• Tidak ada hasil yang ditemukan

(T.4) APLIKASI MODEL SPASIAL DAN SPASIAL TIME UNTUK PRAKIRAAN OBSERVASI DI LOKASI TIDAK TERSAMPEL

N/A
N/A
Protected

Academic year: 2021

Membagikan "(T.4) APLIKASI MODEL SPASIAL DAN SPASIAL TIME UNTUK PRAKIRAAN OBSERVASI DI LOKASI TIDAK TERSAMPEL"

Copied!
11
0
0

Teks penuh

(1)

(T.4)

APLIKASI MODEL SPASIAL DAN SPASIAL TIME

UNTUK PRAKIRAAN OBSERVASI DI LOKASI TIDAK TERSAMPEL

Budi Nurani R., Atje Setiawan A, dan Rudi Rosadi

Jurusan Matematika FMIPA Universitas Padjadjaran Jl. Raya Bandung Sumedang Km 21 Jatinangor

e-mail: budinr@unpad.ac.id

Abstrak

Model spasial dapat dikaji berdasarkan data cross section dan data time series, misalnya model Spasial Autoregresi (SAR), model ekspansi SAR dan model Spasial Time Autoregresi atau Space Time Autoregresi (STAR). Model STAR dikembangkan menjadi Generalisasi STAR (GSTAR) untuk fenomena lokasi pengamatan yang heterogen. Baik model SAR, STAR maupun GSTAR merupakan model kausal yang hanya dapat digunakan untuk prakiraan observasi di lokasi –lokasi sampel.

Dalam makalah ini dikaji model SAR-Kriging dan GSTAR-Kriging yang merupakan kombinasi dari model SAR dan GSTAR dengan metode Kriging, yaitu metode untuk prakiraan di lokasi-lokasi tidak tersampel. Studi kasus dilakukan pada fenomena data untuk prakiraan mutu pendidikan di wilayah Jawa Barat serta penempatan sumur baru berdasarkan produksi minyak bumi di lapisan vulkanik Jatibarang.

Kata kunci : SAR, ekspansi SAR, GSTAR, Kriging

1. Pendahuluan

Model spasial dan model spasial time atu space time adalah proses stokastik yang dapat dinyatakan sebagai model linier dan bersifat model kausal. Model spasial untuk data cross sectional antara lain dikenal model spatial autoregresi (SAR) dari Luc Anselin (1988) serta LeSage (1989). Sedangkan model berbasis deret waktu Box-Jenkins (1976) adalah model space time autoregresi (STAR) yang dikembangkan Pfeifer (1979). Model STAR memiliki keterbatasan, yaitu hanya berlaku pada fenomena observasi lokasi yang homogen, karena parameter model bernilai sama untuk setiap lokasi. Untuk mengatasi hal tersebut, Ruchjana (2002) mengembangkan model STAR menjadi model Generalisasi Space Time Autoregresi (GSTAR) dengan asumsi parameter time series dan parameter space time berbeda untuk setiap lokasi observasi. Kelebihan model GSTAR adalah berlaku untuk fenomena heterogen. Namun demikian, model stokastik SAR, STAR dan GSTAR memiliki keterbatasan, karena hanya berlaku untuk prakiraan di lokasi-lokasi sampel saja dan asumsi yang digunakan adalah unsur galat berdistribusi normal dengan mean dan variansi konstan.

Dalam model spasial untuk prakiraan di lokasi yang tidak tersampel dipelajari metode Kriging yang diperkenalkan oleh D. Krige (1963) dalam Armstrong (1998). Metode

(2)

Kriging adalah suatu metode pendekatan linier yang bersifat BLUE (Best Linear Unbiased Estimator), namun tidak dapat digunakan sebagai model kausal. Pengembangan model stokastik berupa model spasial untuk prakiraan di lokasi tidak tersampel dalam fenomena data deret waktu berupa model GSTAR-Kriging untuk data kebumian dipelajari Ruchjana-Darwis (2005), sedangkan dalam fenomena data cross section dengan kajian spasial data mining untuk bidang pendidikan dikembangkan model Spasial Data Mining dengan SAR-Kriging oleh Abdullah (2009).

