• Tidak ada hasil yang ditemukan

ON STRONG AND WEAK CONVERGENCE IN n-HILBERT SPACES | Soenjaya | Journal of the Indonesian Mathematical Society 164 449 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "ON STRONG AND WEAK CONVERGENCE IN n-HILBERT SPACES | Soenjaya | Journal of the Indonesian Mathematical Society 164 449 1 PB"

Copied!
9
0
0

Teks penuh

(1)

Vol. 19, No. 2 (2013), pp. 79–87.

ON STRONG AND WEAK CONVERGENCE IN

n

-HILBERT SPACES

Agus L. Soenjaya

Department of Mathematics, National University of Singapore, Singapore agus.leonardi@nus.edu.sg

Abstract. We discuss the concepts of strong and weak convergence inn-Hilbert spaces and study their properties. Some examples are given to illustrate the con-cepts. In particular, we prove an analogue of Banach-Saks-Mazur theorem and Radon-Riesz property in the case ofn-Hilbert space.

Key words: Strong and weak convergence,n-Hilbert space.

Abstrak. Makalah ini menjelaskan konsep konvergensi kuat dan lemah dalam ruangn-Hilbert dan mempelajari sifat-sifatnya. Beberapa contoh diberikan untuk menjelaskan konsep-konsep tersebut. Khususnya, teorema analog dari Banach-Saks-Mazur dan sifat Radon-Riesz dibuktikan untuk kasus ruangn-Hilbert..

Kata kunci: Konvergensi kuat dan lemah, ruangn-Hilbert.

1. INTRODUCTION AND PRELIMINARIES

The notion ofn-normed spaces was introduced by G¨ahler ([4]) as a gener-alization of normed spaces. It was initially suggested by the area function of a triangle determined by a triple in Euclidean space. The corresponding theory of n-inner product spaces was then established by Misiak ([10]). Since then, various aspects of the theory have been studied, for instance the study of Mazur-Ulam theorem and Aleksandrov problem inn-normed spaces are done in [1, 2], the study of operators inn-Banach space is done in [5, 11], and many others.

In this paper, we will generalize the notion of weak convergence in Hilbert space to the case ofn-Hilbert space and study its properties. In particular, we will expand on the results in [6]. We will also give an analogue of Radon-Riesz property (on conditions relating strong and weak convergence) in the case ofn-Hilbert space. Furthermore, an analogue of the well-known Banach-Saks-Mazur theorem (on the

2000 Mathematics Subject Classification: Primary 40A05; Secondary 46C99. Received: 17-07-2012, revised: 31-03-2013, accepted: 05-06-2013.

(2)

strong convergence of a convex combination of a weakly convergent sequence) will be given.

We begin with some preliminary results. LetX be a real vector space with dim(X) ≥ n, where n is a positive integer. We allow dim(X) to be infinite. A real-valued functionk·, . . . ,·k:Xn →Ris called ann-normonXn if the following conditions hold:

(1) kx1, . . . , xnk= 0 if and only ifx1, . . . , xn are linearly dependent;

(2) kx1, . . . , xnkis invariant under permutations ofx1, . . . , xn;

(3) kαx1, x2, . . . , xnk=|α|kx1, x2, . . . , xnkfor allα∈Randx1, . . . , xn∈X;

(4) kx0+x1, x2, . . . , xnk ≤ kx0, x2, . . . , xnk+kx1, x2, . . . , xnk, for all x0, x1, . . . , xn∈X.

The pair (X,k·, . . . ,·k) is then called an n-normed space. It also follows from the definition that ann-norm is always non-negative.

LetX be a real vector space with dim(X)≥n, wherenis a positive integer. A real-valued function h·,·|·, . . . ,·i:Xn+1→Ris called ann-inner product onX if the following conditions hold:

(1) hz1, z1|z2, . . . , zni ≥0, with equality if and only ifz1, z2, . . . , znare linearly

dependent;

(2) hz1, z1|z2, . . . , zni=hzi1, zi1|zi2, . . . , zinifor every permutation (i1, . . . , in) of (1, . . . , n);

(3) hx, y|z2, . . . , zni=hy, x|z2, . . . , zni;

(4) hαx, y|z2, . . . , zni=αhx, y|z2, . . . , znifor everyα∈R;

(5) hx+x′, y|z

2, . . . , zni=hx, y|z2, . . . , zni+hx′, y|z2, . . . , zni.

The pair (X,h·,·|·, . . . ,·i) is then called ann-inner product space.

Observe that any inner product space (X,h·,·i) can be equipped with the standardn-inner product:

hx, y|z2, . . . , zni:=

   

hx, yi hx, z2i · · · hx, zni hz2, yi hz2, z2i · · · hz2, zni

..

. ... . .. ...

hzn, yi hzn, z2i · · · hzn, zni

   

(1)

where|A|denotes the determinant ofA.

In that case, the inducedstandardn-norm onX is given by

kx1, . . . , xnkS :=

q

det[hxi, xji] (2)

Note that the value ofkx1, . . . , xnkS is just the volume of then-dimensional

paral-lelepiped spanned byx1, . . . , xn.

Further examples and results onn-normed space can be found in [8, 9]. In particular, for the standard case, completeness in the norm is equivalent to that in the induced standardn-norm.

Everyn-inner product space is ann-normed space with the inducedn-norm:

(3)

An analogue of Cauchy-Schwarz inequality also holds for n-inner product space, i.e. for all x, y, z2, . . . , zn∈X, we have

|hx, y|z2, . . . , zni| ≤ kx, z2, . . . , znkky, z2, . . . , znk (4)

The following definitions are taken and inspired from [12].

