• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
8
0
0

Teks penuh

(1)

GENERALIZATIONS OF DURRMEYER TYPE

by

Lucia A. Căbulea and Mihaela Todea

Abstract. In this paper are presented first the operators of Durrmeyer which have been introduced by J.L. Durrmeyer in 1967 and investigated by M.M. Derrienic in 1981 and their properties.Then are presented the generalizations of Durrmeyer type for the operators of Szász and Baskakov. We study a generalization of Durrmeyer type for the operators of Schurer and we estimate the values of this operators for the test functions. By means of the modulus of continuity of the function used one gives evaluations of the orders of approximation by the considered operators.

Keywords: Durrmeyer-type operators, Bohman-Korovkin theorem, modulus of continuity, operators of Schurer, operators of Szász and Baskakov.

1. THE OPERATORS OF DURRMEYER

Let m 0. The operators

D

m

:

L

1

([ , ])

0 1

C

([ , ])

0 1

, defined by

( )

D f

m

x

m

p

m k

x

p

t f t dt

k

m

m k

( )

=

(

+

)

,

( )

,

( ) ( )

=

1

0 0 1

(1.1)

where

p

x

m

k

x

x

m k

k m k

,

( )

=

(

)





1

− ,

k

=

0,

m

, x 0 [0, 1], are the operators of

Durrmeyer.

Theorem [3] . The operators of Durrmeyer have the properties: i)

( )

D e

m 0

( )

x

=

1

.

ii) Turn every polynomial of the order p, p # m, in the polynomial of the order p .

iii)

lim

m→∞

D f

m

=

f

, uniformly on [0, 1], (฀) f 0 C([0, 1]).

iv)

( )

D f

x

f x

f

m

m

( )

( )

;

+





2

1

2

6

ω

, (฀) f 0 C([0, 1]),

(฀) m ∃3.

(2)

( )

[

]

lim

( )

( )

(

) ' ( )

(

) "( )

m→∞

m D f

m

x

f x

= −

1 2

x f

x

+

x

1

x f

x

.

The limit is uniformly if f”and f” 0 C([0, 1]).

ii)Let f be a limited and integral function on [0, 1]. If the function are the derivatives of the orders r on [0, 1] , then

( )

lim

( )

( )

m

r r m

r r

d

dx

D f

x

d

dx

f x

→∞

=

.

iii) Let

f

C

r

([ , ])

0 1

. The sequence

d

dx

D f

r

r m m

(

)





1

converges to

f

( )r uniformly and we have

sup

(

)!(

)!

(

)! !

(

)( )

( )

(

;

)

[ , ]

( ) ( )

x

r r m

r

r

r

m

r

m

r

m

m

d

dx

D f

x

f

x

K

f

m

+ +

+

0 1

1

1

1

ω

where

K

ris an independent constant by f and m .

2. GENERALIZATIONS OF DURRMEYER TYPE FOR THE OPERATORS OF SZÁSZ AND BASKAKOV

In 1985 S.M. Mazhar and V. Totik [5] have been introduced the operators Szász modified in the following form

( )

S

n

f

x

n

s

n k

x

s

n k

t f t dt

k

**

, ,

( )

=

( )

( ) ( ) ,

= ∞

0

0

n 0 N (2.1)

where

s

x

e

nx

k

n k

nx

k

,

( )

(

)

!

=

, x ∃ 0,

f

R

[ , )0∞ such that the integrals exists and the series is converges.

