• Tidak ada hasil yang ditemukan

Modul Praktikum Hidrolika I

N/A
N/A
Protected

Academic year: 2021

Membagikan "Modul Praktikum Hidrolika I"

Copied!
25
0
0

Teks penuh

(1)

MODUL PRAKTIKUM

MODUL PRAKTIKUM

HIDROLIKA I

HIDROLIKA I

Dipergunakan untuk praktikum mahasiswa Rekayasa Infrastruktur Lingkungan Dipergunakan untuk praktikum mahasiswa Rekayasa Infrastruktur Lingkungan ITBITB

PROGRAM STUDI TEKNIK LINGKUNGAN

PROGRAM STUDI TEKNIK LINGKUNGAN

FAKULTAS TEKNIK SIPIL

FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN

DAN LINGKUNGAN

INSTITUT TEKNOLOGI BANDUNG

INSTITUT TEKNOLOGI BANDUNG

2016

(2)

PENJELASAN PRAKTIKUM MEKANIKA FLUIDA I PENJELASAN PRAKTIKUM MEKANIKA FLUIDA I

RESPONSI RESPONSI

1.

1. Peserta wajib mengikuti responsi praktikum pada tanggal yang sudah ditentukanPeserta wajib mengikuti responsi praktikum pada tanggal yang sudah ditentukan 2.

2. Responsi terdiri dari penjelasan praktikum dan tes responsi, tidak mengikuti responsiResponsi terdiri dari penjelasan praktikum dan tes responsi, tidak mengikuti responsi otomatis nilai tes responsi nol.

otomatis nilai tes responsi nol. 3.

3.  Nilai tes responsi akan dimasukan ke dalam nilai akhir praktikum. Nilai tes responsi akan dimasukan ke dalam nilai akhir praktikum.

PRAKTIKUM PRAKTIKUM

A. PELAKSANAAN PRAKTIKUM A. PELAKSANAAN PRAKTIKUM

1.

1. Praktikum dilaksanakan di Laboratorium Hidrolika, Labtek I B lantai 2.Praktikum dilaksanakan di Laboratorium Hidrolika, Labtek I B lantai 2. 2.

2. Praktikum dilaksanakan selama 60 menit..Praktikum dilaksanakan selama 60 menit.. 3.

3. Jika nilai tes responsi peserta dibawah 40, maka peserta tersebut dilarang mengikutiJika nilai tes responsi peserta dibawah 40, maka peserta tersebut dilarang mengikuti  praktikum pada hari itu dan akan mengikuti praktikum susulan.

 praktikum pada hari itu dan akan mengikuti praktikum susulan. 4.

4. Setelah praktikum akan dilaksanakan asistensi bersama asisten selama 30 menit.Setelah praktikum akan dilaksanakan asistensi bersama asisten selama 30 menit. 5.

5. Mahasiswa yang tidak mengikuti praktikum berarti tidak lulus praktikum dan otomatisMahasiswa yang tidak mengikuti praktikum berarti tidak lulus praktikum dan otomatis tidak lulus Mata Kuliah Hidrolika I.

tidak lulus Mata Kuliah Hidrolika I. 6.

6. Mahasiswa diharapkan hadir tepat waktu dengan toleransi keterlambatan 10 menit.Mahasiswa diharapkan hadir tepat waktu dengan toleransi keterlambatan 10 menit. Mahasiswa yang terlambat 5-10 menit dikenakan sanksi perorangan (-10 nilai tes Mahasiswa yang terlambat 5-10 menit dikenakan sanksi perorangan (-10 nilai tes responsi) dan sanksi kelompok (-2 nilai laporan praktikum modul tersebut). Sedangkan responsi) dan sanksi kelompok (-2 nilai laporan praktikum modul tersebut). Sedangkan untuk mahasiswa terlambat lebih dari 10 menit dianggap tidak hadir praktikum dan untuk mahasiswa terlambat lebih dari 10 menit dianggap tidak hadir praktikum dan mendapat saksi perorangan (-20 nilai laporan praktikum modul tersebut) dan sanksi mendapat saksi perorangan (-20 nilai laporan praktikum modul tersebut) dan sanksi kelompok (-5 nilai laporan praktikum modul tersebut) tetapi masih berhak mengikuti dan kelompok (-5 nilai laporan praktikum modul tersebut) tetapi masih berhak mengikuti dan mengerjakan laporan praktikum.

mengerjakan laporan praktikum. 7.

