• Tidak ada hasil yang ditemukan

Aplikasi Metode Gries-Saltzmann Dengan Teknik Impinger Tunggal Sebagai Alternatif Pengukuran Polutan NO 2 Di Udara

N/A
N/A
Protected

Academic year: 2021

Membagikan "Aplikasi Metode Gries-Saltzmann Dengan Teknik Impinger Tunggal Sebagai Alternatif Pengukuran Polutan NO 2 Di Udara"

Copied!
8
0
0

Teks penuh

(1)

Impinger Tunggal Sebagai Alternatif Pengukuran

Polutan NO

2

Di Udara

1

M. Masykuri dan

2

Mudjijono

1

Program Studi Pend.Kimia PMIPA dan Program Studi Ilmu Lingkungan PPs UNS

2

Jurusan Kimia FMIPA UNS Jl. Ir. Sutami 36A Surakarta

E-mail : mmasykuri@yahoo.com

Abstrak

Salah satu metode pengukuran polutan di udara yang memiliki ketelitian tinggi yaitu metode basah (wet absorber). Selama ini di lapangan, pengukuran dengan metode basah selalu digunakan teknik impinger ganda dengan lebih dari satu tabung impinger (fritted bubler). Hal ini memiliki kendala kurang praktis, disamping persediaan tabung impinger yang jumlahnya terbatas, karena itu dicoba teknik impinger tunggal hanya me-makai 1 tabung impinger. Penelitian ini membandingkan penggunaan teknik impinger ganda menggunakan 2 tabung impinger yang dipasang seri dengan teknik impinger tung-gal menggunakan 1 tabung impinger. Penelitian ini bertujuan untuk mengetahui faktor konversi teknik impinger tunggal terhadap teknik impinger ganda dalam pengukuran gas NO2 dan menjajaki kemungkinan penggunaan teknik impinger tunggal dalam pengukuran

gas NO2. Teknik eksperimen yang dipakai adalah teknik spektrofotometri menggunakan

spektrofotometer sinar tampak (visible). Metode yang dipakai dalam pengukuran gas po-lutan NO2 adalah metode Griess Saltzmann dengan absorber campuran

N-(1-naphtil)-eth-ylendiamine dihydrochloride 0,1% dan sulfanilic acid. Adanya NO2 di udara

menyebab-kan terjadinya reaksi kompleks menghasilmenyebab-kan warna merah violet. Intensitas warna dapat dideteksi menggunakan spektrofotometer sinar tampak pada panjang gelombang 543 nm. Dari hasil penelitian dapat disimpulkan bahwa faktor konversi antara tabung impinger 1 (T1) dan tabung impinger 2 (T2) pada perbandingan penggunaan teknik impinger ganda

dan tunggal dapat dirumuskan dalam persamaan T2 = 0,6158 T1.

kata kunci : Polutan NO2, Metode Gries-Saltzmann, Teknik Impinger Tunggal

PENDAHULUAN

Pada dekade 50-an penduduk dunia masih berkisar pada angka 3 milyar, jumlah ini meningkat menjadi 6 milyar pada tahun 2000 ini. Penduduk Indonesia sendiri pada awal tahun 1997 telah menca-pai 200 juta jiwa. Enam puluh persen dari

jumlah tersebut tinggal di pulau Jawa dan terkonsentrasi di daerah perkotaan. Kon-sentrasi penduduk juga terdapat di berbagai kawasan kegiatan, yaitu kawasan industri, pariwisata, pelabuhan dan sepanjang trans-portasi darat.

Seiring dengan pertambahan penduduk yang cukup pesat, Indonesia

(2)

melaksanakan program pembangunan di segala bidang. Hasil pelaksanaan program pembangunan tersebut adalah munculnya berbagai industri besar, menengah maupun kecil di tanah air. Perkembangan industri yang demikian pesat, jika emisi limbah-nya tidak ditangani dengan baik maka yang akan terjadi adalah penurunan kuali-tas lingkungan atmosir, karena terjadinya pencemaran polutan yang melebihi am-bang batas yang dipersyaratkan. Gas polu-tan tersebut umumnya berasal dari proses pembakaran bahan bakar dan penguapan bahan kimia produk kegiatan industri. Isu tentang gas polutan yang menyebabkan atmosfer menurun kualitasnya sudah lama menjadi topik yang cukup menarik. Bahkan pemerintah melalui Kantor Menteri Nega-ra Lingkungan Hidup telah mencanangkan Program Langit Biru (PLB) untuk memi-nimasi tercemarnya lingkungan atmosfer dari berbagai gas polutan yang diemisikan oleh berbagai kegiatan, terutama kegiatan industri dan transportasi.