Theorem[9]. The operators defined by (2.1) have the properties: i) For

f

C

B

([ , ))

0

( )

S

f

x

f x

K

f

nx

n

n

**

( )

( )

;

+

ω

1

1

(3)

where

ω

1

0 2

2

2

( ; )

sup sup

(

/ )

(

/ )

/

f t

f x

h

f x

h

h t x h

=

+

< ≤ ≥ .

ii) For

f

C

B

([ , ))

0

and 0 < ∀ < 1

( )

S

f

x

f x

M

x

n

n

n

**

/

( )

( )



+

1

2



2

α

(x ∃ 0, n 0 N) ]

ω

α

1

( ; )

f t

=

O t

(

)

(

t

)

+

0

.

iii) For

f

C

([ , ))

0

∞ ∩

L

([ , )),

0

0 < ∀ < 1

( )

ω

α α

1

2 1 2

( ; )

f t

=

O t

(

)

S

n**

f

' ( )

x

M

(min{

n n x

, / })

( − )/ . iv) For

f

C

([ , ))

0

∞ ∩

L

([ , )),

0

0 < ∀ < 2

( )

ω

α α

2

2 2 2

( ; )

f t

=

O t

(

)

S

n**

f

"( )

x

M

(min{

n n x

, / })

( − )/ , where

ω

2

0 0

2

2

( ; )

f t

sup sup ( )

f x

f x

(

h

)

f x

(

h

)

h t x

=

+ +

+

< ≤ ≥ .

v) If

f

C

B

([ , ))

0

then

S

n**

f

f

C

(

ω

2,ϕ

( ;

f n

−1 2/

)

+

ω

1

( ;

f n

−1

)

+

n

−1

f

)

, where C is an independent constant by n,

ϕ

( )

x

=

x

and

ω

δ

ϕ

0

2

0 2

2

,

( ; )

f t

sup

f

sup sup (

f x

h x

)

f x

( )

f x

(

h x

)

h t h

h t x h

=

=

+

+

< ≤ < ≤ ≥

In 1985 Ashok Sahai and Govind Prasad [7] defined the operators modified into form integral

( )

V

n

f

x

n

v

n k

x

v

n k

t f t dt

k

**

, ,

( )

=

(

)

( )

( ) ( )

= ∞

1

0 0

, ( n 0 N ) (2.2)

where

v

x

n

k

k

x

x

n k

k n k

,

( )

( )

=

+ −

(

)





+

− +

1

1

, x ∃ 0 ,
(4)

Theorem[1]. Let be the multitude D** made by all the measure Lebesgue functions such that

f t

t

n

dt

( )

(

1

)

0

+

< ∞

for n 0 N, and let be f 0 D** a limited on any limited subinterval from [0,4) such that

f t

( )

=

O t

(

α

)

( t 64 ) where ∀ > 0.

i) If f have derivates by the order r + 2 ,

r

N

0, in a fixed point x > 0 then

( )

(

)

lim

** ( )

( )

( )

( )

n n

r r

n V

f

x

f

x

→∞

=

=

r r

+

f

r

x

+ +

r

+

x f

r+

x

+

x

+

x f

r+

x

(

1

)

( )

( )

(

1 1 2

)(

)

( 1)

( )

(

1

)

( 2)

( )

. ii) If exist

f

(r+1)

,

r

N

0, and it is continue on an opened interval J δ [a,b], 0 < a, then for n enough bigger we have

( )

(

)

(

)

V

f

f

C

f

f

n

C n

f

n

O n

n

r r r r

r s

** ( ) ( ) ( ) ( ) / ( ) /

;

(

)

+

+

+

+

+ −

− + − −

1

1 1

2

1 2

ω

1 1 2

,

for all s > 0, where

C C

1

,

2are the independent constants by n and f.

Theorem[7].Let f be a function with limited variation on any limited subinterval from [0,4). If

f t

( )

=

O t

(

α

)

( t 64 ) where ∀ > 2 then for n enough bigger we have

( )

V

f

x

f x

f x

x

nx

V

g

x

x

x

nx

x

f x

f x

x

nx

O

n x x k

x x k k

n

x

**

/ /

/

( )

( (

)

(

))

(

)

(

(

))

(

)

(

)

(

)

( )

+ −

− ≤ +

+

+

+

+

+

+

+

+ −

− + +

−+ =

+

1

2

6

7

6 1 9 1

2

1

4

1

1

1

1 1 2

1

α

where

g

x

R

[ , )0∞ ,

g t

x

( )

=

f t

( )

f x

(

)

for 0 # t < x,
(5)