7. Mahasiswa tidak diperkenankan bercanda ketika sedang melaksanakan praktikum.Mahasiswa tidak diperkenankan bercanda ketika sedang melaksanakan praktikum. 8.

8. Bagi mahasiswa yang memecahkan dan/atau merusak properti laboratorium, segera laporBagi mahasiswa yang memecahkan dan/atau merusak properti laboratorium, segera lapor ke koordinator asisten dan mengganti item tersebut setelah kejadian

ke koordinator asisten dan mengganti item tersebut setelah kejadian tersebut.tersebut. 9.

9. Mahasiswa tidak boleh menggunakan fasilitas apapun di laboratorium tanpa izin dariMahasiswa tidak boleh menggunakan fasilitas apapun di laboratorium tanpa izin dari asisten yang bertugas.

asisten yang bertugas.

B. KELENGKAPAN PRAKTIKUM B. KELENGKAPAN PRAKTIKUM

(3)

1. Jurnal wajib dibawa dan diisi setiap pratikum, Mahasiswa yang tidak membawa dan tidak mengisi jurnal maka akan mendapat sanksi individu (-10 nilai laporan praktikum modul tersebut)

2. Mahasiswa wajib mengisi daftar hadir praktikum yang telah disiapkan oleh asisten

3. Selama praktikum, Mahasiswa diwajibkan memakai jas laboratorium lengan panjang, name tag, sepatu tertutup, pakaian rapi dan sopan, bagi yang berponi/berambut panjang harap diikat/dijepit agar tidak mengganggu aktivitas selama praktikum. Jika kelengkapan tidak terpenuhi, praktikan tidak diizinkan mengikuti praktikum = nilai praktikum 0

4. Mahasiswa harus sudah memakai jas lab dan nametag ketika memasuki ruangan laboratorium dan dibuka setelah praktikum selesai (diluar lab/ruang asisten)

5.  Nametag praktikum mengikuti format yang telah ditentukan oleh tim asisten

6. Tas mahasiswa disusun rapih diruang Teknisi/Ruang Asisten dan disarankan tidak membawa barang berharga

7. Praktikan tidak diperbolehkan menggunakan aksesoris di tangan (termasuk jam tangan) selama praktikum

8. Peralatan pribadi yang diperlukan untuk praktikum, meliputi stopwatch/HP/ berstopwatch (1 per kelompok), penggaris 30 cm (2 per kelompok), kalkulator (1 per kelompok), alat tulis (perorangan), kertas reuse ½ halaman A4 kalkulator (1 per kelompok). Peralatan tersebut harap disiapkan sebelum memasuki laboratorium.

C. IZIN PRAKTIKUM

1. Mahasiswa yang tidak dapat mengikuti praktikum hanya diperbolehkan oleh 2 alasan: a. Sakit, dengan melampirkan surat sakit (surat sakit dari dokter) paling lambat 1 minggu setelah praktikum, diberikan pada asisten yang bertugas saat praktikum. pemberitahuan  bahwa mahasiswa sakit harus disampaikan oleh teman satu kelompok ke asisten yang  bertugas pada saat praktikum dilaksanakan

 b. Izin, dengan melampirkan surat izin (yang dibuat oleh wali/orangtua/Instansi) pada hari praktikum dilaksanakan, diberikan pada asisten praktikum. Pemberitahuan bahwa  praktikan izin harus disampaikan oleh teman satu kelompok ke asisten yang bertugas  pada saat praktikum dilaksanakan.

(4)

2. Praktikum susulan akan dilaksanakan pada jadwal yang akan ditentukan selanjutnya. Mahasiswa tetap diharuskan mengumpulkan laporan sesuai data yang didapat dari  praktikum susulan berhak mendapat nilai penuh laporan.

3. Bagi mahasiswa yang tidak mengikuti praktikum tanpa keterangan yang jelas maka tidak  berhak mendapatkan nilai laporan praktikum modul yang dipraktikumkan .