Dalam makalah ini diperkenalkan perangkat lunak yang dibangun berupa penaksiran parameter model SAR-Kriging serta GSTAR-Kriging menggunakan metode kuadrat terkecil. Dari sisi teori sifat penaksir kuadrat terkecil model GSTAR dipelajari secara asimptotis normal maupun konsistensinya, dan menunjukkan bahwa penaksir tersebut merupakan suatu penaksir tak bias serta berdistribusi normal (Borovkova, Lopuhaa and Ruchjana, 2008).

2. Metode Ordinary Kriging (OK)

Metode Kriging dikembangkan oleh D. Krige tahun 1950-an di bidang kebumian untuk prediksi produksi emas di tambang emas Afrika Selatan. Metode Kriging merupakan suatu metode interpolasi linier yang digunakan untuk menaksir nilai di suatu lokasi yang tidak tersampel, berdasarkan nilai-nilai dari sampel di lokasi sekitarnya. Metode Ordinary Kriging (OK) memberikan taksiran tak bias yang terbaik (Best Linear Unbiased

Estimator/BLUE), artinya taksiran bersifat tidak berbias dan memiliki variansi yang

minimum (Armstrong, 1998).

Taksiran kriging untuk lokasi yang tidak tersampel merupakan nilai yang diperoleh dari penjumlahan bobot lokasi-lokasi di sekitarnya. Semivariogram digunakan sebagai input

dalam metode kriging untuk mendapatkan bobot yang optimal. Penaksir OK (s0) adalah

kombinasi linier dari n nilai data dari variabel terregional di sekitar s0 :

  n i i iY s w s 1 0) ( ) (

(1) (s0) adalah nilai taksiran pada lokasi yang tidak tersampel sedangkan wi adalah faktor

bobot di lokasi i (1, 2, …, n). Dalam metode Kriging, yang menjadi permasalahan adalah bagaimana menentukan bobot yang menghasilkan variansi minimum, artinya

)] ( (

[ s0 ) Y s0

(3)

3. Pengembangan Model SAR-Kriging dan Model GSTAR-Kriging serta Aplikasinya 3.1 Model Spasial Autoregressive (SAR) dan Ekspansi SAR

Model Spatial Autoregressive-Kriging (SAR-Kriging) adalah kombinasi model SAR atau ekspansi SAR dengan metode Kriging. Model SAR dan ekspansi SAR adalah model spasial untuk data cross section yang meregresikan terhadap dirinya sendiri dalam kaitan dengan lokasi. Model SAR orde pertama merupakan model yang mulai dikembangkan dan dipandang sebagai model paling sederhana untuk data cross sectional (sesaat). Model SAR secara umum dirumuskan (LeSage, 1999) sebagai berikut:

1 2      y W y X u u W u ε (2)

Jika

X = 0

dan W = 02 maka Persamaan (1) menyatakan model SAR orde pertama.

Untuk menyederhanakan penulisan notasi W1 diganti dengan W, sehingga model SAR orde

pertama dinyatakan sebagai berikut:

y

Wyε (3) dengan asumsi 2 n

)

iid

,

N

~

(0

I

ε

. Model SAR orde pertama perupakan kombinasi linier dari

contiguity tanpa variabel independen. Dengan mengasumsikan bahwa persamaan (3)

mempunyai bentuk model linier, maka taksiran kuadrat terkecil untuk parameter

dinyatakan (Anselin, 1988 dan LeSage, 1999) sebagai berikut:

ˆ

y'W'Wy

 

1 y'W'y

(4)