Beberapa kasus konkrit di lapan-gan yang sering muncul dan mendapat complain dari masyarakat misalnya : bau yang sangat menyengat pada beberapa jenis industri (industri kimia, cat, kulit, dan lain-lain), adanya asap hitam yang keluar dari cerobong asap industri maupun knal-pot kendaraan, udara pengap karena bau, asap, debu dan gas buang di sepanjang jalan raya yang padat kendaraan, dan sebagain-ya. Beberapa gas polutan yang ditengarai berbahaya bagi lingkungan dan kehidupan manusia, antara lain : CO, NOx, SOx, H2S,

hidrokarbon, partikulat (debu) dan Pb. Pengelolaan udara dari gas polutan yang telah terlanjur diemisikan ke atmos-fer menjadi sulit dan hanya bisa ditangani secara global, mengingat luas dan volume atmosfer yang sangat besar. Berbeda den-gan limbah cair atau padat yang dibuang ke lingkungan, seperti sungai, danau, atau tempat pembuangan akhir. Manusia da-pat memilih air untuk diminum, namun itu

“mustahil” dilakukan untuk memilih udara yang akan dihirup untuk pernafasannya. Kaitan dengan hal itu, identiikasi dan teknik/metode pengukuran gas polutan perlu terus disempurnakan untuk mem-bantu penanganan pencemaran udara. Di-fusi udara yang cepat menyebabkan teknik sampling polutan udara memerlukan per-hatian khusus. Salah satu yang perlu terus dikembangkan adalah penggunaan teknik impinger dalam pengambilan sampel gas polutan.

Pengukuran polutan di udara pada umumnya tidak mudah, karena konsentras-inya sangat rendah. Metode yang cepat dan praktispun belum banyak dikembangkan. Pengukuran langsung di tempat dengan peralatan sensor belum dimungkinkan, ke-cuali untuk gas CO dan H2S, itupun kalau

konsentrasinya cukup tinggi (dalam orde ppm). Metode pengukuran gas polutan yang lebih umum tapi lebih kompleks yaitu metode kimia (metode basah). Dalam me-tode basah, udara dialirkan melalui beber-apa tabung impinger (biasanya 2 tabung/ ganda) berisi absorber, berupa komposisi zat kimia tertentu (cair) yang dapat meny-erap gas polutan. Pengukuran mengguna-kan metode basah ini memerlumengguna-kan waktu pengambilan yang cukup lama, udara emisi meperlukan waktu 1-2 jam, sedang-kan udara ambien lebih lama lagi 3-4 jam. Sehingga untuk pengambilan sampel pada beberapa titik lokasi sekaligus, diperlukan tabung impinger berjumlah banyak. Mengingat keterbatasan jumlah tabung im-pinger di laboratorium, pengambilan sam-pel udara terkadang memerlukan waktu beberapa hari untuk satu industri (dengan beberapa titik pengambilan). Hal ini tentu tidak praktis karena memerlukan banyak waktu. Salah satu solusi yang mungkin adalah digunakan satu impinger (impinger tunggal) untuk setiap kali sampling, na-mun impinger tunggal ini harus dikonversi terkebih dahulu perbandingannya terhadap penggunaan impinger ganda (2 impinger).

(3)

Untuk itu perlu diteliti penggunaan im-pinger tunggal sebagai pengganti imim-pinger ganda, sebagai langkah awal dicoba untuk gas polutan NO2.

Beberapa gas polutan yang diten-garai berbahaya bagi lingkungan dan ke-hidupan manusia, antara lain : CO, NOx,

SOx, H2S, hidrokarbon, partikulat (debu)

dan Pb. Penelitian ini hanya menerapkan pada polutan NO2. Sebagai absorber

di-gunakan campuran dari 1,1-naftilethylen-diamin dengan asam sulfanilat. Dengan adanya NO2 di udara, maka akan terjadi

reaksi yang ditandai dengan terbentuknya warna merah muda (pink). Intensitas warna dibaca serapannya dengan spektrofotom-eter pada panjang gelombang maksimum-nya.

Perbandingan tabung impinger yang dipakai adalah impinger tunggal (1 tabung) dibandingkan dengan impinger ganda (2 tabung). Waktu pengambilan sampel divariasikan antara 1 sampai 5 jam dengan laju alir gas yang sama. Tujuan penelitian mempelajari berapakah faktor konversi teknik impinger tunggal terhadap teknik impinger ganda dalam pengukuran gas NO2.