D. KETENTUAN JURNAL PRAKTIKUM

1. Jurnal praktikum menggunakan buku campus dan ditulis tangan. Jurnal diberi label nama sesuai dengan format yang telah ditentukan oleh tim asisten

2. Jurnal dibuat sebelum praktikum dimulai dan digunakan untuk menulis data selama  praktikum berlangsung

3. Jurnal praktikum berisi : a. Judul praktikum  b. Tujuan praktikum c. Prinsip d. Cara kerja e. Tabel data f. Rumus g. Daftar grafik E. LAPORAN PRAKTIKUM

1. Laporan praktikum merupakan laporan perorangan diketik dan diprint pada kertas A4 reuse.

2. Pengumpulan laporan dilakukan satu minggu setelah praktikum.

3. Laporan diserahkan kepada asisten yang bertugas sesuai dengan jam praktikum secara  berkelompok .

4. Bila pengumpulan terlambat dikumpulkan, maka nilai laporan tersebut akan dikenakan sanksi perorangan (-5 tiap harinya)

5. Susunan dan penilaian laporan praktikum adalah sebagai berikut :

a. Cover laporan (Wajib ada apabila tidak ada mendapat sanksi individu (-1 per kesalahan)

(5)

 b. Tujuan praktikum (5) c. Prinsip percobaan (10) d. Teori dasar (15) e. Data awal (4) f. Pengolahan data (10) g. Data Akhir (4) h. Analisa A (30) i. Analisa B (10)  j. Kesimpulan (10) k. Daftar pustaka (2)

6. Ketentuan isi laporan adalah sebagai berikut :

a. Cover laporan : mengikuti format yang telah diberikan

 b. Teori dasar : dikerjakan secara perorangan (satu kelompok boleh sama) 2-4 halaman c. Tujuan praktikum : berisi tujuan praktikum bukan sasaran praktikum

d. Prinsip Praktikum : dijelaskan dalam bentuk paragraf, merupakan prinsip praktikum (metoda yang dilakukan saat praktikum hingga tercapai tujuan praktikum)

e. Data Awal : berupa data hasil pengamatan di laboratorium (boleh berupa tabel)

f. Pengolahan data : berupa tahapan-tahapan perhitungan lengkap untuk 1 jenis variasi debit

g. Data Akhir : merupakan data hasil pengolahan dari data awal (boleh berupa tabel) h. Analisa A : meliputi analisa data dan grafik, analisa komponen rumus-rumus yang

digunakan, dan faktor-faktor kesalahan yang mungkin terjadi selama praktikum

i. Analisa B : meliputi contoh aplikasi dalam bidang rekayasa infrastruktur lingkungan disertai penjelasannya. Minimal dicantumkan 2 contoh aplikasi

 j. Kesimpulan : diharapkan menjawab seluruh poin yang dituliskan di bagian Tujuan k. Daftar pustaka minimal mencantumkan dua sumber textbook, dan satu jurnal (nasional

atau internasional)

l. Jika mengutip kalimat yang merupakan hasil pemikiran orang lain dari buku, jurnal, internet, pada semua bagian laporan, maka harus mencantumkan sumber-sumber tersebut pada kalimat (Contoh : Ekaputri, 2011) dan sumber tersebut dicantumkan pada daftar pustaka

(6)

m. Apabila diketahui adanya penjiplakan laporan praktikum sesama mahasiswa maka nilai laporan sumber dan pihak yang menjiplak akan disamakan dan dibagi 2

n. Apabila diketahui menggunakan data yang tidak sesuai dengan yang didapat saat  praktikum maka diberi sanksi individu (-50 nilai laporan praktikum modul tersebut).

F. NILAI TOTAL PRAKTIKUM

1.  Nilai total praktikum merupakan penggabungan dari nilai kehadiran dan keaktifan mahasiswa pada saat responsi dan praktikum (10%), nilai tes responsi (20%), nilai jurnal (5%), dan nilai laporan (65%)

2.  Nilai total praktikum harus terkumpul maksimal 2 minggu setelah praktikum kepada Koordinator Praktikum. Jika nilai total tidak terkumpul sampai saat yang dituju, maka nilai total praktikum secara otomatis akan menjadi 30.