Selanjutnya Casetti (1972) dalam Anselin (1988) dan LeSage (1999) memperkenalkan model ekspansi SAR sebagai perluasan dari model SAR, dengan tujuan agar dapat digambarkan heterogenitas spasial. Heterogenitas dalam model ekspansi SAR digunakan untuk menggambarkan nilai-nilai parameter yang berbeda untuk setiap observasi spasial melalui jarak dari titik pusat ke lokasi-lokasi lain di sekitarnya, Jarak antara dua lokasi diukur dengan jarak Euclidean yang melibatkan koordinat lokasi, disingkat koordinat. Secara umum model ekspansi SAR dari Casetti dalam LeSage (1999) dirumuskan dengan pendekatan model regresi linier sebagai berikut:

yε

β ZJβ0 (5)

dengan:

y merupakan vektor variabel dependen bersesuaian dengan observasi spasial ukuran (nx1) X matriks ukuran (nxnk) berisi bentuk x(si) sebagai vektor variabel independen ukuran (kx1)

(4)

β matriks parameter ukuran (nkx1) berisi taksiran parameter untuk k variabel independen

pada setiap observasi

β0 vektor parameter ukuran (2x1) berisi 2k parameter yang akan ditaksir

Z matriks informasi lokasi yang mempunyai elemen perluasan Zxi dan Zyi menyatakan

koordinat latitude (garis lintang) dan longitude (garis bujur) untuk setiap lokasi i

Pada model ekspansi SAR dinyatakan bahwa parameter

x dan

y.berubah-ubah,

karena merupakan fungsi dari koordinat latitude dan longitude. Parameter model sebanyak 2k ditaksir dengan menggunakan metode kuadrat terkecil. Berdasarkan taksiran-taksiran parameter tersebut, taksiran-taksiran lainnya untuk titik-titik dalam ruang ditaksir menggunakan persamaan kedua dari (5). Proses ini merupakan proses ekspansi. Untuk menggambarkan proses ekspansi tersebut, substitusikan persamaan kedua pada (5) ke persamaan pertama diperoleh:

ε XZJβ

y0  (6)

Dari persamaan di atas tampak jelas bahwa matriks X, Z, dan J diperoleh sebagai data

observasi dan hanya vektor β0 merupakan parameter yang perlu ditaksir.

3.2 Model Generalisasi STAR

Dalam makalah ini kajian difokuskan pada perumuman model Space Time Autoregressive (STAR) dari Pfeifer (1979), berupa model Generalized Space Time Autoregressive (GSTAR) yang dikaji oleh Ruchjana (2002). Model GSTAR merupakan kasus khusus dari model vektor autoregressive (VAR) yang diperkenalkan Hannan (1970).

Model GSTAR secara umum, misalnya orde p dalam time dan orde l=0,1,…,k dalam

space, dinotasikan GSTAR(p;l) dituliskan sebagai:

) ( ) ( ) ( ( ) 1 0 t k t t kl l p k l k e z W z

 

     (7) Untuk studi awal dipelajari model GSTAR orde pertama baik dalam lag spasial maupun lag waktu, dinotasikan GSTAR(1;1). Model dibangun berdasarkan asumsi bahwa parameter-parameter model berupa parameter-parameter autoregresi dan parameter-parameter space time merupakan fungsi lokasi: 10( )

i

dan 11(i). Ruchjana (2002) mengusulkan model GSTAR berdasarkan fenomena

kinerja sumur minyak bumi di lapisan volkanik Jatibarang. Reservoir memiliki variabilitas, baik horizontal maupun vertikal. Oleh karena itu, wajar jika sumur-sumur mempunyai parameter khas yang merepresentasikan profil kinerja sumur tersebut. Asumsi model GSTAR didukung oleh fakta bahwa suatu reservoir volkanik bersifat heterogen, karena

(5)

memiliki fracturer dan variasi karakteristik reservoir merupakan fungsi lokasi. Model GSTAR(1;1) dinyatakan oleh:

) ( ) 1 ( ) , , ( ) 1 ( ) , , ( ) ( ) 1 ( ) 1 ( ) ( ) ( 11 ) 1 ( 11 ) ( 10 ) 1 ( 10 ) 1 ( ) 1 ( ) ( ) ( 11 ) 1 ( ) ( 10 ) 1 ( t t diag t diag t t t t N N Nx Nx NxN NxN Nx NxN Nx e Wz z e z W z z             L L (8) dengan: ) , , ( 10(1) 10(N)

diag : matriks diagonal parameter autoregresi lag time 1

) , ,

( 11(1) 11(N)

diag : matriks diagonal parameter space time lag spasial 1 dan lag time

1 dan vektor error e(t) iid~ N(0, 2IN)

Dengan menggunakan operator backshift Bj z(t) = z(t-j) , maka model GSTAR(1;1), ditulis

dalam VAR(1), dinyatakan:

(I - B) z(t) = e(t) (9) Representasi model GSTAR(1;1) dalam model linier dituliskan:

yXe (10) Persamaan (3.9) untuk t = 2,3,…,T memberikan model linier lokasi i :

y

(i)

X

(i)

(i)

e

(i) (11)

Dalam (3.10) N model linier dihubungkan melalui variabel penjelas

(

~

z

i

(

t

1

)).

Regresi

simultan untuk semua lokasi dinyatakan dengan:

                                             ) ( ) 3 e( (2) e )] 1 ( ~ [ diag 1)] -( diag[ )] 2 ( ~ [ diag (2)] diag[ )] 1 ( ~ [ diag )] 1 ( [ diag ) ( ) 3 z( (2) z T x T T T z z e z z z z z     (12)

Pada (3.11), diag[z] menyatakan matriks dengan elemen-elemen diagonal berupa vektor z dan vektor parameter:

. ) , , , ; , , , (10(1) 10(2) 10(N) 11(1) 11(2) 11(N) '    

Kuadrat terkecil parameter 

diberikan oleh persamaan:

ˆ  ( X ' X )  1 X ' y (13) dengan y adalah z(t) dan

(6)

Dengan menggunakan persamaan (3.11) penaksiran parameter dengan metode kuadrat terkecil dapat dilakukan dengan mudah. Namun demikian untuk orde model yang lebih tinggi perlu dibangun suatu perangkat lunak agar model GSTAR dapat diterapkan pada data lapangan.

3.3 Penggabungan Model Spasial dengan Metode Kriging

Model SAR-Kriging merupakan gabungan model SAR dan metode Kriging. Abdullah (2009) mengembangkan model SAR-Kriging berdasarkan fenomena data SDPN 2003, khususnya dengan adanya wilayah yang tidak tersampel saat pelaksanaan sensus seperti Provinsi Aceh, karena alasan keamanan. Juga terdapat pemekaran wilayah baik tingkat provinsi maupun kabupaten/kota, seperti munculnya provinsi baru atau kabupaten/kota yang baru. Di lain pihak kegiatan survei pendidikan umumnya dilakukan secara berkala setiap 10 tahun. Tentunya hal ini memerlukan suatu upaya untuk membangun model deskripsi dan prediksi data pendidikan, khususnya mutu pendidikan persekolahan berdasarkan proses input output pendidikan.

Di sisi lain model GSTAR-kriging dikembangkan untuk melakukan prakiraan produksi sumur-sumur minyak di lokasi tidak tersampel pada lapisan vulkanik, lapangan Jatibarang. Pengembangan kedua model tersebut memberikan model kausal yang dapat digunakan untuk prakiraan di lokasi-lokasi tidak tersampel.

Model SAR-Kriging dan GSTAR-Kriging diusulkan untuk memprediksi observasi, misalnya mutu pendidikan atau produksi sumur minyak bumi di lokasi-lokasi tidak tersampel yang ditentukan berada di sekitar lokasi-lokasi sampel. Sebagai ilustrasi posisi lokasi sampel dan lokasi tidak tersampel digambarkan pada Gambar 3.1.