METODE PENELITIAN

Penelitian menggunakan metode eksperimen. Teknik eksperimen yang di-pakai adalah teknik spektrofotometri meng-gunakan spektrofotometer sinar tampak. Pengambilan sampel gas dilakukan dengan menggunakan tabung impinger dengan ab-sorber campuran n-(1-naphtil) ethilene di-hidrochloride dan asam sulfanilat (metode Gries Saltzmann). Komples warna diukur serapannya dengan spektrofotometer sinar tampak pada panjang gelombang 543 nm. Instrumen yang dipakai dalam penelitian ini, yaitu : 1) Spektrofotometer sinar tam-pak sinar ganda merk Hitachi, 2) tabung impinger, 3) low meter dengan skala 0,5 L/ menit, 4) pompa vakum, 5) klem dan statif , serta alat-alat gelas. Sedangkan kemikalia

yang digunakan adalah : 1) n-(1-naphtil) ethilene dihidrochloride, 2) asam sulfanilat, 3) asam asetat glasial, 4) sodium nitrit, 5) kloroform, 6) kalium permanganat 0,05 N, 7) asam sulfat pekat, dan 8) akuades bebas nitrit, semuanya berspesiikasi murni dan pure analytical grade.

Larutan absorber dibuat dengan cara melarutkan 5 g asam sulfanilat anhid-rat dalam 200 mL akuades bebas nitrit dan menambahkan kedalamnya asam asetat glasial sebanyak 140 mL kemudian me-manaskan campuran sampai semua asam sulfanilat larut, setelah larut kemudian dinginkan. Setelah dingin, ditambahkan 20 mL larutan n-(1-naphtil) ethilene dihidro-chloride 0,1% dan menambahkan akuades sampai tanda tera (1L).

Rangkaian alat percobaan disusun seperti Gambar 1. Pengambilan sampel udara dilakukan dengan cara memasukkan 50 mL pereaksi sulida 1 ke tabung pompa (impinger), mengatur laju alir gas dengan low meter pada 1 L/menit, lalu menghidup-kan alat. Setelah 60 menit, alat dimatimenghidup-kan, dan mengambil 50 mL pereaksi sulida 1 dan memasukkan ke dalam erlenmeyer 150 mL, menambahkan pereaksi sulida 2 sebanyak 50 mL dan pereaksi sulida 3 sebanyak 2 mL. Akhirnya menambahkan pereaksi sulida 4 sebanyak 25 mL lalu kocok campuran, maka larutan siap untuk dibaca dengan spektrofotometer.

(4)

Gambar 1. Pompa Sampling Udara (1 Set)

HASIL DAN PEMBAHASAN

Dari spektra absorbsi dapat di-tentukan puncak absorbsi ( maksimum), yaitu pada 543 nm. Selanjutnya terhadap semua larutan, baik larutan standar untuk kalibrasi maupun larutan absorber yang sudah digunakan untuk mengambil

sam-pel udara dibaca absorbannya menguna-kan spektrofotometer sinar tampak pada panjang gelombang 543 nm tersebut. Hasil pembacaan absorbans pada puncak ( maksimum = 543 nm) dari larutan tersebut diberikan dalam tabel-tabel dibawah ini.

Tabel 1. Absorban Larutan Sampel NO2

Tabel 2. Absorban Larutan Standar NO2

Berdasarkan data absorbans larutan stan-dar sebagaimana ditunjukkan pada Tabel 2,

maka dapat dibuat kurva kalibrasi sebagai berikut :

(5)

Gambar 2. Kurva kalibrasi Dari kurva kalibrasi tersebut dapat

diten-tukan persamaan regresi linier-nya dengan menggunakan asumsi bahwa larutan tersre-but mematuhi hukum Lambert Beer, A = b C

sehingga didapat persamaan kurvanya ada-lah y = 0,697 x

atau A = 0,697 C.

Selanjutnya berdasarkan data-data yang diperoleh dari percobaan dan membanding-kannya dengan kurva kalibrasi, maka dapat ditentukan kandungan gas NO2 yang

dis-erap oleh masing-masing tabung impinger pada waktu pengambilan sampel selama 1, 2, 3, 4 dan 5 jam adalah sebagai berikut, Tabel 3. Konsentrasi NO2 yang Diserap oleh Tabung Impinger dengan Variasi Lama

Pengambilan

*) Konsentrasi NO2 dalam satuan ppm disini sudah dikonversi terhadap jumlah sampel udara

yang terisap, menggunakan persamaan,

ppm NO2 = (uLNO2/mL larutan) x

(6)