Tim Asisten berharap para praktikan dapat memahami dan menjalankan peraturan ini dengan sebaik-baiknya. Aturan-aturan ini diberlakukan dengan maksud agar praktikum dapat berjalan dengan baik sehingga tujuan awal dari praktikum Mekanika Fluida I dapat tercapai. Akhir kata Tim Asisten mengucapkan terima kasih atas kerjasamanya dan selamat

(7)

MODUL 01

HYDRAULIC BENCH  Nida Ulhusna

A. SASARAN

Menentukan debit aktual (Qaktual)

B. TEORI

Massa air = ρ air x volume air (1.1)

Volume air = Qaktual x trata-rata (1.2)

C. CARA KERJA

1. Hubungkanbench ke sumber listrik. 2. Ukur suhu fluida sebelum percobaan. 3. Tutup valve bench, lalu nyalakan pompa.

4. Periksa apakan terjadi kebocoran di perpompaan, perpipaan, atau bagian lain. 5. Tutup drain di bak dalamweight tank  dengan memutarcam lever .

6. Bukavalve di bench (air akan mengalir ke alat percobaan dan kembali ke bench).

7. Jalankan stopwatch tepat saat lengan (yang menghubungkan bak dan tempat beban)  bergerak ke atas.

8. Pasang beban segera, maka lengan akan turun ke bawah. Setelah beberapa saat lengan akan naik kembali ke atas.

9. Matikan  stopwatch tepat saat lengan bergerak ke atas. Catat berat beban yang digunakan (berat air adalah 3 kali berat beban yang digunakan). Catat waktu yang tertera pada stopwatch.

10. Ulangi percobaan sesuai kebutuhan, dengan membuang air dalam bak melalui  pengaturan cam lever . Catatan : untuk Standar Praktikum, percobaan dengan beban yang sama diulang sebanyak 3 kali (3 kali pencatatan waktu tiap satu jenis beban). Beban yang sama dapat digunakan, asalkan besar pembukaan valve bervariasi (variasi debit).

(8)

11. Khusus untuk 3 variasi debit terakhir, lakukan pengukuran volume air disetiap variasinya dengan mengalirkan air (selama waktu rerata yang diperoleh dari  pengukuran sebelumnya) melalui selang pada alat kemudian air ditampung pada

ember, lalu ukur volume air menggunakan gelas ukur.

12. Tutup valve dibench. Matikan pompa. Cabut fitting stop kontak sumber listrik. 13. Ukur suhu fluida sesudah percobaan.

D. TABEL DATA

Massa beban = kg

Suhu awal = oC

Suhu akhir = oC

Tabel 1.1Data Awal Pengukuran Waktu dengan Hydraulic Bench

Variasi t (s) t1 t2 t3 1 2 3 4 5

Tabel 1.2 Data Awal Pengukuran Waktu dengan Ember Variasi t rata-rata (s) Volume Air (l)

3 4 5

(9)

E. TABEL HASIL

Tabel 1.3 Hasil Perhitungan Debit Aktual dengan Hydraulic Bench

Variasi Massa Air (kg) t rata-rata (s) Qaktual hydraulic bench(m3/s)

1 2 3 4 5

Tabel 1.4 Hasil Perhitungan Debit Aktual dengan Ember

Variasi Volume Air (l) t rata-rata (s) Qaktual ember (m3/s)

3 4 5

F. ILUSTRASI

(10)

MODUL 02

ALAT UKUR DEBIT SALURAN TERTUTUP Gusmiati

Venturimeter A. Sasaran

1. Menentukan debit teoritis (Qteoritis) dari venturimeter 

2. Menentukan nilai koefisien discharge (Cd) dari venturimeter 

B. Teori

1. Qteoritis = AB x vB (2.1)

(2.2) a. Data-data yang tersedia yaitu dA = 26 mm dan dB =16mm

 b. Data –  data yang dicari adalah :

