PORTFOLIO
BACHELOR DEGREE PROGRAM
SARJANA
Departement of
Mathematics
Faculty of Science and Data Analytics
Institut Teknologi Sepuluh Nopember
1 NAMA MK : Aljabar linier elementer
KODE MK : KM184203
SEMESTER : 7
NAMA DOSEN / TIM :
Drs. I Gusti Ngurah Rai Usadha, M.Si
Dr. Drs. Chairul Imron, MIKomp
Dian Winda Setyawati, S.Si, M.Si
NAMA KOORDINATOR MK :
Dian Winda Setyawati, S.Si, M.Si
COURSE : Elementary linear algebra
CODE : KM184203
SEMESTER : 7
LECTURER / TEAM :
Drs. I Gusti Ngurah Rai Usadha, M.Si
Dr. Drs. Chairul Imron, MIKomp
Dian Winda Setyawati, S.Si, M.Si
I.
Halaman Pengesahan / Endorsement Page
EVALUASI KURIKULUM 2018-2023
CURRICULUM EVALUATION 2018-2023
Nama Fakultas: Fakultas Sains dan Analitika Data Faculty Name: Faculty of Science And Data Analitycs Nama Prodi: Matematika
Program Name: Mathematics Nama MK: Aljabar linier elementer Course: Elementary linear algebra
KM184821
Sem: 7
Kode/Code:
KM184821
Bobot sks /Credits(T/P): 2
Rumpun MK:
Ilmu Komputer Cluster Course: Computer ScienceSmt: 7
OTORISASI
AUTHORIZATION Penyusun CompilerDian Winda Setyawati, S.Si, M.Si
Koordinator RMK
Cluster Coordinator
Prof. DR. Erna Apriliani, M.Si
Kepala Departemen
Head of Department
Subchan, S.Si., M.Sc., Ph.D
TTD/SIGN. TTD/SIGN. TTD/SIGN.
Tanggal/Date: ….. Tanggal/Date: ….. Tanggal/Date: …..
II.
CPL yang dibebankan pada MK / PLO Charged to The Course
CPL Prodi / PLO Sub CP Sub LO CPL 1 PLO 1 CPL 2 PLO 2 CPL 3 PLO 3 CPL 4 PLO 4 CPL 5 PLO 5 CPL 6 PLO 7 CPL 7 PLO 7 Sub CP MK 1 Sub CLO 1 X Sub CP MK2 Sub CLO 2 X X Sub CP MK3 Sub CLO 3 x XIII.
Bobot CPL yang dibebankan pada MK / Load of PLO Charged to The
Course
Bobot CPL Prodi pada setiap Sub CP MK
Total Sub CP Sub LO CPL 1 PLO 1 CPL 2 PLO 2 CPL 3 PLO 3 CPL 4 PLO 4 CPL 5 PLO 5 CPL 6 PLO 7 CPL 7 PLO 7 Sub CP MK 1 Sub CLO 1 0.15 0.15 Sub CP MK2 Sub CLO 2 0.175 0.24 0.419 Sub CP MK3 Sub CLO 3 0.175 0.26 0.431 Total 0.5 0.5 1.00
IV.