3. A GENERALIZATION OF DURRMEYER TYPE FOR THE OPERATORS OF SCHURER

We consider the operators of Schurer modified into integral form

B

m p**,

: ([ ,

C

0 1

+

p

])

C

([ , ])

0 1

,

(

,

)( )

(

)

( )

( ) ( )

**

, ,

B

f

x

m

p

m

p

k

q

x

q

t f t dt

m p

k m p

m p k

m p k

=

+ +



+



= +

1

0 0

1

(3.1)

where

q

x

m

p

k

t

t

m p

k k m p k

,

( )

=

(

)

+





1

+ − , (฀) f 0 C([0,1+p]), (฀) x 0 [0, 1]. Theorem . The operators defined by (3.1) have the properties:

i)

( )

B

m p**,

e

0

( )

x

=

1

;

ii)

( )

B

e

x

m

p x

m

p

m p,

**

( )

(

)

1

1

2

=

+

+ +

+

;

iii)

( )

B

e

x

m

p m

p

x

m

p x

m

p

m

p

m p, **

( )

(

)(

)

(

)

(

)(

)

2

2

1

4

2

2

3

=

+

+ −

+ +

+

+ +

+

+

.

Proof :

i)

( )

B

e

x

m

p

m

p

k

x

x

m

p

m p

k m p

k m p k

, **

( )

(

)

(

)

0

0

1

1

1

1

1

=

+ +



+



+ + =

= +

+ −

if on used the relations :

m

p

k

x

x

k m p

k m p k

+





=

= +

+ −

0

(

1

)

1

and

m

p

k

t

t

dt

m

p

k

k

m

p

k

m

p

k m p k

+





=

=



+



+

+ − + = + +

+ −

0 1

1

1

1

1

1

(

)

(

,

)

β

(6)

( )

B

e

x

m

p

m

p

k

x

x

k

m

p

k

m p

k m p

k m p k

, **

( )

(

)

(

)

(

,

)

1 0

1

1

2

1

=

+ +



+



+

+ − + =

= + + −

β

=

+ +



+



+ +

+

+ + =

= + + −

(

)

(

)

(

)(

)

m

p

m

p

k

x

x

k

m

p

m

p

k m p

k m p k

1

1

1

2

1

0

= + + +

+ +

+

+ −





=

=

+

+ +

+

= + − + −

1

2

2

1

1

1

1

2

1 1

m

p

m

p

m

p

x

m

p

k

x

x

m

p x

m

p

k m p

k m p k

(

)

(

)

iii) We find

( )

B

e

x

m

p

m

p

k

x

x

k

m

p

k

m p

k m p

k m p k

, **

( )

(

)

(

)

(

,

)

1 0

1

1

3

1

=

+ +



+



+

+ − + =

= + + −

β

=

+ +



+



+ +

+

+ +

+

+ + =

= + + −

(

)

(

)

(

)(

)

(

)(

)(

)

m

p

m

p

k

x

x

k

k

m

p

m

p

m

p

k m p

k m p k

1

1

2

1

3

2

1

0

=

(

+

)(

+ −

+ +

)

+

+ +

(

+

)

+

(

)(

)

m

p m

p

x

m

p x

m

p

m

p

1

4

2

2

3

2

.

Theorem . The operators defined by (3.1) have the properties : i)

lim

**,

m→∞

B

m p

f

=

f

uniformly on [0, 1], (฀) f 0 C([0,1+p]).

ii)

( )

B

f

x

f x

f

m

p

m p,

**

( )

( )

( ;

(

)

)

+ +

2

1

2

3

ω

,
(7)

Proof :

i) It results from Bohman-Korovkin theorem . ii) We used the properties:

If L is a linear positive operator L : C(I) 6 C(I), such that

Le

0

=

e

0then

( )

Lf

( )

x

f x

( )

≤ +

(

1

δ

−1

( )

L

ϕ

x2

( )

x

)

ω

( ; )

f

δ

, (฀) f 0

C

B

( )