(2.3) Yang merupakan beda tinggi (Δh) muka air di tabung piezometrik A dan B

2. Perhitungan koefisien discharge (Cd)

 =





(2.4) Dari grafik Qaktual  (absis) terhadap Qteoritis  (ordinat) tentukan nilai gradien (m) dari

 persamaan yang di dapat

Qaktual = Cd x Qteoritis dan y = m x+c,

maka Cd = 1/m (2.5)

C. Cara Kerja

1. Ukur temperatur fluida di awal percobaan 2. Aktifkanhydraulic bench

(11)

3. Keluarkan udara yang terjebak di dalam piezometer dan posisi muka air di piezometer  berada pada ketinggian kira-kira 280 mm

4. Pengukuran debit dilakukan dalam 5 variasi dengan cara mengatur valve di hydraulic bench. Untuk satu variasi debit dilakukan dengan pengukuran waktu 3 kali

5. Catat pembacaan tinggi muka air di tabung piezometer A dan B 6. Ukur temperatur fluida di akhir percobaan

D. Tabel Awal

Tawal = oC

Takhir  = oC

Massa beban = kg

Tabel 2.1 Data Pengukuran Ketinggian Muka Air dan Waktu pada Venturimeter Variasi ha(cm) hb(cm) Δhab(cm) t (detik) 1 2 3 4 E. Tabel Hasil

Tabel 2.2 Hasil Perhitungan Debit dan Kecepatan pada Venturimeter

Variasi Qaktual (m3/s) Δhab rata-rata

(mm) Vb(m/s) Qhitung (m 3/s) 1 2 3 4 5

(12)

F. Grafik-grafik

1. Qaktual (absis) terhadap Δh (ordinat) 2. Qaktual(absis) terhadap Qteoritis (ordinat)

Keterangan :

 Untuk grafik linear digunakan regresi linear dengan set intercept = 0  Tampilkan nilai persamaan garisnya dan nilai koefisen korelasi (R 2)

Orificemeter A. Sasaran

1. Menentukan debit teoritis (Qteoritis) dari orificemeter 

2. Menentukan nilai koefisiendischarge (Cd) dari orificemeter 

B. Teori

Qteoritis =AF x VF (2.6)

(2.7)  Data-data yang tersedia yaitu dA = 51 mm dan dB = 20 mm

 Data –  data yang dicari adalah :

(2.8)  Yang merupakan beda tinggi (Δh) muka air di tabung piezometer E dan F

=





(2.9)  Dari garik Qaktual  (absis) terhadap Qteoritis (ordinat) tentukan nilai gradien (m) dari

 persamaan yang di dapat

Qaktual = Cd x Qteoritis dan y = m x +c,

(13)

C. Cara Kerja

1. Ukur temperatur fluida di awal percobaan 2. Aktifkanhydraulic bench

3. Keluarkan udara yang terjebak di dalam piezometer dan posisi muka air di piezometer  berada pada ketinggian kira-kira 280 mm

4. Pengukuran debit dilakukan dalam 5 variasi dengan cara mengaturvalve di hydraulic bench . Untuk satu variasi debit dilakukan pengukuran waktu 3 kali.

5. Catat pembacaan tinggi muka air di tabung piezometer E dan F 6. Ukur temperatur fluida di akhir percobaan

D. Tabel Data

Tabel 2.3 Data Pengukuran Ketinggian Muka Air dan Waktu pada Orificemeter

Variasi he(cm) hf(cm) Δhef(cm) t (detik) 1 2 3 4 E. Tabel Hasil

Tabel 2.4 Hasil Perhitungan Debit dan Kecepatan pada Orificemeter

Variasi Qaktual (m3/s) Δhef  rata-rata

(mm) Vb(m/s) Qhitung (m 3/s) 1 2 3 4 5

(14)

F. Grafik-grafik 

1. Qaktual (absis) terhadap Δh (ordinat) Qaktual (absis) terhadap Qteoritis (ordinat)

(15)

MODUL 03

ALIRAN DALAM PIPA Azzahra Safira S

A. SASARAN

1. Mengukur perbedaan tinggi tekan pada pipa Piezometer Water Manometer dan U-tube

 Mercury Manometer.