Rencana Penilaian / Asesmen & Evaluasi RAE), dan Rencana Tugas /
Assessment & Evaluation Plan (A&EP) and Assignment Plan
RENCANA ASSESSMENT & EVALUASI
ASSESSMENT & EVALUATION PLAN
Bachelor Degree Program of Mathematics
Department
Faculty of Science and Data Analytics
MK : Aljabar Linier Elementer
Course: Elementary Linear Algebra
RA&E
A&EP
Write
Doc Code
Kode/Code: KM184821Bobot sks /Credits (T/P): 2 sks Rumpun MK: Matematika Terapan Course Claster: Applied
Mathematics Smt: 8 OTORISASI AUTHORIZATION Penyusun RA & E Compiler A&EP
Dian Winda Setyawati, S.Si, M.Si
Koordinator RMK
Course Cluster Coordinator
Prof. DR. Erna Apriliani, M.Si
Ka PRODI Head of Dept. Subchan, S.Si., M.Sc., Ph.D Mg ke (1) Sub CP-MK (2)
Bentuk Asesmen (Penilaian) (3) Bobot (%) (4) 1, 2 Mahasiswa mampu menyelelesaikan SPL dengan metode
eliminasi Gaussian atau Gauss Jordan Serta mampu menjelaskan mengapa SPL tidak punya penyelesaian. Mahasiswa mampu menggunakan operasi- operasi pada matriks dan memahami sifat – sifat aljabar pada matriks
Students are able to complete the SPL using the Gaussian or Gauss Jordan elimination method As well as being
Tugas Latihan soal Task Practice
(1) (2) (3) (4) able to explain why the
SPL has no resolution. Students are able to use
operations on the matrix and understand the algebraic properties of the matrix
3 Mahasiswa mampu mencari invers matrik, dapat menyelesaikan SPL dengan invers matriks
Mahasiswa mengenal jenis-jenis matriks dan sifat –sifat pada matriks Students are able to find
matrix inverse, can solve SPL with inverse matrix tudents recognize the
types of matrices and the properties of the matrix
Tugas Latihan soal Task Practice
4 Mahasiswa mampu mencari determinan dari suatu matriks dengan ekspansi Cofaktor
Mahasiswa mampu mencari determinan dari suatu matriks dengan Reduksi Baris Mahasiswa mampu
memahami sifat – sifat pada determinan Mahasiswa mampu
menyelesaikan SPL dengan aturan cramer Students are able to find
the determinant of a matrix with Cofactor expansion
Students are able to find the determinant of a matrix with Line Reduction
Tugas Latihan soal Task Practice
Mg ke (1)
Sub CP-MK (2)
Bentuk Asesmen (Penilaian) (3)
Bobot (%) (4) Students are able to
understand the properties of determinants Students are able to
complete SPL with cramer rules 5-6 Mahasiswa mampu
memahami vektor pada ruang 2, ruang 3 dan ruang n serta operasi pada vektor
Mahasiswa mampu menentukan norm, hasil kali titik (dot produk), jarak, hasil kali silang (cross produk), himpunan orthogonal pada 𝑅𝑛 , seta geometri dari Sistem linear Students are able to
understand the vectors in space 2, space 3 and space n and operation on the vector
Students are able to define norm, product of point (product dot), distance, cross product, orthogonal set at R^n,, seta geometry from linear Ssstem
Tugas Latihan soal Task Practice
7 Mahasiswa mampu memahami ruang vektor real Mahasiswa mampu memahami subruang vektor real Mahasiswa mampu memahami kombinasi linear dan himpunan bebas linear
Students are able to understand real vector spaces
Tugas Latihan soal Task Practice
(1) (2) (3) (4) Students are able to
understand the real vector subspace Students are able to
understand linear and linearly independent combinations
8 Evaluasi Tengah Semester Midterm Exam
Evaluasi Tengah Semester Midterm Exam
25 9-10 Mahasiswa mampu
memahami basis dan dimensi dari suatu ruang vektor Mahasiswa mampu
menentukan koordinat relatif suatu vektor terhadap suatu basis pada ruang vektor Mahasiswa mampu
memahami ruang baris, ruang kolom, ruang kosong, rank, nulitas dari suatu matriks Students are able to
understand the basis and dimension of a vector space