Gambar 3.1 Posisi Lokasi Tidak Tersampel di antara Dua Lokasi Sampel Model SAR-Kriging merupakan gabungan model SAR dan metode Kriging. Abdullah (2009) mengembangkan model SAR-Kriging berdasarkan fenomena data SDPN 2003, khususnya dengan adanya wilayah yang tidak tersampel saat pelaksanaan sensus seperti Provinsi Aceh, karena alasan keamanan. Juga terdapat pemekaran wilayah baik tingkat provinsi maupun kabupaten/kota, seperti munculnya provinsi baru atau kabupaten/kota yang baru. Di lain pihak kegiatan survei pendidikan umumnya dilakukan secara berkala

Koor dinat Lok as i

0 100 200 300 400 14000 14050 14100 14150 14200 14250 14300 14350 14400 X Y

(7)

setiap 10 tahun. Tentunya hal ini memerlukan suatu upaya untuk membangun model deskripsi dan prediksi data pendidikan, khususnya mutu pendidikan persekolahan berdasarkan proses input output pendidikan.

Di sisi lain model GSTAR-Kriging dikembangkan untuk melakukan prakiraan produksi sumur-sumur minyak di lokasi tidak tersampel pada lapisan vulkanik, lapangan Jatibarang. Pengembangan kedua model tersebut memberikan model kausal yang dapat digunakan untuk prakiraan di lokasi-lokasi tidak tersampel.

Pengembangan model SAR-Kriging dan GSTAR-Kriging sebagai gabungan model ekspansi SAR dengan metode Kriging dibatasi dengan metode OK antara dua lokasi. Artinya

di antara dua lokasi sampel s1 dan s2 dapat diprediksi observasi di lokasi-lokasi tidak

tersampel. Untuk kedua model SAR-Kriging dan GSTAR-Kriging, masing-masing taksiran model SAR dan taksiran model GSTAR digunakan sebagai input dalam metode Kriging. Setelah taksiran dijadikan input, diperoleh taksiran parameter untuk lokasi-lokasi tidak tersampel. Melalui taksiran tersebut model dikembalikan ke dalam bentuk model ekspansi SAR atau model GSTAR di lokasi-lokasi tidak tersampel. Selanjutnya dapat dihitung MAPE dari model SAR dan GSTAR yang diperoleh melalui metode Kriging. Prosedur penggunaan model SAR-Kriging dan GSTAR-Kriging dapat digambarkan sebagai berikut.

PILIH TAKSIRAN MUTU YANG TELAH DIKETAHUI UNTUK KABUPATEN/KOTA ATAU PROVINSI

PERBANDINGAN MUTU PENDIDIKAN HASIL SAR-KRIGING DENGAN DATA HASIL SDPN 2003

INPUTKAN KOORDINAT LOKASI YANG AKAN DI KRIGING

LAKUKAN PROSES KRIGING UNTUK 2 LOKASI DIKETAHUI DIDAPAT TAKSIRAN PARAMETER EKSPANSI SAR LOKASI YANG

DI KRIGING

LAKUKAN SIMULASI EKSPANSI SAR, DIDAPAT MODEL KAUSAL MUTU PENDIDIKAN DI LOKASI TIDAK TERSAMPEL

INPUTKAN 2 KOORDINAT KAB/KOTA/PROV YANG TELAH DIKETAHUI

AMBIL TAKSIRAN PARAMETER EKSPANSI SAR 2 KAB/KOT/PROV YANG TELAH DIKETAHUI

TENTUKAN KABUPATEN KOTA/PROVINSI YANG AKAN DIKRIGING YANG TERLETAK DIANTARA 2 KAB/KOT/PROV DI ATAS

TAHAPAN PROSES SAR-KRIGING SPASIAL DATA MINING

Gambar 3.2 Tahapan SAR-Kriging untuk Prakiraan di Lokasi Tidak tersampel (Abdullah, 2009)

