• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

DIFFERENTIAL SUBORDINATIONS DEFINED BY USING S ˘AL ˘AGEAN DIFFERENTIAL OPERATOR AT THE CLASS OF

MEROMORPHIC FUNCTIONS

Georgia Irina Oros

Abstract.By using the S˘al˘agean differential operator Dnf(z), z U (Definition 1), at the class of meromorphic functions we obtain some new differential subordination.

Keywords: differential subordination, dominant. 2000 Mathematical Subject Classification:30C80.

1.Introduction and preliminaries Denote by U the unit disc of the complex plane:

U ={z ∈C: |z|<1}, and

˙

U =U− {0}.

Let H(U) be the space of holomorphic functions inU. We let

An={f ∈ H(U), f(z) = a+an+1zn +1

+an+2zn +2

+. . . , z ∈U}

with A1 =A.

Let Σm,k denote the class of functions in ˙U of the form f(z) = 1

zm +akz k+ak

+1zk +1

+. . . , m∈N∗

={1,2,3, . . .}

k integer, k ≥ −m+ 1, which are regular in the punctual disc ˙U. If f and g are analytic functions in U, then we say that f is subordinate to g, written f ≺ g or f(z) ≺ g(z), if there is a function w analytic in U with w(0) = 0,

(2)

A function f ∈ H(U) is said to be convex if it is univalent and f(U) is a convex domain. It is well known that the function f is convex if and only if

f′

(0)6= 0 and Re

"

zf′′

(z) f′(z) + 1

#

>0, for z ∈U. We let

K =

(

f ∈A, Re

"

zf′′

(z) f′(z) + 1

#

>0, z ∈U

)

.

In order to prove the new results, we use the following results.

Lemma A.(Hallenbeck and Ruscheweyh [1, p.71])Let h be a convex func-tion with h(0) = a and let γ ∈ C∗

be a complex with Reγ ≥ 0. If p∈ H(U), with p(0) =a and

p(z) + 1 γzp

(z)≺h(z) then

p(z)≺q(z)≺h(z)

where

q(z) = γ nzγn

Z z

0

h(t)tnγ−1dt.

The function q is convex and is the best (a, n)-dominant.

Lemma B. [1, p.66, Corollary 2.6.g.2]Let f A and F is given by

F(z) = 2 z

Z z

0 f(t)dt.

If

Rezf

′′

(z) f′

(z) + 1 >− 1

2, z ∈U then

F ∈K.

(3)

Lemma C. Let f A, γ >1 and F is given by

F(z) = 1 +γ zγ1

Z z

0 f(t)t

1 γ−1dt.

If

Rezf

′′

(z)

f′(z) + 1 >−

1

2, z ∈U then

F ∈K.

Definition 1. [2]Forf A andnN∗

∪ {0}the operator Dnf is defined by

D0

f(z) = f(z)

Dn+1f(z) =z[Dnf(z)]

, z ∈U.

Remark 1. Iff A,

f(z) =z+

X

j=2

ajzj, z ∈U

then

Dnf(z) =z+

X

j=2

jnajzj, z ∈U.

2.Main results

Theorem 1.Let h∈ H(U), with h(0) = 1, which verifies the inequality:

Re

"

zh′′

(z) h′(z) + 1

#

>− 1

2(m+k), z ∈U. (1)

If f ∈Σm,k and verifies the differential subordination [Dn+1

(zm+1

f(z))]′

(4)

then

[Dnzm+1

f(z)]′

≺g(z), z ∈U

where

g(z) = 1 (m+k)zm+k1

Z z

0 h(t)t

1

m+k−1dt. (3)

The function g is convex and is the best(1, m+k) dominant. Proof. By using properties of the operator Dnf we have

Dn+1(zm+1

f(z)) =z[Dn(zm+1

f(z))]′

, z ∈U. (4) Differentiating (4), we obtain

[Dn+1

(zm+1

f(z))]′

= [Dn(zm+1

f(z))]′

+z[Dn(zm+1

f(z))]′′

, z ∈U. (5) If we let

p(z) = [Dn(zm+1

f(z))]′

, z ∈U, (6) then (5) becomes

[Dn+1

(zm+1

f(z))]′

=p(z) +zp′

(z), z ∈U. (7)

Using (7), subordination (2) is equivalent to p(z) +zp′

(z)≺h(z), z ∈U, (8) where

p(z) = [Dn(zm+1

f(z))]′

=

 z+

X

j=m+k+1

ajjnzj

 

= 1 +am+k+1(m+k+ 1)nzm +k

+. . . By using Lemma A, for γ = 1, n =m+k, we have

p(z)≺g(z)≺h(z),

where

g(z) = 1 (m+k)zm+k1

Z z

0

h(t)tm+k1 −1dt, z ∈U

(5)

By applying Lemma C for the function given by (3) and function h with the property in (1) for γ =m+k > 1 we obtain that function g is convex.

Theorem 2.Let h∈ H(U), with h(0) = 1, which verifies the inequality

Re

"

zh′′

(z) h′

(z) + 1

#

>− 1

2(m+k), z ∈U. If f ∈Σm,k and verifies the differential subordination

[Dn(zm+1

f(z))]′

≺h(z), z ∈U (9) then

Dn(zm+1

f(z)))

z ≺g(z), z ∈U where

g(z) = 1 (m+k)zm+k1

Z z

0 h(t)t

1

m+k−1dt, z ∈U.

The function g is convex and is the best(1, m+k) dominant. Proof. We let

p(z) = D

n(zm+1

f(z))

z , z∈U (10)

and we obtain

Dn(zm+1

f(z)) =zp(z), z∈U. (11) By differentiating (11), we obtain

[Dn(zm+1

f(z))]′

=p(z) +zp′

(z), z ∈U. Then (9) becomes

p(z) +zp′

(z)≺h(z), where

p(z) = z+

P∞

j=m+k+1ajj

nzj

z = 1 +pm+k+1z

m+k+. . . , z U.

(6)

where

g(z) = 1 (m+k)zm+k1

Z z

0 h(t)t

1

m+k−1dt, z ∈U,

and g is the best (1, m+k)-dominant.

By applying Lemma C for function g given by (3) and functionh with the property in (1) for γ =m+k >1, we obtain that function g is convex.

References

[1].S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.

[2]Grigore S¸t. S˘al˘agean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Georgia Irina Oros

Department of Mathematics University of Oradea

Str. Armatei Romˆane, No. 5 410087 Oradea, Romania

Referensi

Dokumen terkait

Hasil analisa untuk mendeskripsikan dimensi dari variabel entrepreneurial leadership dapat dijabarkan dengan menunjukan skor tertinggi berdasarkan perolehan

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

PANDUMUDA PERKASA Tidak memenuhi syarat Gugur.. BINA MUDA Memenuhi syarat

Penetapan Pemenang Pelelangan Penyedia lasa Konstruksi Pekerjaan Peningkatan Jalan Daerah/Poros Desa,.. Jalan Menuju Ponpes Syaiful Islam, Desa Jambu,

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

5.2 Pengetua / Guru Besar hendaklah menyenaraikan sumbangan Takaful ini di dalam senarai yuran sekolah yang mesti dibayar. Bagi pelajar miskin pihak sekolah hendaklah mengusahakan

Manfaatnya memberikan informasi tingkah laku makan dan ruminasi kambing Kacang yang diberi pakan dengan sumber protein yang berbeda.. Hipotesis pada penelitian ini

Karakter kemampuan menghadapi perubahan yang dimiliki respoden paling kuat dipengaruhi oleh faktor karakter jiwa kepemimpinan yang ditunjukkan dengan koefisien korelasinya yang