Students are able to determine the relative coordinates of a vector on a basis in a vector space
Students are able to understand the row space, column space, blank space, rank, nullity of a matrix
Tugas Latihan soal Task Practice 15 10-12 Mahasiswa mampu memahami transformasi matriks dari 𝑅𝑛 ke 𝑅𝑚 Mahasiswa mampu memahami Komposisi pada transformasi matriks
Students be able to find standard matrix from 𝑅𝑛 to 𝑅𝑚
Tugas Latihan soal Task Practice
Mg ke (1)
Sub CP-MK (2)
Bentuk Asesmen (Penilaian) (3)
Bobot (%) (4) Students be able to
know well about composition function about standard matrix 13 Mahasiswa mampu
menentukan nilai eigen dan vektor eigen dari suatu matriks persegi Mahasiswa mampu menentukan syarat matriks dapat didiagonalisasi dan dapat mendiagonalisasi matriks
Students are able to determine the eigenvalues and
eigenvectors of a square matrix
Students are able to determine the requirements of the matrix to be
diagonalizable and do matrix diagonalization
Tugas Latihan soal Task Practice
20
14-15 Mahasiswa mampu memahami hasil kali dalam pada ruang vektor real
Mahasiswa mampu memahami himpunan orthogonol pada ruang hasil kali dalam
Mahasiswa mampu membentuk basis orthonormal dengan melakukan proses gram-schmidt
Students are able to understand inner product results in real vector spaces
Students are able to understand the set of orthogonol in the inner product space
Tugas Latihan soal Task Practice
(1) (2) (3) (4) Students are able to
form an orthonormal basis by performing the Gram-Schmidt process 16 Evaluasi Akhir Semester
Final Exam
Evaluasi Akhir Semester Final Exam
25 Total 100%
V.
Penilaian Sub CP MK / CLO Assessment
No NRP
Mahasiswa Nama Mahasiswa
Nilai Sub CP MK 1 Nilai Sub CP MK 2 Nilai Sub CP MK 3 Keterangan (lulus
/ Tidak Lulus) Action Plan 1 6111840000071 ANTONIO GALILEO TANDO 10.845 30.2937 31.1613 L
2 6111840000072 GIGIH BONARO GITAPRAMUDYA 7.2075 20.13295 20.70955 TL
VI.
Penilaian CPL yang dibebankan pada MK berdasarkan pada nilai Sub CP MK / PLO assessment charged to the course based on
CLO assessment
No NRP
Mahasiswa Nama Mahasiswa Nilai CPL 1 Nilai CPL 2
Keterangan (lulus /
Tidak Lulus) Action Plan
1 6111840000071 ANTONIO GALILEO TANDO 71.4 73.2 L
2
6111840000072 GIGIH BONARO GITAPRAMUDYA
improvement
Tuliskan tindakan yang akan dilakukan baik oleh Dosen – maupun usulan ke Prodi untuk Perbaikan – terkait dengan evaluasi ketercapaian CPL
Unsur yang di evaluasi
CPL Prodi
CP MK Dosen
Sub CP MK Dosen
Model Pembelajaran Prodi + Dosen Bentuk asesmen Prodi + Dosen
1
Lampiran
A. Rencana Tugas & Rubrik Penilaian / Assignment plan and assessment rubric
Mg ke(1)
Sub CP-MK (2)
Bentuk Asesmen (Penilaian) (3) Bobot (%) (4) 1, 2 Mahasiswa mampu menyelelesaikan SPL dengan metode
eliminasi Gaussian atau Gauss Jordan Serta mampu menjelaskan mengapa SPL tidak punya penyelesaian. Mahasiswa mampu menggunakan operasi- operasi pada matriks dan memahami sifat – sifat aljabar pada matriks
Students are able to complete the SPL using the Gaussian or Gauss Jordan elimination method As well as being able to explain why the SPL has no resolution. Students are able to use
operations on the matrix and understand the algebraic properties of the matrix
Tugas Latihan soal Task Practice
15
3 Mahasiswa mampu mencari invers matrik, dapat menyelesaikan SPL dengan invers matriks
Mahasiswa mengenal jenis-jenis matriks dan sifat –sifat pada matriks Students are able to find
matrix inverse, can solve SPL with inverse matrix
Tugas Latihan soal Task Practice
(1) (2) (3) (4) tudents recognize the
types of matrices and the properties of the matrix
4 Mahasiswa mampu mencari determinan dari suatu matriks dengan ekspansi Cofaktor