(8)

4. HASIL DAN PEMBAHASAN

4.1 Aplikasi Model SAR-Kriging untuk Prediksi Mutu pendidikan di Lokasi Tidak Tersampel

Prediksi mutu pendidikan untuk jenjang SD di Provinsi Aceh menggunakan aplikasi spasial data mining (SAR-Kriging) didapat dengan menginputkan hasil ekspansi SAR provinsi Sumut dan provinsi Sumbar, pada metoda kriging. Taksiran parameter yang dihasilkan dengan metode Kriging tersebut adalah sebagai berikut :

Mutu SD Prov.Aceh = 26.32+0.20(RSTRB)-3.10(RSB)-14.14(RSBR7)-3.53(RSRB)+ 6.09(RSGLTG) -0.11(d-RSTRB)+ 2.55(d-RSB) +3.66(d-RSBR7)+ 5.50(d-RSRB)-2.13(d-RSGLTG)

Perbandingan antara data aktual dengan data hasil prediksi SAR-Kriging untuk jenjang SD, SMP dan SMA, dapat dilihat pada Tabel 4.1 berikut ini (Abdullah, 2009).

Tabel 4.1 Perbandingan Data Aktual dengan Data Hasil Prediksi Prov. Aceh

No. Jenjuang Mutu Aktual Prakiraan Mutu Error MAPE

1 SD 25.94 23.75 2.19 8.44

2 SMP 14.47 16.87 2.1 14.51

3 SMA 17.16 24.41 7.25 42.25

Berdasarkan Tabel 4.1 dapat disimpulkan bahwa rata-rata % error absolut (MAPE) untuk jenjang SD di Provinsi Aceh di pulau Sumatera adalah 8,44%. Hal ini menunjukkan bahwa tingkat rata-rata error di bawah 10 %. Artinya tingkat kesesuaian model akurasinya tinggi. Hal ini menunjukkan bahwa model SAR-Kriging sesuai digunakan untuk prediksi mutu pendidikan di lokasi Provinsi Aceh untuk jenjang SD.

4.2 Penerapan Model GSTAR-Kriging untuk Prediksi Produksi Minyak bumi

Model spasial berdasarkan model time series yang dikembangkan untuk prakiraan di lokasi tidak tersampel adalah model GSTAR-Kriging Model ini dapat mewakili fenomena produksi minyak bumi di lapisan vulkanik yang bersifat heterogen dan bervariasi dari sumur ke sumur lainnya. Dalam model GSTAR diasumsikan bahwa parameter berbeda untuk setiap lokasi. Hal ini dapat menggambarkan fenomena sumur-sumur minyak bumi di lapisan vulkanik Lapangan Jatibarang (Ruchjana, 2008).

Produksi minyak bumi di lapisan vulkanik memiliki double porosity dengan adanya

fracturer. Dalam studi kasus penerapan model, dipilih data produksi minyak bumi di tiga

sumur di lapisan volkanik yang memiliki kemiripan pola data. Penerapan model GSTAR(1;1) dengan bobot spasial diharapkan dapat memberikan model yang lebih baik dibandingkan STAR(1;1) maupun GSTAR(1;1) dengan bobot seragam. Artinya GSTAR(1;1) dengan bobot spasial, hendaknya dapat menggambarkan fenomena keheterogenan di masing-masing

(9)

sumur, karena selain asumsi parameter yang lebih fleksibel juga ditambah dengan korelasi spasial melalui matriks bobot. Matriks bobot spasial berdasarkan semivariogram spherical dari data ketebalan reservoir di lapisan vulkanik Jatibarang dinyatakan:

           0 462 , 0 538 , 0 452 , 0 0 548 , 0 490 , 0 510 , 0 0 s W Taksiran parameter i 10

dan i 11

dengan bobot spasial menggambarkan interaksi

antar sumur sebagai berikut:

Tabel 4.2 Interaksi antar Sumur dengan GSTAR(1;1) dalam %

Sumur Sumur1 Sumur2 Sumur3

Sumur1 62,20 15,70 15,10

Sumur2 12,22 63,80 10,08

Sumur3 0,02 0,01 83,90

Hasil penaksiran parameter autoregresi menunjukkan pola kemiripan produksi 3 sumur. Dengan GSTAR(1;1) bobot spasial interaksi sumur terhadap sumur-sumur lainnya menjadi berbeda satu sama lain. Hasil ini menggambarkan fenomena yang lebih sesuai, karena sumur-sumur minyak bumi di lapisan vulkanik memiliki keheterogenan yang tinggi. Sumur-sumur yang berdekatan bisa memiliki karakteristik yang berbeda.

Dalam model GSTAR-Kriging, selanjutnya parameter model GSTAR digunakan sebagai input dalam Kriging. Dengan menggunakan taksiran parameter dari 2 sumur dapat dicari bobot kriging untuk sumur-sumur yang tidak tersampel. Misalnya untuk posisi antara 2 sumur, dapat dicari posisi 10 sumur lainnya. Setelah diperoleh bobot kriging di sumur yang tidak tersampel, maka selanjutnya dilakukan simulasi model GSTAR untuk memperoleh data simulasi produksi di sumur-sumur tersebut. Data simulasi produksi ini merupakan kajian awal untuk eksplorasi minyak bumi di sumur-sumur baru di sekitar sumur yang sudah ada

Gambar 4.1 Posisi Sumur baru untuk model GSTAR-Kriging Coordinate 10 Wells 32243000 32243200 32243400 32243600 32243800 32244000 32244200 32244400 32244600 21950 00 0 219 505 00 2195 10 00 219 51500 219 520 00 2 1952 500 2195 300 0 2 19 535 00 X Y

(10)

Tabel 5.3 Contoh Hasil Prakiraan Parameter Phi_0 GSTAR Kriging antara 2 Sumur

Distance Gamma Lambda phi_0

hat d(x1,x2) d(x1,V) d(x2,V) g(x1,x2) g(x1,V) g(x2,V) Lambda1 Lambda2 3178.05 288.91 2889.14 0.015418 0.00140 0.01402 0.91 0.09 0.40 577.83 2600.22 0.00280 0.01261 0.82 0.18 0.41 866.74 2311.31 0.00420 0.01121 0.73 0.27 0.43 1155.65 2022.40 0.00561 0.00981 0.64 0.36 0.45 1444.57 1733.48 0.00701 0.00841 0.55 0.45 0.46 1733.48 1444.57 0.00841 0.00701 0.45 0.55 0.48 2022.40 1155.65 0.00981 0.00561 0.36 0.64 0.49 2311.31 866.74 0.01121 0.00420 0.27 0.73 0.51 2600.22 577.83 0.01261 0.00280 0.18 0.82 0.52 2889.14 288.91 0.01402 0.00140 0.09 0.91 0.54 5. SIMPULAN

Kajian aplikasi model spasial dan spasial time melalui model SAR-Kriging dan GSTAR-Kriging pada fenomena data pendidikan dan produksi minyak bumi telah disajikan secara ringkas. Secara keseluruhan kedua pengembangan model spasial tersebut dapat menggambarkan fenomena lapangan dalam menggambarkan pengaruh antar lokasi, maupun pengaruh interaksi antara lokasi dan waktu.

6. DAFTAR PUSTAKA

Abdullah, A. S. , (2009). Implementasi Spasial Data Mining menggunakan Model Spaytial Autoregressive-Kriging (SAR-Krigingh) untuk Pemetaan Mutu Pendidikan di Indonesia. Disertasi, Tidak Dipublikasikan. Program Doktor Ilmu Komputet, Yogyakarta: UGM.