2. Menghitung koefisien friksi (f), koefisien Hazen-Williams (C), dan koefisien kekasaran Chezy (C) dalam perpipaan.

3. Mengetahui pengaruh perubahan debit terhadap koefisien friksi (f).

B. TEORI

ℎ=



 (3.1)

 = 0,2785  

,3

 

.4

(3.2)

 = √ 

(3.3)

C. CARA KERJA

1. Ukur suhu fluida sebelum percobaan.

2. Hubungkan outlethydraulic benchke alat dan outlet alat ke gelas ukur. 3. Alirkan air ke alat dan atur debitnya denganneedle valve.

4. Catat tinggi piezometer  (titik A dan B) dan U-tube manometer  (titik X dan Y)

5. Ukur waktu dari air pertama kali masuk ke gelas ukur sampai volume yang ditentukan. 6. Langkah 1-5 dilakukan dengan 6 variasi debit dan tiap debit yang sama dilakukan 5 kali

 pengukuran waktu. Volume pada gelas ukur harus selalu sama dan selama percobaan

valve padahydraulic bench jangan diubah-ubah.

7. Ukur suhu fluida sesudah percobaan.

(16)

D. TABEL DATA

Suhu awal =

Suhu akhir =

Panjang pipa = Diameter pipa =

Volume gelas ukur =

Massa jenis air =

Kekentalan kinematis air =

Tabel 3.1 Data Pengukuran Ketinggian dan Waktu pada Peizometer dan Manometer

Variasi h Piezometer (mm) h U-tube Manometer (mm) t (s) A B X Y t1 t2 t3 t4 t5 1 2 3 4 5 6 E. TABEL HASIL

Tabel 3.2 Hasil Perhitungan Debit Aktual dan Kecepatan

Variasi h Piezometer (mm) h U-tube Manometer (mm) t (s) Q aktual (m3/s) v (m/s) 1 2 3 4 5 6

Tabel 3.2 Hasil Perhitungan Koefisien Friksi

Variasi Q aktual(m3/s) Koefisien friksi (f) Persentase (%)

1 2 3 4 5 6

(17)

F. GRAFIK

1. Kecepatan (v2) – headloss(hL) [untuk piezometerdanU-Tube] 2. Debit aktual (Qaktual) –  S0.54 [untuk piezometerdanU-Tube]

3. Kecepatan (v) –  akar gradient hidrolis (S0.5) [untuk piezometerdanU-Tube] Keterangan:

 Untuk semua grafik gunakan regresi linear dengan set intercept = 0.  Tampilkan nilai persamaan garisnya dan nilai koefisien korelasi (R 2)

G. ILUSTRASI

Gambar 2.1 Ilustrasi Piezometer Water Manometer

(18)

MODUL 04

KEHILANGAN ENERGI DALAM SISTEM PERPIPAAN

Athaya Dhiya Z

A. SASARAN

1. Menghitungheadloss pada sistem perpipaan

2. Menghitung debit aktual yang melalui sistem perpipaan

B. TEORI

 Headloss pada aliran terutup dapat dibedakan menjadi headloss mayor  , headloss minor  , dan headloss total.  Headloss total merupakan gabungan headloss mayor dan headloss minor . Headloss mayor adalah kehilangan energi akibat gesekan fluida dengan dinding pipa.  Headloss  mayor biasa terjadi pada pipa lurus berdiameter konstan. Sedangkan headloss  minor adalah kehilangan energi yang disebabkan oleh aksesoris-aksesoris pada sistem perpipaan seperti valve, belokan, penyempitan/ pelebaran pipa, dan lain-lain.

 Persamaan Darcy-Weisbach

ℎ=



 (4.1)

Dimana f = koefisien friksi

f = 64/Re (untuk aliran laminar, Re<2000) Re = vD/v L = panjang pipa (m) D = diameter pipa (m) v = kecepatan aliran (m/s) g = percepatan gravitasi (m/s2)  Persamaan Hazen-Williams Q = 0,2785 C D2,63 S0,54 (4.2)

Dimana Q = debit aktual (m3/s)

(19)

D = diameter pipa (m) S = slope

 Persamaanheadlossminor

ℎ  = 



 (4.3)

Dimana hl =headloss (m)

k = koefisien kehilangan energi akibat aksesoris v2/2g = head kecepatan (m)