I

,

(฀) x 0 I, ∗ > 0 and

ϕ

x

= −

t

x

. We have

( )

B

m p**,

f

( )

x

f x

( )

≤ +

(

1

δ

−1

B

m p**,

ϕ ω

x2

) ( ; )

f

δ

,

(

B

m p**,

ϕ

x2

) ( )

( )

x

B

m p**,

e

2

( )

x

x B

( )

m p**,

e

1

( )

x

x

( )

B

m p**,

e

( )

x

2

0

2

=

+

=

=

2

+ +

+ −

3

1

+ +

− +

2

2

3

(

) (

)

(

)(

)

m

p

x

x

m

p

m

p

.

If m + p ∃ 3 it is maximal for x = ½ and we find

(

)

B

x

m

p

m

p

m

p

m p, x

**

( )

(

)(

)

ϕ

2

1

2

2

3

+ +

+ +

+ +

.

We get

( )

B

f

x

f x

m

p

m

p

m

p

f

m p, **

( )

( )

(

)(

)

( ; )

≤ +

+ +

+ +

+ +

1

1

2

2

3

1

δ

ω

δ

≤ +

+ +

1

1

2

3

1

δ

ω

δ

(

m

p

)

( ; )

f

.

For

δ

=

+ +

1

2

(

m

p

3

)

we obtain the inequalities
(8)

REFERENCES

[1] Agratini, O., Aproximare prin operatori liniari, Presa Universitar| Clujean|, 2000. [2] Derriennic, M. M., Sur l’approximation des fonctions intégrales sur [0, 1] par des polynômes de Bernstein modifiés, J. Approx. Thepry, 31(1981), 325-343.

[3] Durrmeyer, J. L., Une formule d’inversion de la transformée de Laplace: Application à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l’Université de Paris, 1967.

[4] Gavrea, I., The approximation of the continuous functions by means of some linear positive operators, Results in Mathematics, 30(1996), 55-66.

[5] Mazhar, S.M., Totik, V., Approximation by modified Szász operators, Acta Sci.Math., 49(1985), 257-269.

[6] P|lt|nea, R., Sur un operateur polynomial defini sur l’ensemble des fonctions integrables, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1983, 100-106.

[7] Sahai, A., Prasad, G., On simultaneous approximation by modified Lupaoperators, J. Approx. Theory, 45(1985), 122-128.

[8] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft Report, 1962.

[9]Stancu, D. D., Coman, Gh., Agratini, O., Trîmbi⇔a∏, R., Analiz| numeric| ∏i teoria aproxim|rii, vol.I, Presa Universitar| Clujean|, 2001.

[10] Zeng, X-M., Chen, W., On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation , J.Approx. Theory, 102(2000), 1-12.

Authors:

Lucia A. C|bulea, “1 Decembrie 1918" University of Alba Iulia, Romania. Departament of Mathematics, e-mail: [email protected].

Referensi

Dokumen terkait

Abstract In this paper we consider the operator D λ α f in terms of the generalized S˘al˘agean and Ruschweyh operators, and we study several differ- ential subordinations generated by

In this note, we study sufficient conditions for which we have the stability of Weyl’s theorems and property ( w ), under perturbations by finite rank operators, compact operators,

Hutchinson (1981) has introduced the concepts of (strictly) self-similar sets and self-similar measures in 1981 and has obtained many important results on fractal prop- erties in

The study presented in this paper investigated whether there are measurable differences in welfare when pigs are kept at the minimum stocking densities described by the bands of

Transition to turbulence, investigated within the core region of this internal buoyancy-driven recirculating flow, is controlled by imposing a smoothly decreasing or increasing

Explicit in the rationale for this legislation, introduced by western legislators, are assertions that natural settings such as forests and parks are crime-free, there are no dangers

Police struggle to control the images presented in crime incident stories, taking precautionary steps to influence as much of the news production process as possible to protect

PCA axis 1 is most highly influenced by (presented in decreasing order of loadings) (1) radius of corolla, (2) length of stamen, (3) ped- icel length, (4) length of style, (5) number