetin, Diacetin, Triacetin dan Asam Sulfat pada suhu 120ºC dan tekanan 1 atm, dinaikkan suhunya menggunakan Heater (HE-04) kondisinya menjadi 200ºC dan tekanannya 3 atm, kemudian diumpankan menuju menara distilasi (MD-01) untuk memisahkan komponen yang terlarut dengan air (Komposisi Fase Ringan) sebagai hasil atas distilasi yaitu asam asetat + air dan hasil  bawah adalah gliserol, asam asetat, monoacetin, diacetin, triacetin, asam sulfat dan

air.

Kemudian untuk hasil bawah MD-01 dialirkan ke menara distilasi kedua (MD-02) sebelum masuk kedalam distilasi kedua suhu keluaran dari MD-01 dinaikkan suhunya dengan Heater (HE-05) kondisinya menjadi 300°C dan tekanannya 3 atm. Hasil bawah MD-02 yakni katalis asam sulfat dan impurities.Sedangkan produk atas nya triacetin, diacetin, monoacetin dan sedikit air.

4. Tahap Penyimpanan Produk

Triacetin dari hasil menara distilasi kedua (MD-02) kemudian disimpan dalam tangki silinder vertikal dengan atap cone T-05 pada kondisi 35C dan tekanan 1 atm.

(5)

BAB II. DASAR PERANCANGAN

Pada perancangan kedua tipe reaktor yang digunakan yaitu bubble column reactor  dan CSTR dibutuhkan beberapa spesfikasi khusus. Diantaranya meliputi  jenis, material, serta design reaktor yang dijabarkan sebagai berikut.

2.1 Desain Bubble Column Reaktor

Skema perhitungan yang diperlukan antara lain : 1) Menentukan Diffusivitas Gas

(Coulson, hal 331) Keterangan :

Dv = Diffusivity m2/s

T = Temperature K

Mr O2 = Berat molekul Kg/kmol

P = Tekanan Bar

2) Menentuka Bilangan Hatta

Keterangan :

Ha < 0,3 Reaction needs large bulk liquid volume

0,3 < Ha < 3,0 Reaction needs large interfacial area and large bulk liquid volume.

Ha > 3,0 Reaction needs large interfacial area.

2.2 Desain Vessel

2.2.1 Menghitung Volume Reaktor, VR 

Untuk menentukan volume reaktor plug flow (PFR) digunakan persamaan:  Neraca massa PFR :

Input = Output + Reaksi + Accumulasi FAO = FA + (-r A) V +

dt  dC  A

(6)

Dalam keadaan steady state, dt  dC   A = 0 Sehingga : FAO = FA + (-r A) V Dimana : FA = FAO (1 –  XA) Maka, V =  A  A  AO r   X   F 

 =  A  A  Ao  Ao  Ao o r   X  C   F  C  V  v V    

.

Q V  v V  o        

Untuk densitas konstan,  =

t (Octave Levenspiel, hal

116)

Q = massa/densitas Maka :

V =  . Q

Faktor keamanan, f = 20 %

Volume total, Vtotal = (100% + 20%) x V

2.2.2 Menghitung Ukuran Kolom Reaktor

Perbandingan tinggi kolom terhadap diameter kolom (H/D) berada pada range 4-12 (Perry’s ed 7, hal : 23 - 49). Untuk Bubble Column terdiri dari silinder shell dengan dua tutup ellipsoidal, ditentukan dimensi :

4   R

 D  H 

(7)

4

 R

 D

h (Tabel 3. Walas, hal

625) Dengan : H = Tinggi silinder h = Tinggi ellipsoidal DR   = Diameter reaktor a) Diameter reaktor, DR  VR  = Vsilinder  + Vellipsoidal VR  =

 

 

 

 

3 2 24 2 4 D R  H  DR       = 2

3 12 4 4 D R  D R DR        = 3 12 13  R  D    DR  = 3 19 12     R V   b. Tinggi silinder, H 4   R  D  H  H = 4 . DR c. Tinggi ellipsoidal, h 4  R  D h d. Tinggi reaktor, HR  HR = H + 2 h

(8)

e. Menghitung ketebalan dinding reaktor, tw Untuk Silinder : tw = C   P   ,  E -S r   P 6 0   

Menentukan tekanan design Ptotal = Poperasi + PhidrostatiS

(Peters, hal 551)

f. Menentukan Jenis Head dan Jenis Material

Pemilihan Dapat dilihat pada Buku Brownell & young, dan Peters

Untuk ellipsoidal head : t  =

C   P   ,  E -S  D  P 2 0 2   (Peters, Tabel 4 hal 550)

2.3 Menghitung Desain Perforated Plate

Berdasarkan literatur Treyball hal. 140, digunakan sparger yang berbentuk lingkaran dengan diameter orifice yang memiliki range 1.5 mm –  3 mm.

a) Diameter bubble, dB dB = 3 1 . . . . 6



 

 



 

