• Tidak ada hasil yang ditemukan

Wainberg Dorin. 129KB Jun 04 2011 12:09:41 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Wainberg Dorin. 129KB Jun 04 2011 12:09:41 AM"

Copied!
7
0
0

Teks penuh

(1)

ON SOME PROPERTIES OF THE SYMPLECTIC AND

HAMILTONIAN MATRICES

by

Dorin Wainberg

Abstract: In the first part of the paper the symplectic and Hamiltonian matrices are defined and some properties are pointed, and in the second part a relation between those two sets of matrices is proved.

1. Proprieties of symplectic and Hamiltonian matrices

For the beginning it will be introduced the square matrix J ∈ M2n×2n() defined by

J =

  

 

n n

n n

I I

0 0

(1)

where: 0n∈ Mn×n() – zero matrix In∈ Mn×n() – identity matrix Remark 1

It is not very complicated to prove that the next properties of the matrix J

are real (properties that will be very useful to prove some propositions that follow):

i) Jt = -J

ii) J-1 = Jt iii) JtJ = I2n iv) Jt Jt= - I2n v) J2 = - I2n vi) det J = ±1

Now the definition of the symplectic and Hamiltonian matrices are given:

Definition 1

A matrix A∈ M2n×2n() is called symplectic if:

(2)

where J∈ M2n×2n() is from (1). We will denote by SP(n, )

not

= { A ∈M2n×2n() | At J A = J } the set of 2n

× 2n real symplectic matrices. Definition 2

In the next part some properties of those sets of matrices will be proved, for example:

(3)

= Jt (J A)tJ J At J = J2 = - I2n = Jt A Jt (- I2n) At J =

= - Jt A Jt At J = A Jt At = (At J A)t = Jt = - Jt Jt J = Jt Jt = - I2n

= JA-1 ∈ SP(n, )

We will proof now that AB∈ SP(n, ):

(AB)tJ AB = Bt At J A B = At J A = J

= Bt J B =

= JAB∈ SP(n, )

Consequence. The set of symplectic matrices SP(n, ) is a subgroup of the set of nonsingular matrices GL(n, ) reported to multiplication. Indeed we have AB∈ SP(n, ), ∀ A, B∈ SP(n, ), and AB-1∈ SP(n, ), ∀ A, B∈ SP(n, ).

Proposition 2

Let A ∈ SP(n, ) and pA(x) - the characteristic polynomial of the matrix

A. If pA(c)= 0, then pA(1c)= pA(c)= pA(1c)= 0, where c∈ . Proof

) (x

pA = det(AxI2n) = A = - J A-1J

= det(- J A-1JxI2n) = I2n = - J2

= det( J( - A-1)J + x J2) = = det( J( - A-1 + xI2n)J ) =

= det J det( - A-1 + xI2n)det J = det J = ±1 = det( - A-1 + xI2n) =

= det( - A-1 + xAA-1) =

= det( - I2n + xA ) det( A-1 )= = ±det(xA - I2n ) = ±x2n det(A - x1

n

I2 ) = ±x2npA(1x) ⇒

x2npA(1x) = 0 ⇒ pA(1x) = 0 ⇒ pA(1c) = 0 ⇒ pA(c) = 0 ⇒ pA(1c) = 0. Proposition 3

The next relations are equivalent:

a) A is a Hamiltonian matrix; b) A = JS , where S = St ; c) ( JA )t = JA.

(4)
(5)

i) [ αA + βB, C] = α[A, C] + β[B, C] - evidently ⇒ the operation is bilinear.

ii) [A, B] = ABBA = - (BAAB) = - [B, A] ⇒ the operation is antisymmetric.

iii) Jacobi’s relation is satisfied:

[[A, B], C] + [[C, A], B] + [[B, C], A] = [ABBA, C] + [CAAC, B] + [BCCB, A] = =ABCBAC – (CABCBA) + CABACB – (BCA

BAC) + BCACBA – (ABCACB) = 0 Proposition 5

Let A ∈ sp(n, ) and pA(x) - the characteristic polynomial of the matrix A. Then:

a) pA(x) = pA(−x)

b) if pA(c)= 0, then pA(−c) = pA(c) = pA(−c) = 0, where c∈ . Proof

a) pA(x)= det(A – xI2n) , but A = J At J ⇒ )

(x

pA = det(J At J – xI2n) A = - J A-1J

= det(J At J – J x J) = = det( J( At + xI2n)J ) =

= det J det(At + xI2n)det J = det J = ±1 = det(At + xI2n) = det(At + xI2nt) =

= det(A + xI2n)t =

= det(A + xI2n) = det(A – (–x )I2n) = pA(−x) b) pA(c)= 0

) a

pA(−c) = 0. )

(x

pA is a real coefficients polynomial ⇒ pA(c) = 0 ) a

pA(−c) = 0.

2.A relation between the sets sp(n, ) and SP(n, )

Theorem:

Let A∈ M2n×2n(). The next relations are equivalent: a. A∈ sp (n, )

b. exp (At) ∈ SP (n, ) Proof

„a ⇒ b”

(6)

Let U(t) = (exp(At))tJ exp(At)

[1] Mircea Puta – Calcul matriceal, Timişoara, Editura Mirton, 2000

[2] Mircea Puta – Varietăţi diferenţiabile - probleme, Timişoara, Editura Mirton, 2002

[3] Mircea Puta – Hamiltonian Mechanical Systems and Geometric

Quantinization, Kluwer, 1993.

[4] R. Abraham, J. Marsden and T. Ratiu - Manifolds, Tensor Analysis and

Applications, Second Edition, Applied Math. Sciences 75, Springer Verlag,

(7)

Referensi

Dokumen terkait

PEMERINTAH KABUPATEN TANAH BUMBU SEKRETARIAT DAERAH.. UNIT

Pokja ULP Pembangunan Gedung Sekolah Dinas Pendidikan Kota Banjarmasin akan melaksanakan Pemilihan Langsung dengan pascakualifikasi secara elektronik untuk paket

Berdasarkan Penetapan Pemenang Pengadaan Langsung Nomor : 04.07/PL-DISPENDA/VII/2016 Tanggal 25 Juli 2016, maka dengan ini diumumkan Pemenang Pengadaan Langsung

Penarikan dana pernikahan sebesar Rp104.145.176,00 Dana pernikahan akan disisihkan dari aset dan dialokasikan pada Reksadana Panin Dana Utama Plus 2, Panin Dana

Hasil pengujian hipotesis pertama untuk mengetahui pengaruh pelaksanaan sistem akuntansi keuangan daerah terhadap Kinerja Instansi Pemerintah pada Dinas Perkebunan

Bahan hukum primer yang dipergunakan dalam penelitian ini adalah: (1) Undang-Undang Dasar Negara Republik Indonesia Tahun 1945, (2) Undang-Undang Nomor 48 Tahun 2009 tentang

Andi Hamzah dalam kaitannya dengan asas persamaan di dalam hukum dan asas praduga tak bersalah menegaskan bahwa: “Setiap orang berhak, atas dasar persamaan hukum yang sepenuh-

Quantification of Andrographolide Isolated from Andrographis paniculata Nees Obtained from Traditional Market in Yogyakarta Using Validated HPLC Yandi Syukri 1,2 , Ronny Martien 2