• Tidak ada hasil yang ditemukan

et al., 2005

N/A
N/A
Protected

Academic year: 2023

Membagikan "et al., 2005"

Copied!
7
0
0

Teks penuh

(1)

pp. 552-562.

Akahori, T. et al., 2005. Improvement in Fatigue Characteristics of Newly Developed Beta Type Titanium Alloy for Biomedical Applications by Thermo- Mechanical Treatments. Material Science Engineering C25, pp. 248-254.

Almanza, E., Perez, M., Rodriguez, N. & Murr, L., 2017. Corrosion Resistance of Ti-6Al-4V and ASTM F75 Alloys Processed by Electron Beam Melting. Journal of Material Research and Technology, pp. 251-257.

Anjarsari, Dahlan, K., Suptijah, P. & Kemala, T., 2016. Synthesis and Characterization of Biocomposite BCP/Collagen for Bone Material. JPHPI, pp.

356-361.

Anwar, S. & Solechan, 2014. Analisa Karakteristik dan Sifat Mekanik Scaffold Rekonstruksi Mandibula dari Material Bhipasis Calsium Phospate dengan Penguat Cangkang Kerang Srimping dan Gelatin Menggunakan Metode Functionally Graded Material. Universitas Muara Kudus: Fakultas Teknik, pp. 137-144.

ASM, H., 1992. Alloy Phase Diagrams. Volume 3.

ASTM, 2008. Standard Spesification for Wrought Titanium-15 Molybdenum Alloys for Surgical Implant Application. Philadelphia: ASTM International.

Aung, N. N. & Zhou, W., 2010. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corrosion Science 52, pp. 589-594.

Balakrishman, A., Lee, B. C., Kim, T. N. & Panigrahi, B., 2008. Trends Biomater.

Artif Organs, 1(22).

Bania, J. P., 1998. Beta Titanium Alloys and Their Role in the Titanium Industry.

Jurnal Overview Metallurgy, pp. 16-19.

(2)

Beiler, T., Trevino, R. & Zeng, L., 2005. Alloys: Titanium. pp. 65-76.

Bombac, D. et al., 2007. Review of Materials in Medical Applications. RMZ- Materials and Geoenvironment, pp. 471-499.

Burstein, G., Liu, C. & Souto, R., 2005. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physicological solution. Biomaterials, Volume 26, pp. 245-256.

Chaim, R. & Hefetz, M., 2004. Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt% Y2O3 ceramic. Journal of Material Science 39, pp.

3057-3061.

Chaoqun, X. et al., 2021. Influence of Cr addition on microstructure evolution and corrosion behavior of the Ti-Zr Alloys. Materials Characterization, pp. 1-15.

Chiu, W.-T.et al., 2021. Effect of Cr additions on the phase constituent, mechanical properties, and shape memory effect of near-eutectoid Ti-4Au towards the biomaterials applications. Journal of Alloys and Compounds 867, pp. 1-13.

Chongliang, Z. et al., 2020. Laser Metal Deposition of Ti6Al4V. Applied Sciences, Volume 10, pp. 1-12.

C. Y., Z. X. & Y. F., 2008. Phase Transformation in Reductive Roasting of Laterite Ore with Microwave Heating. Transactions of Nonferrous Metals Society of China, pp. 969-973.

Dee, K. C., Puleo, D. A. & Tos, R. B., 2002. Biomedical Engineering. New York:

Wiley and Sons.

Duran, A., Castro, Y., Conde, A. & Damborenea, J. J. D., 2018. Handbook of Sol- Gel Protective Coatings for Metals. Madrid: Springer International Publishing AG.

Dziubek, K. F., 2022. On the Definition of Phase Diagram. Crystals, pp. 1-16.

Eliot, R. P., Levinger, B. W. & Rostoker, W., 1953. AIME 197. Trans.

(3)

Elshalakany, A. B. et al., 2017. Microstructure and Mechanical Properties of Ti- Mo-Zr-Cr Biomedical Alloys with Powder Metallurgy. Journal of Materials and Performance Engineering, pp. 1-10.

Hai-Lu, W. et al., 2011. Effect of Hot Rolling on Grain Refining and Mechanical Properties of AZ40 Magnesium Alloy. Transaction Nonferrorus Metallurgy Society China, pp. 229-234.

Hench, L., 1991. Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, pp. 1487-1510.

Hossain, M., Amin, A. N., Patwari, A. & Karim, A., 2008. Enchancement of Machinability by Workpiece Preheating in End Milling of Ti-6Al-4V. Journal of Achievements in Materials and Manufacturing Engineering, 31(2), pp. 320-326.