 

      g  q d O c (Pers.6.1. Treyball)

 b) Luas tiap lubang orifice, AO

AO = 4 2    O d 

c) Volume tiap bubble, VB

VB = 6 . 3    B d 

(9)

d) Laju volumetrik gas pada tiap lubang, Q dB3 = 5 3 5 6 6 378 , 1  g  Q   (Pers. 18.31. Perry) Q =

 

5 6 5 3 3 6 378 , 1 . . g  d  B  

e) Kecepatan gas masuk pada tiap lubang, Ug

Ug =

O

 A Q

f) Kecepatan terminal bubble, Ut

Ut =

 

 

 

 

(0.5. . ) . 2  g  d  d  B   g  B   (Pers. 7.44. Deckwer)

g) Gas hold up,  g

 g   g   g  U  U  . 0661 . 0 1 . 0661 . 0 0.69     (Pers. 7.25 b. Deckwer)

h) Kecepatan superfacial gas, Us (laju aliran udara pada kolom yang kosong)

Us = Ut .

1

  g 

n1

(Pers. 7.15.

Deckwer) Dengan :

n = fungsi Reynold Number di bubble = 2,39 (Hal 168. Deckwer)

maka,

(10)

i) Interfacial area bubble per unit volume liquid, a a =  B  g  d    . 6

 j) Diameter perforated plate, D pp

Biasa diasumsikan : jarak antara dinding reaktor dengan lubang orifice terluar ditentukan 3 inchi = 7,62 cm.

DR  = D pp + 2 (7,62 cm)

D pp = DR  –  2 (7,62 cm)

k) Luas perforated plate, A pp

A pp = 4 . 2  pp  D   

l) Jumlah lubang orifice, Nor 

 Nor 0,29 = 29 , 0 2 . 0083 , 0

 

 

 

 

 p  R O  g   L  D d    Dengan : L p = jarak pitch  g    = gas hold up do = diameter orifice DR  = diameter reaktor

m) Menghitung Pendingin Reaktor

Dengan :

Q : jumlah panas yang harus diserap Cp : panas jenis pendingin

(11)

Menghitung luas transfer panas

Luas perpindahan panas yang diperlukan :

Maka luas perpindahan panas :

Luas perpindahan panas per coil : A’ = At’. .Dc

= 7.689291585 sqft Jumlah lilitan :

 Nt = Ao/A’ Panjang total coil :

L = Ao/At’

Tinggi lilitan coil minimum yaitu jika coil disusun tanpa jarak, yaitu : Hmin = Nt.OD

Tinggi coil total :

H = Hmin + (Nt -1).pt/12 2.4 Jaket Pendingin

OD id

(12)

Keterangan :

OD = Outside diameter R-01 = (m)

H = Tinggi silinder = (m)

id = Diameter reaktor beserta jaket bagian dalam Flowrate cooling water (m) = (kg/jam)

Densitas Pendingin () = (kg/m3)

Residence time = (jam)

Volumetric flowrate pendingin =

  

m

= (m3/jam)

Volume jaket pendingin = Volumetric flowrate x Residence time = (m3)

V Jaket = (Volume Reaktor + Jaket) –  (Volume Reaktor)

V Reaktor + Jaket = Volume Silinder + Volume head ellipsoidal (2:1)

= 2 ( )3 24 1 ) ( 4 1 id   H  id       

V Reaktor = Volume Silinder + Volume head ellipsoidal (2:1)

= 2 ( )3 24 1 ) ( 4 1 OD  H  OD      Maka : V Jaket =

 

 

 

 

 

 

 

 

3 2 3 2 ) ( 24 1 ) ( 4 1 ) ( 24 1 ) ( 4 1 OD  H  OD id   H  id              V Jaket =

2 2

3 3

24 1 4 1 OD id  OD id   H 

   

(13)

Jika disubstitusikan data yang diketahui dari persamaan ini akan didapat harga id  , dalam ( m )

Tebal jaket pendingin = id  – OD = ( m )

2.5 Reaktor CSTR I 2.5.1 Jenis reaktor

Jenis reaktor yang digunakan adalah Continuous Stirred Tank Reactor (CSTR) berdasarkan fasa reaktan yang direaksikan berupa cair-cair. Pengadukan diperlukan untuk menyempurnakan reaksi.

2.5.2 Material Reaktor

Pemilihan material konstruksi yang digunakan untuk tangki degumming dan bleaching ini adalah Carbon Steel SA 283 Grade C. Pemilihan jenis material ini  berdasarkan ketahanan material terhadap suhu dan tekanan operasi. Carbon Steel SA 283 Grade C digunakan untuk konstruksi yang mempunyai kekuatan tarik rendah dan menengah.