Mahasiswa mampu mencari determinan dari suatu matriks dengan Reduksi Baris Mahasiswa mampu
memahami sifat – sifat pada determinan Mahasiswa mampu
menyelesaikan SPL dengan aturan cramer Students are able to find
the determinant of a matrix with Cofactor expansion
Students are able to find the determinant of a matrix with Line Reduction
Students are able to understand the properties of determinants Students are able to
complete SPL with cramer rules
Tugas Latihan soal Task Practice
5-6 Mahasiswa mampu memahami vektor pada ruang 2, ruang 3 dan ruang n serta operasi pada vektor
Mahasiswa mampu menentukan norm, hasil kali titik (dot produk), jarak, hasil kali silang (cross produk), himpunan orthogonal
Tugas Latihan soal Task Practice
Mg ke (1)
Sub CP-MK (2)
Bentuk Asesmen (Penilaian) (3)
Bobot (%) (4) pada 𝑅𝑛 , seta geometri
dari Sistem linear Students are able to
understand the vectors in space 2, space 3 and space n and operation on the vector
Students are able to define norm, product of point (product dot), distance, cross product, orthogonal set at R^n,, seta geometry from linear Ssstem 7 Mahasiswa mampu
memahami ruang vektor real Mahasiswa mampu memahami subruang vektor real Mahasiswa mampu memahami kombinasi linear dan himpunan bebas linear
Students are able to understand real vector spaces
Students are able to understand the real vector subspace Students are able to
understand linear and linearly independent combinations
Tugas Latihan soal Task Practice
8 Evaluasi Tengah Semester Midterm Exam
Evaluasi Tengah Semester Midterm Exam
25 9-10 Mahasiswa mampu
memahami basis dan dimensi dari suatu ruang vektor Mahasiswa mampu
menentukan koordinat relatif suatu vektor
Tugas Latihan soal Task Practice
(1) (2) (3) (4) terhadap suatu basis
pada ruang vektor Mahasiswa mampu
memahami ruang baris, ruang kolom, ruang kosong, rank, nulitas dari suatu matriks Students are able to
understand the basis and dimension of a vector space
Students are able to determine the relative coordinates of a vector on a basis in a vector space
Students are able to understand the row space, column space, blank space, rank, nullity of a matrix 10-12 Mahasiswa mampu memahami transformasi matriks dari 𝑅𝑛 ke 𝑅𝑚 Mahasiswa mampu memahami Komposisi pada transformasi matriks
Students be able to find standard matrix from 𝑅𝑛 to 𝑅𝑚
Students be able to know well about composition function about standard matrix
Tugas Latihan soal Task Practice
13 Mahasiswa mampu menentukan nilai eigen dan vektor eigen dari suatu matriks persegi Mahasiswa mampu menentukan syarat matriks dapat didiagonalisasi dan dapat mendiagonalisasi matriks
Tugas Latihan soal Task Practice
Mg ke (1)
Sub CP-MK (2)
Bentuk Asesmen (Penilaian) (3)
Bobot (%) (4) Students are able to
determine the eigenvalues and
eigenvectors of a square matrix
Students are able to determine the requirements of the matrix to be diagonalizable and do matrix diagonalization 14-15 Mahasiswa mampu
memahami hasil kali dalam pada ruang vektor real
Mahasiswa mampu memahami himpunan orthogonol pada ruang hasil kali dalam
Mahasiswa mampu membentuk basis orthonormal dengan melakukan proses gram-schmidt
Students are able to understand inner product results in real vector spaces
Students are able to understand the set of orthogonol in the inner product space
Students are able to form an orthonormal basis by performing the Gram-Schmidt process
Tugas Latihan soal Task Practice
16 Evaluasi Akhir Semester Final Exam
Evaluasi Akhir Semester Final Exam
25 Total 100%
C. Bukti – soal (Asesmen dan Tugas) / Evidence of assignment and assessment
Soal Tugas / Assignment