Ho, W. C. & Chern Lin, J., 1999. Strucure and properties of Cat Binary Ti-Mo Alloys. Biomaterials, Vol. 20, pp. 2215-2122.

Ho, W.-F.et al., 2012. Effects of Molybdenum Content on the Structure and Mechanical Properties Ti-10Zr Based Alloys for Biomedical Applications.

Materials Science and Engineering C 32, pp. 517-522.

Hsu, H. et al., 2013. Materials and Design. pp. 268-273.

Ige, O. O. et al., 2009. Monitoring Control, and Prevention Practises of Biomaterials Corrosion-An Overview. Trends Biomaterials Artificial Organs, pp. 93-104.

Javaid, A. & Czerwinski, F., 2019. Effect of hot rolling on microstructure and properties of the ZEK100 alloy. Journal of Magnesium and Alloys 7, pp. 27-37.

Kim, D. et al., 2015 . Long an Short Range Order Structural Analysis of In-Situ Forme Biphasic Calcium Phosphates. Biomaterial Research, pp. 19-24.

Koizumi, H. et al., 2019. Application of Titanium and Titanium Alloys to Fixed Dental Prostheses. J Prosthodont Res., pp. 266-270.

Lan, H. & Venkatesh, T., 2014. On the Relationship Between Hardness and the Elastic and Plastic Properties of Isotropic Power-law Hardening Materials.

Philosophical Magazine, pp. 35-55.

(4)

Long, M. & Rack, H. J., 1998. Titanium Alloys in Total Joint Replacement - A Material Science Perspective. Biomaterials, Vol. 19, pp. 1621-1639.

Lourenco, M. L. et al., 2020. Development of Novel Ti-Mo-Mn Alloys for Biomedical Applications. Scientific Report Nature Research, pp. 1-8.

Lu Kan, J. et al., 2016. Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Appliactions. Material Science &

Engineering C 62, pp. 36-44.

Lütjering., G. & Williams., J., 2007. Titanium. Berlin: Springer.

M. Atapour, Pilchak, A., Frankel, G. & Williams, J., 2011. Corrosion Behavior of β Titanium Alloys for Biomedical Applications. Material Science and Engineering C 31, pp. 885-891.

Majumdar, D. J. & Manna, I., 2015. Laser Surface Engineering of Titanium and Its Alloys for Improved Wear, Corrosion, and High-Temperature Oxidation Resistance. Process and Applications, pp. 483-521.

Meraldo, A., 2016. Introduction to Bio-Based Polymers. Lux Research, pp. 47-52.

Mohammed, T. M., Khan, Z. A. & Siddiquee, A. N., 2014. Beta Titanium Alloys:

The Lowest Elastic Modulus for Biomedical Applications: A Review. World Academy of Science, Engineering and Technology International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering Vol. 8, No. 8, pp.

726-731.

Niinomi, M., 2008. Biologically and Mechanically Biocompatible Titanium Alloys.

Materials Transactions , pp. 2170-2178.

Nurbaiti, Gunawarman, Affi, J. & Van Hoten, H., 2018. Perbandingan Laju Korosi Pada Titanium Tipe β Jenis Baru, Ti-12Cr dengan Immersion Test Dalam Larutan NaCl 3%. Sinergi , pp. 175-186.

Nwachukwu, P. U. & Oluwole, O. O., 2017. Effects of Rolling Process Parameters on the Mechanical Properties of Hot-Rolled St60Mn Steel. Case Studies in Construction Material, pp. 134-146.

(5)

Okulov, I. et al., 2015. High Strength Beta Titanium Alloys: New Design Approcah.

Material Science & Engineering A 628, pp. 297-302.

Palumbo, G. et al., 2021. Effect of Grain Size on the Corrosion Behavior of Fe- 3wt.%Si-1wt.%Al Electrical Steels in Pure Water Saturated with CO2. Materials, 14(5084), pp. 1-19.

Paristiawan, P. A., Puspasari, V., Pramono, A. W. & Adjiantoro, B., 2020.

Pengaruh Variasi Persentase Reduksi pada Proses Pengerolan Panas terhadap Sifat Mekanik dan Struktur Mikro Baja Laterit. Rekayasa Mesin, pp. 297-305.

Park, Y. & Hyun, S., 2017. Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene. Journal Korean Ceramic Society, 54(6), pp. 506-510.

Pederson, R., 2002. Microstructure aand Phase Transformation of Ti-6Al-4V. Lulea University of Technology.

Prima, F., Vermaut, P., Ansel, D. & Debuigne, J., 2000. ω Precipitation in a beta metastable titanium alloy, resistometric study. Material Trans, pp. 1092-1097.