Anselin, L., 1988, Spatial Econometrics: Method and Models, Kluwer Academic

Publisher, the Netherlands.

Armstrong, M., (1998), Basic Linear Geostatistics, Berlin: Springer Verlag.

Borovkova, S. A.., Lopuhaä, and Ruchjana, B.N., (2007), Consistency and asymptotic normality of least squares estimators in generalized STAR models. Statistica

Neerlandica, 2007.

Box, G.E.P. and Jenkins, G.M., (1976), Time Series Analysis, Forecasting and Control, Holden-Day, Inc., San Fransisco.

(11)

Darwis, S. and Ruchjana, B. N., (2005), A study of some aspects of space-time models, International Conference on Applied Mathematics, Collaboration between KNAW-SPIN the Netherlands and Institut Teknologi Bandung, Bandung.

Hannan, E.J. , (1970), Multiple Time Series, John Wiley and Sons, Inc., New York.

LeSage, P.J., 1999, The Theory and practice of Spatial Econometrics , Departemen of

Economics, University Toledo.

Pfeifer, P.E., (1979), Spatial Dynamic Modeling, unpublished Ph.D Dissertation, Georgia Institute of Technology, Georgia.

Ruchjana, B. N., (2002), Suatu Model Generalisasi Space Time Autoregresi dan Penerapannya

pada Produksi Minyak Bumi, Disertasi Doktor, Tidak Dipublikasikan, Bandung: PPs ITB.

Ruchjana, B. N., (2008), Space Time Modeling and Its Applications. Abdus Salam School of Mathematical Sciences, Lahore, Pakistan.

Gambar

Gambar  3.2  Tahapan  SAR-Kriging  untuk  Prakiraan  di  Lokasi  Tidak  tersampel  (Abdullah, 2009)
Tabel  4.1 Perbandingan Data Aktual dengan Data Hasil Prediksi Prov. Aceh
Tabel 4.2  Interaksi antar Sumur dengan GSTAR(1;1) dalam %
Tabel 5.3 Contoh Hasil Prakiraan Parameter Phi_0 GSTAR Kriging antara 2 Sumur

Referensi

Dokumen terkait

memiliki manfaat mencegah pigmentasi (perubahan warna kulit menjadi lebih gelap) Perbandingan nilai warna kulit krim antioksidan yang tertera pada alat saat pengukuran

Studi praktik kerja ini disusun dengan tujuan untuk memenuhi salah satu syarat kelulusan pada program sarjana (S1) Jurusan Akuntansi Fakultas Bisnis Universitas Katolik

❖ Provinsi mengunduh data jumlah siswa di tiap sekolah dari Dapodikdasmen untuk digunakan dalam penetapan alokasi dana BOS tiap sekolah;. ❖ Alokasi dana BOS untuk sekolah ditetapkan

Jika dinilai lebih ekonomis, dapat juga untuk membeli alat transportasi sederhana yang akan menjadi barang inventaris sekolah (misalnya sepeda, perahu penyeberangan,

Penelitian ini bertujuan untuk memproduksi antibodi terhadap antigen ekskretori-sekretori cacing jantan dan cacing betina untuk pengembangan diagnosis berbasis deteksi

Suatu penangkapan yang baru dapat diteruskan dengan penahanan apabila ada dugaan keras telah melakukan tindak pidana berdasarkan bukti permulaan yang cukup dan

Nata de Ipomoea dari campuran filtrat kulit ubi jalar putih dan filtrat kulit ubi jalar merah, uji organoleptik terhadap nata de Ipomoea yang dihasilkan meliputi

Osteokalsin mempunyai peran penting dalam regulasi pembentukan kristal hidroksiapatit (mineralisasi), oleh karena itu osteoklasin baru bisa di deteksi pada fase reparatif