Perbandingan banyaknya NO2 yang

teri-sap antara tabung impinger 1 dan tabung impinger 2 pada setiap waktu pengambi-lan ditunjukkan dalam kurva dibawah ini (Gambar). Dari kurva tersebut dapat di-hitung besarnya NO2 yang terisap dalam

tabung impinger 2 dibandingkan dengan tabung impinger 1 jika digunakan teknik impinger ganda, yaitu sebesar 0,6158. Dengan demikian didapat faktor konversi antara kedua tabung impinger tersebut melalui persamaan,

T2 = 0,6158 T1

dengan,

T1 = tabung impinger pertama

T2 = tabung impinger kedua

Gambar 6. Perbandingan banyaknya NO2 yang terisap antara tabung impinger 1 dan tabung impinger 2 pada setiap waktu pengambilan

Dari penelitian ini juga didapatkan bahwa, baik penggunaan teknik impinger tunggal maupun ganda memerlukan wak-tu pengambilan sampel udara sekurang-kurangnya selama 2 jam. Pengambilan sampel kurang dari 2 jam akan memberikan absorbans yang terlalu kecil. Misalnya un-tuk teknik impinger tunggal (pada tabung impinger 1) pengambilan sampel selama 1 jam dengan laju alir gas 2 L/menit hanya

memberikan absorbans sebesar 0,063. Se-dangkan pada teknik impinger ganda, di tabung kedua akan memberikan absorbans yang lebih kecil lagi, yaitu sebesar 0,043. Absorbans yang sangat kecil memberikan kemungkinan kesalahan yang lebih besar, mengingat bahwa absorbans yang baik da-lam hukum Lambert Beer berkisar antara 20 %T sampai 80 %T (atau absorbans 0,1 sampai 1,3).

Temuan lain dari penelitian ini adalah se-makin lama waktu pengambilan sampel, maka NO2 yang terisap akan semakin

ban-yak, hal ini berlaku untuk teknik impinger tunggal ataupun ganda. Meskipun begitu, penelitian ini menunjukkan hubungan

kon-sentrasi NO2 terisap dengan waktu

pengam-bilan yang tidak benar-benar linier. Hal ini disebabkan pengukuran polutan NO2

memiliki banyak sekali gangguan-gang-guan. Secara umum ada tiga jenis reaksi yang menghasilkan gangguan, yaitu: 1) Zat pengganggu yang bereaksi dengan reagen yang menghasilkan efek yang sama seperti reaksi analat dengan reagen (disebut gang-guan positif/positive interference), 2) Zat

(7)

pengganggu yang bereaksi dengan analat sehingga mencegah reaksi yang dike-hendaki berjalan sempurna (disebut gang-guan negatif/negative interference), dan 3) Zat pengganggu yang bereaksi dengan reagen sehingga mencegah reaksi antara reagen dengan analat (gangguan negatif/ negative interference)

Penghilangan gangguan ini dapat dilaku-kan secara isik atau kimiawi, antara lain dapat dipilih dengan cara : destilasi sam-pel/analat sehingga zat pengganggu dapat tertinggal atau dipisahkan, penghilangan zat pengganggu dengan resin penukar ion (ion exchange resin), penambahan zat pen-gomplek (complexing agent), ekstraksi dengan pelarut organik, pengabuan, pen-gaturan pH, atau dengan cara penpen-gaturan temperatur.

Beberapa gangguan yang dapat terjadi pada pengukuran kandungan gas polutan NO2 antara lain PAN.

Peroxyacilni-trate (PAN) dapat memberikan respon yang sama jika konsentrasinya mendekati 15 sampai 35 % dari konsentrasi NO2. Tetapi

dalam udara ambien, konsentreasi PAN ini sangatlah kecil sehingga dapat dikata-kan tidak begitu mengganggu analisis gas NO2.

Gangguan dari gas nitrogen ok-sida yang lain juga dapat terjadi terutama untuk udara yang terpolusi. Kandungan gas lain, misalnya SO2 (sulfur dioksida)

juga dapat mengganggu. Kandungan SO2

yang tinggi dapat menyebabkan intensi-tas warna antara NO2 dengan

n-(1-naftil)-ethilenediamin dihidhrochloride/asam sul-fanilat menjadi memudar. Karena itu, perlu ditambahkan 1 % aseton ke dalam absorber untuk mencegas pemucatan warna karena adanya SO2 tersebut.

Mengacu kepada temuan peneli-tian di atas, penelipeneli-tian ini sekaligus menun-jukkan bahwa analisis polutan NO2

harus-lah memperhatikan gangguan-gangguan yang mungkin ada dan bersifat spesiik untuk setiap kondisi di lapangan.