 Persamaan headloss sistem perpipaan biru tua

a.  Headloss gate valve

   = 12.6  ∆ℎ pengukuran

(4.4)

 b.  Headloss standar elbow

   = ∆ℎ   − [

      

]∆ℎ    

(4.5)

c.  Headloss 90° sharp bend

 90° ℎ  = ∆ℎ 90° sharp bend− [

     °  

]∆ℎ    

(4.6)

 Persamaan headloss pada sistem perpipaan biru muda a.  Headloss globe valve

   = 12.6  ∆ℎ 

(4.7)

 b.  Headloss aksesoris pada perpipaan biru muda

 aksesoris = ∆ℎ aksesoris − [

 ×(    )    ×( )

]∆ℎ    

(4.8)

 Slope

(20)

C. CARA KERJA

1. Masukkan outlet hydraulic bench ke inlet   alat, sedangkan outlet   alat ke hydraulic bench.

2. Ukur suhu fluida sebelum percobaan. 3. Tutup globe valve, buka gate valve.

4.  Nyalakan pompa (ingat valve di hydraulic bench harus ditutup sebelum pompa dinyalakan, seperti prosedur praktikum sebleumnya), bukavalvedi hydraulic bench. 5. Biarkan air mengalir 2-3 menit.

6. Tutup gate valve, keluarkan udara yang terjebak dalam piezometer, perhatikan bahwa  piezometer di sistem tidak menunjukkan kehilangan energi.

7. Buka gate valve, keluarkan udara yang terjebak dalam U-tube (seluruh tabung tidak  boleh ada udara).

8. Tutup gate valve, dan ulangi cara di atas dengan mengatur globe valve. Setelah selesai, tutup kembali globe valve.

9. Buka penuhvalve dihydraulic bench.

10. Buka gate valve penuh akan didapatkan debit maksimum melalui sistem perpipaan  biru tua.

11. Ukur debit yang mengalir sebanyak 3 kali perhitungan waktu untuk satu variasi debit yang sama (triplo).

12. Catat pembacaan piezometer dan U-Tube Manometer   di setiap aksesoris pada pipa  biru tua.

13. Masih pada debit yang sama. Tutup gate valve. Buka globe valve, ulangi cara diatas untuk percobaan pada pipa biru muda melalui pengaturan globe valve.

14. Ulangi langkah-langkah diatas dengan besar debit yang berbeda.

15. Percobaan dilakukan sebanyak 5 variasi debit, dengan pengukuran tiap debit minimum 3 kali perhitungan waktu.

16. Tutup globe valve.

17. Tutupvalvedi hydraulic bench. 18. Ukur suhu fluida di akhir percobaan. 19. Matikan pompahydraulic bench.

(21)

D. TABEL DATA

1. Data yang diketahui

a. Diameter pipa besar = 26,4 mm; Diameter pipa kecil = 13,7 mm  b. Jarak antar tapping

1-2 (standar elbow) = 79 cm

3-4 (pipa lurus biru tua) = 88 cm

5-6 (90o sharp bend) = 81 cm

7-8 (pelebaran) = 18,5 cm

8-9 (pipa lurus biru muda) = 85 cm

9-10 (penyempitan) = 8,5 cm

11-12 (bend 4”) = 81 cm

13-14 (bend 6”) = 93 cm

15-16 (bend 2”) = 91 cm

2. Data yang diukur

Massa beban = Suhu awal =

Massa air = Suhu akhir =

ρ air  =

a. Perpipaan biru tua

Tabel 4.1 Data Pengukuran Waktu dan Tinggi Kolom Air pada Perpipaan Biru Tua

No

Waktu (t) Tinggi Kolom air (mm)

t1 t2 t3 tr Pipa lurus Gate valve Standard elbow 90o Sharp bend 1 2 3 4 5

(22)

 b. Perpipaan biru muda

Tabel 4.2 Data Pengukuran Waktu dan Tinggi Kolom Air pada Perpipaan Biru Muda

No

Waktu (t) Tinggi Kolom air (mm)

t1 t2 t3 tr Pipa lurus Globe Valve Bend 2” Bend 4” Bend 6” Pelebaran

tiba-tiba Penyempitantiba-tiba

1 2 3 4 5 E. TABEL HASIL

1. Sistem perpipaan biru tua

Tabel 4.3 Hasil Perhitungan pada Perpipaan Biru Tua

No Waktu (t) Q aktual (m3/s) A pipa (m2) v pipa (m/s) Headloss mayor (m) Headloss minor (m) S0,54 Pipa lurus biru tua t1 t2 t3 Tr Pipa lurus Gate valve Standard elbow 90o Sharp bend 1 2 3 4 5

