• Tidak ada hasil yang ditemukan

getdoc5234. 92KB Jun 04 2011 12:04:23 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoc5234. 92KB Jun 04 2011 12:04:23 AM"

Copied!
2
0
0

Teks penuh

(1)

Elect. Comm. in Probab.15(2010), 297–298 ELECTRONIC COMMUNICATIONS in PROBABILITY

UPPER BOUND ON THE EXPECTED SIZE OF THE INTRINSIC

BALL

ARTËM SAPOZHNIKOV1

EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: sapozhnikov@eurandom.tue.nl

SubmittedJune 08, 2010, accepted in final formJune 11, 2010 AMS 2000 Subject classification: 60K35; 82B43

Keywords: Critical percolation; high-dimensional percolation; triangle condition; chemical dis-tance; intrinsic ball.

Abstract

We give a short proof of Theorem 1.2(i) from[5]. We show that the expected size of the intrinsic ball of radiusris at mostC r if the susceptibility exponentγis at most 1. In particular, this result follows if the so-called triangle condition holds.

Let G = (V,E) be an infinite connected graph. We consider independent bond percolation on G. Forp ∈[0, 1], each edge of Gis open with probability p and closed with probability 1−p independently for distinct edges. The resulting product measure is denoted byPp. For two vertices x,yV and an integern, we write xyif there is an open path from x to y, and we write x←→≤n y if there is an open path of at mostnedges fromx toy. LetC(x)be the set of all yV such that xy. For xV, theintrinsic ballof radiusnat xis the setBI(x,n)of all yV such thatx←→≤n y. Letpc=inf{p : Pp(|C(x)|=∞)>0}be the critical percolation probability. Note thatpcdoes not depend on a particular choice ofxV, sinceGis a connected graph. For general background on Bernoulli percolation we refer the reader to[2].

In this note we give a short proof of Theorem 1.2(i) from[5]. Our proof is robust and does not require particular structure of the graph.

Theorem 1. Let xV . If there exists a finite constant C1such thatEp|C(x)| ≤C1(pcp)−1for all p<pc, then there exists a finite constant C2such that for all n,

Ep

c|BI(x,n)| ≤C2n.

Before we proceed with the proof of this theorem, we discuss examples of graphs for which the assumption of Theorem 1 is known to hold. It is believed that as p ր pc, the expected size of C(x)diverges like(pcp)γ. The assumption of Theorem 1 can be interpreted as the mean-field boundγ≤1. It is well known that for vertex-transitive graphs this bound is satisfied if the triangle condition holds atpc[1]: ForxV,

X

y,zV Pp

c(x↔y)Ppc(yz)Ppc(z↔x)<∞.

1RESEARCH PARTIALLY SUPPORTED BY EXCELLENCE FUND GRANT OF TU/E OF REMCO VAN DER HOFSTAD.

(2)

298 Electronic Communications in Probability

This condition holds on certain Euclidean lattices[3, 4]including the nearest-neighbor latticeZd withd≥19 and sufficiently spread-out lattices withd>6. It also holds for a rather general class of non-amenable transitive graphs[6, 8, 9, 10]. It has been shown in[7]that for vertex-transitive graphs, the triangle condition is equivalent to the so-called open triangle condition. The latter is often used instead of the triangle condition in studying the mean-field criticality.

Proof of Theorem 1. Letp<pc. We consider the following coupling of percolation with parameter p and with parameter pc. First delete edges independently with probability 1−pc, then every present edge is deleted independently with probability 1−(p/pc). This construction implies that forx,yV,p<pc, and an integern,

Pp(x←→n y)

p

pc

n

Pp

c(x ≤n

←→y).

Summing over yV and using the inequalityPp(x←→≤n y)≤Pp(x↔y), we obtain

E

pc|BI(x,n)| ≤ p

c p

n

E

p|C(x)|.

The result follows by takingp=pc(1−21n).

Acknowledgements.I would like to thank Takashi Kumagai for valuable comments and advice.

References

[1] M. Aizenman and Ch. Newman. Tree graph inequalities and critical behavior in percolation models.J. Statist. Phys.36: 107-143, 1984. MR0762034

[2] G. Grimmett.Percolation. Springer-Verlag, Berlin, Second edition, 1999. MR1707339 [3] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions.

Com-mun. Math. Phys.128: 333-391, 1990. MR1043524

[4] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk.J. Statist. Phys.132(6): 1001-1049, 2008. MR2430773

[5] G. Kozma and A. Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math178(3): 635-654, 2009. MR2551766

[6] G. Kozma. Percolation on a product of two trees. arXiv:1003.5240.

[7] G. Kozma. The triangle and the open triangle. To appear inAnn. Inst. Henri Poincaré Probab. Stat., 2010. arXiv:0907.1959.

[8] R. Schonmann. Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs.Commun. Math. Phys.219(2): 271-322, 2001. MR1833805

[9] R. Schonmann. Mean-filed criticality for percolation on planar non-amenable graphs. Com-mun. Math. Phys.225(3): 453-463, 2002. MR1888869

Referensi

Dokumen terkait

Pada hari ini, Senin tanggal Dua Puluh Dua Bulan Juni tahun Dua Ribu Sembilan , dimulai jam Sepuluh Wita sampai dengan selesai bertempat di portal Pengadaan Pemerintah

Hasil penelitian secara kualitatif menunjukkan Budaya Organisasi dan Kepuasan kerja sudah baik, begitu pula dengan Kinerja karyawan sudah baik walau ada 2

[r]

Kesenjangan harapan antara nasabah dan manajemen bank syariah dalam penelitian ini tidak terjadi, hal ini disebabkan karena kebutuhan nasabah akan media penyampaian

Penyedia barang / jasa yang diundang untuk mengikuti pengadaan pekerjaan tersebut. diatas dengan undangan nomor : 32/ULP/VIII/2009 Tanggal 10 Agustus 2009

[r]

Berdasarkan Tabel 9, Keputusan keuangan yaitu kebijakan hutang dan kebijakan dividen tidak berpe- ngaruh terhadap nilai perusahaan sedangkan investasi sesuai

V[/S/2OLL dan Surat Pernyataan Bersama Acara Pembuktian Kualifikasi Nomor 45/ULP-VVSI?OLL Tanggal 27 Juni 2011, untuk Pekerjaan Pengawasan Pengurugan Halaman RSU Brigjen