Pemilihan pemilihan jenis plate Carbon Steels SA-283 Grade C didasari  beberapa faktor seperti:

1. Tidak terdapat cairan berbahaya atau gas di dalam tangkI

2. Suhu operasi berada pada rentang -20°F-650°F yaitu 110°C (230°F) 3. Ketebalan shell tidak lebih dari 5/8 in

4. Baja terbuat dari tanur listrik atau tungku perapian terbuka 5. Material ini tidak digunakan untuk unfired steam boiler  6. Umum digunakan dan ekonomis

(14)
(15)

BAB III. SPESIFIKASI ALAT

3.1 Persamaan-Persamaan Dalam Perhitungan Perancangan

Sebelum melakukan perancangan pada reaktor, beberapa tahapan yang harus dilakukan diantaranya yaitu :

1. Mengetahui terlebih dahulu tipe reaksi yang terjadi pada r eaktan, sehingga dapat ditentukan reaktor yang tepat.

a. Reaksi Homogen i. Reaktor Batch ii. Reaktor Semibatch

iii. Reaktor Alir Tangki Berpengaduk (CSTR)  b. Reaksi Heterogen

i. Reaktor Fixed Bed ii. Reaktor Fluidized Bed  iii. Reaktor Moving Bed 

iv. Reaktor Gelembung ( Bubble Column Reactor ) v. Reaktor Slurry

2. Memilih tipe reaktor dan menentukan kondisi operasi 3. Menghitung Ukuran Reaktor

4. Merancang Reaktor

Pada perancangan kedua jenis reaktor yang digunakan yaitu bubble column reaktor dan CSTR, digunakan serangkaian tahapan yang dijabarkan pada beberapa  point berikut :

1. Menentukan data perhitungan pada tangki seperti P, T, F, densitas campuran, viskositas, dan waktu tinggal pada masing-masing tangki.

2. Perhitungan Dimensi Tangki Volume Liquid,

VL=

 x t

Digunakan over design 20%, maka volume tangka : VT= 1.2 VL

(16)

VT=

1 4 π D

2 H

4. Menentukan Tinggi Cairan (HL)

VL=

1 4 π D

2 H L

5. Perhitungan Tekanan Hidrostatik (Ph) Ph =  

 HL 6. Perhitungan Tekanan Design (P)

P = Ph + POP

7. Perhitungan Tebal Shell  ts=



−0.6  + C 8. Perhitungan Tebal Shell Course

tsc=

(−1)×12 2   144  + C 9. Perhitungan Tebal Head 

Pada reaktor bubble column dan CSTR yang digunakan yaitu tutup berjenis th=

0.885   − 0.1  + C 10. Perhitungan Diameter Total Tangki

OD = ID + 2 ts

11. Perhitungan Tinggi Total Tangki (Ht)

Ht= H + head  + bottom

12. Perhitungan Rancangan Pengaduk

Menurut Walas (1990) pada perancangan pengaduk beberapa komponen yang perlu diperhatikan dan diperhitungkan diantaranya meliputi :

i. Diameter  Impeller  (d)

d = 0.35 × ID ii. Lebar Impeller (w)

w =  5

iii. Tinggi Impeller dari Dasar Tangki (c) c = 

6 iv. Lebar Baffle (W)

(17)

W =  12

v. Tinggi Baffle dari dinding Tangki =

6

vi. Tinggi Baffle dari dasar Tangki =

2

vii. Kecepatan superficial, v (Tabel 10.2 Page 294 (Walas, 1990)) 13. Reynold Number   NRe=    µ  =    µ 14. Power Number P =  3 

Referensi

Dokumen terkait

dari para pihak juga secara tersirat terdapat dalam pasal 52 ayat (1) Undang-Undang Nomor 30 Tahun 2004 tentang Jabatan Notaris yang menyebutkan bahwa “Notaris tidak

Berdasarkan pertimbangan Mahkamah Agung tersebut, tampak bahwa alasan-alasan yang diajukan Pemohon Kasasi I/Jaksa/Penuntut Umum bahwa pengadilan tinggi tidak

Namun apabila akta yang diperbuat oleh atau dihadapan Notaris memiliki indikasi tindak pidana dimana Notaris harus melepaskan atau mengabaikan kewajiban

Hingga saat ini akta notaris terhadap pemberlakuan cyber notary hanya dianggap sebagai akta di bawah tangan yang disamakan dengan dokumen, surat, Undang-Undang Nomor 2

Paper ini mengajukan variasi spasial curah hujan dan model korelasi spasial curah hujan untuk wilayah Surabaya dengan jalan fitting data spasial curah hujan tiap pasangan

Hasil penelitian yang dilakukan dapat disimpulkan antara lain yaitu pertama nilai efisiensi terbesar yang diperoleh pada pukul 12.00 WIB adalah sebesar 62,14% untuk

Indikasi ini memperkuat kesimpulan sebelumnya, sehingga dapat dikatakan bahwa sistem akuifer karst Mataair Ngeleng memiliki karakter respon debit yang cepat terhadap curah

Sehingga diharapkan siswa tidak saja menunggu materi dari para guru atau hanya mengikuti materi pembelajaran dari buku pelajaran yang ada, tetapi diharapkan aktif untuk