KESIMPULAN DAN SARAN

Berdasarkan hasil percobaan dan pembahasan yang telah dilakukan, maka dapat disimpulkan bahwa faktor konversi antara tabung impinger 1 (T1) dan tabung

impinger 2 (T2) pada perbandingan

peng-gunaan teknik impinger ganda dan tunggal dapat dirumuskan dalam persamaan T2 =

0,6158 T1.

Dengan diketahuinya faktor konversi teknik impinger tungal dibanding teknik impinger ganda dalam pengambilan sam-pel polutan NO2 mengandung implikasi

lebih lanjut bahwa teknik impinger tungal dapat digunakan untuk mengantikan teknik impinger ganda. Dengan demikian untuk pengambilan sampel pada beberapa titik sekaligus dapat digunakan teknik impinger tunggal ini.

Hasil penelitian menunjukkan pada pengambilan sampel polutan udara NO2

memiliki gangguan yang cukup kompleks, baik dari segi kimiawi, isik maupun teknis yang bersifat kondisional. Ganguan-gan-guan ini hendaknya selalu diperhatikan oleh setiap pengambil sampel agar menda-patkan hasil yang memuaskan.

DAFTAR PUSTAKA

Chaid Fandeli. 1992. Analisis Menge-nai Dampak Lingkungan Prinsip Dasar dan Pemapanannya dalam Pembangunan. Liberty Offset. Yogyakarta

Horne, R.A. 1978. The Chemistry of Our Environment. John Wiley and Sons, Inc. N.Y

Kantor Menteri Negara Kependudukan dan Lingkungan Hidup. 1990. Kualitas Lingkungan Indonesia 1990. Ja-karta

Lodge, J.P. 1988. Methods of Air Sampling and Analysis. 3rd ed. Michigan : Lewis Piblishers.

Lund, H.F. 1971. Industrial Pollution Con-trol Handbook. McGraw-Hill, Inc. N.Y.

(8)

Marihati. 1991. Dasar-dasar Teknologi Pengelolaan Pencemaran Oleh Gas Buang Industri dan Kebisin-gan. Pelatihan Bagi Tenaga Teknis Pengendalian Pencemaran Limbah Industri. Departemen Perindus-trian RI. Semarang.

Saltzmann, B.E. 1954. Colorimetric De-termination of Nitrogen Dioxide in the Atmosphere. J.Analytical Chemistry. 26: 1949-1955.

Shaw, J.T. 1967. The Measurement of Ni-trogen Dioxide in the Air. Atmo-spheric Environment. 1:81-85.

Gambar

Gambar 1. Pompa Sampling Udara (1 Set) HASIL DAN PEMBAHASAN
Gambar 2. Kurva kalibrasi Dari  kurva  kalibrasi  tersebut  dapat
Gambar  6.  Perbandingan  banyaknya  NO2  yang  terisap  antara  tabung  impinger  1  dan  tabung impinger 2 pada setiap waktu pengambilan

Referensi

Dokumen terkait

Didalam ekosistem, komponen biotik harus dapat berinteraksi dengan komponen biotik lainnya dan juga dengan komponen abiotik agar tetap bertahan hidup. Jadi, interaksi

Kreatifitas ini terbentuk untuk memodifikasi ataupun merubah dari fungsinya semula menjadi sesuatu yang memiliki bentuk maupun fungsi baru. Mengubah barang bekas yang sudah tidak

Pengembangan penelitian ini melalui analisis profil kegiatan masyarakat serta analisis akses dan kontrol terhadap potensi setempat untuk menyusun strategi kegiatan pengembangan

mengusulkan penerapan metode K-Nearest Neighbor pada pengenalan buah murbei berdasarkan feature extraction ruang warna HSV dan tekstur Local Binary Pattern (LBP) dengan

Berdasarkan hasil penelitian yang telah dilakukan di dapatkan hasil berupa aplikasi Kmois yang dapat berjalan di sistem android dan petunjuk peggunaan sebagai

oleh hampir semua orang atau bahkan hampir tak seorang pun yang akan menyetujuinya. 6) Pilihlah pernyataan-pernyataan yang diperkirakan akan mencakup keseluruhan liputan

Konsumsi bahan kering domba yang diberi ransum yang disuplementasi minyak jagung, sabun kalsium minyak jagung, dan kedelai sangrai lebih tinggi (P<0,01) dibandingkan dengan

Hasil penelitian menunjukkan stimulasi perkecambahan dengan pemanasan suhu 50°C selama 48 jam merupakan perlakuan terbaik dalam meningkatkan viabilitas dan vigor benih