(23)

2. Sistem perpipaan biru muda

Tabel 4.4 Hasil Perhitungan pada Perpipaan Biru Muda

No Waktu (t) Q aktual (m3/s) A pipa (m2) v pipa (m/s) Headl oss mayo r (m) Headloss minor (m) S0,54 Pipa lurus biru muda t1 t2 t3 T r Pipa lurus Globe valve Bend 2” Bend 4” Bend 6” elebaran tiba-tiba Penyempitan tiba-tiba 1 2 3 4 5 F. GRAFIK

1. Q- Hloss gate valvedan Q- Hloss globe valve

2. v2- Hloss

 gate valvedan v2- Hloss globe valve

3. v2 Hloss bend

-4. (Vk-Vb)2- Hloss pelebaran dan (Vk-Vb)2-Hloss penyempitan 5. S0,54-v pipa lurus biru tua dan S0,54-v pipa lurus biru muda

Keterangan : grafik linier intercept di (0,0), sertakan persamaan garis dan nilai koefisien korelasinya.

(24)

LAMPIRAN

(25)

2. FORMAT LABEL NAMA

 LABEL NAMA JURNAL

JURNAL PRAKTIKUM

HIDROLIKA I

ADAM LEVINE

15715000

SHIFT XX

 LABEL NAMETAG PRAKTIKUM HIDROLIKA I

LAB.HIDROLIKA LABTEK I B LANTAI 2 REKAYASA INFRASTRUKTUR LINGKUNGAN

ADAM LEVINE 15715000 SHIFT XX

Gambar

Tabel 1.1 Data Awal Pengukuran Waktu dengan Hydraulic Bench
Tabel 1.4  Hasil Perhitungan Debit Aktual dengan Ember
Tabel 2.1  Data Pengukuran Ketinggian Muka Air dan Waktu pada Venturimeter Variasi  h a (cm)  h b (cm) Δh ab (cm)  t (detik) 1 2 3 4 E
Tabel 2.3  Data Pengukuran Ketinggian Muka Air dan Waktu pada Orificemeter Variasi  h e (cm)  h f (cm) Δh ef (cm)  t (detik) 1 2 3 4 E
+6

Referensi

Dokumen terkait

Mengaplikasikan energi listrik yang dihasilkan dari pembangkit listrik tenaga surya hyrid, untuk menggerakkan pompa air celup / submersibel, dengan spesifikasi

Wujud Kapitayan-kapitayan kang isih diugemi dening masyarakat sajrone cerbung Eils yaiku; (1) Kapitayan marang gugon tuhon, yaiku kapitayan marang nikahan sadulur pancer

Dengan demikian, mereka tidak main- main dengan ucapan tiga kali talaq.Itulah ijtihad beliau.Beliau menetapkan seperti itu bertujuan untuk membina kemaslahatan/

Oklusi adalah perubahan hubungan permukaan gigi geligi pada maksila dan mandibula , yang terjadi selama pergerakan mandibula dan berakhir dengan kontak penuh dari gigi geligi

Hasil penelitian Endang (2009) terhadap 60 orang wanita yang menderita kista ovarium terdapat tiga bentuk dukungan yang dilakukan suami terhadap istrinya

pembelajaran sebagai berikut. Pada pelaksanaan pembelajaran guru bertanya jawab dengan siswa, guru banyak bercerita sehingga siswa banyak mendengarkan saja, siswa kurang

Istilah vector digunakan untuk menunjukkan suatu carrier organism dari suatu penyakit. Vektor mungkin berperan secara mekanik seperti dalam kasus rumah padas

• Mengamati peta dan mengkaji referensi tentang letak dan kondisi geografis negara kawasan Asia