Qiangli, et al., 2016. Influence of ω phase precipitation on mechanical performance and corrosion resistance of Ti-Nb-Zr alloy. Materials and Design, Volume 111, pp.

421-428.

Rack H, J. & Qazi, J. I., 2006. Titanium Alloys for Biomedical Applications.

Material Science and Engineering C, pp. 1269-1277.

Respati, S. M. B., 2010. Bahan Biomaterial Stainless Steel dan Keramik.

Momentum, pp. 5-8.

Schloffer, M. et al., 2014. Evolution of the ωo phase in β-stabilized multi-phase TiAl alloy and its effect on hardness. Acta Materialia, pp. 241-252.

Senopati, G. et al., 2016. Microstructure and Mechanical Properties of As-Cast Ti- Mo-xCr Alloy for Biomedical Application. International Sumposium on Frontier of Applied Phyxicx, pp. 2-5.

(6)

Stanev, V. et al., 2018. Unsupervised Phase Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with Custom Clustering.

Computational Materials, pp. 1-10.

Suh, H., 1998. Recent Advance in Biomaterials. Yonsei Medical Journal, pp. 87- 96.

Sutowo, C., Ikhsan, M. & Kartika, I., 2014. Karakteristik Material Biokompetibel Aplikasi Implan Medis Jenis Bone Plate. Seminar Nasional Sains dan Teknologi, pp. 1-5.

Sutowo, C., Rokhmato, F., Senopati, G. & Ilman, K. A., 2016. Pembentukan Struktur Mikro Paduan Titanium Ti6Al6Mo As Cast Sebagai Bahan Dasar Implan.

Seminaar Nasional Sains dan Teknologi, pp. 1-5.

Syarif, J. et al., 2013. Beta Phase Stability in Ti-Mo-Cr Alloys Made By Powder Metallurgy. Journal of Mining and Metallurgy B: Metallurgy, pp. 285-292.

Takemoto, S. et al., 2009. Corrosion mechanism of Ti-Cr alloys in solution containing flouride. Dental Materials, pp. 467-472.

Weiss, I. & Semiatin, S., 1998. Beta Titanium Thermomechanical Processing Alloys - Overview. Material Science & Engineering A 243, pp. 46-65.

Y. M. & Pramono, A., 2014. Advance Material Research. pp. 53-63.

Yu, L., Lu, Z., Shibo, P. & Xiaolong, L., 2022. Effect of hot rolling and annealing temperature on microstructure and tensile properties of a Zr-containing Ni-based ODS superalloy. Journal of Alloys and Compunds 918, pp. 1-9.

Zhang, Z. et al., 2016. A novel Zr-based alloy microstructure with high strength and excellent ductility. Material Science and Engineering: A, pp. 370-375.

Zhao, X. et al., 2012. Optimization of Cr Content of Metastable β-Type Ti-Cr Alloys with Chengeable Young's Modulus for Spinal Fixation Applications. Acta Biomater, pp. 392-400.

(7)

Zhou, Y.-L. & Luo, D.-M., 2011. Corrosion Behavior of Cold Rolled and Heat Treated Ti-Mo Alloys. Journal of Alloys and Compounds, pp. 6267-6272.

Referensi

Dokumen terkait

Mechanical properties of porous Ti-Nb-Ta-Zr alloys prepared from elemental powders, in relation to phase balance and porosity levels developed.

Basheer Al-Naib Chapter 2 11 Structure, Microstructure, and Some Selected Mechanical Properties of Ti-Ni Alloys by Daniela Cascadan and Carlos Roberto Grandini Chapter 3 25

Key Engineering Materials, vol.594-595, 2014, pages 311-315 Effect of different nickel content on the mechanical properties of hydroxyapatite-ni composites from coated powders

결론적으로 치과용 임플란트에 양극산화 처리했을 때 전해용액의 종류에 따라 내부식성이 달라지는 것을 알 수 있었으며, 인산을 사용하여 양극산화 처리했을 때에 가장 우수한 내부식성을 나타내었다... Mechanical properties of biomedical titanium

Future applications of Carbon Nanotube reinforced Functionally Graded Composite Materials Gururaja Udupal, S.Shrikantha rao 2, K.V.Gangadharan3 Mechanical Engineering, National

Conclusions Based on the effect of Mo on the microstructural and mechanical properties of solution treated Ti-Mo binary alloys the following assumptions could be drawn : • XRD

This paper reviews the properties and applications of self-healing polymeric materials, highlighting their potential for use in various fields such as electronics, aerospace, and biomedical

Expert Lecture on “Advancement in Engineering Materials and its applications” Department of Mechanical Engineering, Faculty of Engineering and Technology, Rama University, Mandhana