Definition 1.1. A sequence {xk} in an n-normed space (X,k·, . . . ,·k) is said to

converge tox∈X if kxk−x, z2, . . . , znk →0 ask→ ∞for allz2, . . . , zn∈X.

Definition 1.2. A sequence{xk}in ann-normed space(X,k·, . . . ,·k)is a Cauchy

sequenceif kxk−xl, z2, . . . , znk →0 ask, l→ ∞for allz2, . . . , zn∈X.

Definition 1.3. If every Cauchy sequence in an n-normed space (X,k·, . . . ,·k) converges to anx∈X, then X is said to be complete. A completen-inner product space is called an n-Banach space. A complete n-inner product space is called an n-Hilbert space.

2. STRONG AND WEAK CONVERGENCE

In this section, we will consider the notions of strong and weak convergence inn-Hilbert space. The notion of (strong) convergence in 2-normed space has been studied extensively in [12]. Here, we will focus more on the weak convergence and the relationships between the two concepts. Let (X,h·,·|·, . . . ,·i) be an n-Hilbert space andk·, . . . ,·kbe the inducedn-norm.

Definition 2.1 (Strong convergence). A sequence (xk) in X is said to converge

stronglyto a pointx∈Xifkxk−x, z2, . . . , znk →0ask→ ∞for everyz2, . . . , zn∈ X. In this case, we writexk→x.

Definition 2.2 (Weak convergence). A sequence (xk) in X is said to converge

weakly to a point x ∈ X if hxk −x, y|z2, . . . , zni → 0 as k → ∞ for every y, z2, . . . , zn ∈X. In this case, we write xk ⇀ x.

The following proposition is immediate from the definition.

Proposition 2.3. If (xk) and (yk) converges strongly (resp. weakly) to x and y

respectively, then(αxk+βyk)converges strongly (resp. weakly) toαx+βy.

Here we mention some of the basic properties, the proofs of which can be found in [6].

Proposition 2.4 (Continuity). The following results hold:

(1) The n-norm is continuous in each variable.

(2) The n-inner product is continuous in the first two variables.

Proposition 2.5. If (xk) converges strongly (resp. weakly) to x and x′, then x=x′.

Note that strong convergence implies weak convergence.

(4)

Proof. Refer to [6].

However, the converse is not true in general. The following highlights some of the way a sequence can fail to converge strongly.

Example 2.7. Let X = L2[0,1] which is a Hilbert space with the usual inner product. Equip X with the standard 2-inner product. Define a sequence (fn) by fn(x) = sinnπx. Then for all g, h∈X,

hfn, g|hi=hfn, gihh, hi − hfn, hihh, gi

Z 1

0

g(x) sinnπx dx

khk22

+

Z 1

0

h(x) sinnπx dx

khk2kgk2

so that fn⇀0, where we used the Riemann-Lebesgue lemma. However,

kfn, hk= kfnk22khk22− hfn, hi2

1/2

As n → ∞, kfn, hk → √1

2khk2, which is not zero as long as h6= 0 a.e., showing that fn does not converge strongly to the zero function.

Example 2.8. Let (X,h·,·i)be a separable infinite-dimensional Hilbert space with (ek)∞k=1 as an orthonormal basis. Equip X with the standard n-inner product. In [6], it is proven that (ek)converges weakly, but not strongly to 0.

Remark 2.9. More generally, if X is a separable Hilbert space and {φk} is an

orthonormal sequence inX. Thenφk⇀0 in the induced standardn-inner product.

Example 2.10. Let X =L2(R), equipped with the standard 2-inner product. De-fine a sequence(fn)byfn(x) =χ(n,n+1)(x), where χis the characteristic function.

Then one can check that(fn) converges weakly, but not strongly, to zero inX.

Remark 2.11. In [6], it is observed that in standard, finite-dimensional n-Hilbert spaces, the notions of strong and weak convergence are equivalent.

We will now give an extension of Radon-Riesz property forn-Hilbert space.

Theorem 2.12. If xk ⇀ x, then

kx, z2, . . . , znk ≤lim inf k→∞ k

xk, z2, . . . , znk (5)

If, in addition,

lim

k→∞

kxk, z2, . . . , znk=kx, z2, . . . , znk

for allz2, . . . , zn ∈X, thenxk→x.

Proof. Using weak convergence of (xk) and Cauchy-Schwarz inequality,

kx, z2, . . . , znk2=hx, x|z2, . . . , zni= lim

k→∞hx, xk|z2, . . . , zni

≤ kx, z2, . . . , znklim inf k→∞ k

xk, z2, . . . , znk

proving (5). Next, by expanding then-norm,

(5)

using the assumptions given. Hencexk→x.

Next, we give an analogue of Banach-Saks-Mazur theorem for the case of n-Hilbert spaces.

Theorem 2.13. If xk ⇀ xinX and

lim

m→∞

1 m2

m

X

i=1

kxi−x, z2, . . . , znk2= 0 (6)

for allz2, . . . , zn∈X, then there exists a sequence(yk)of finite convex combinations

of (xk) such thatyk →x(strongly).

Proof. Replacing xk byxkx, we may assume xk 0. Pickk1= 1 and choose k2 > k1 such that hxk1, xk2|z2, . . . , zni ≤ 1 for all z2, . . . , zn. Inductively, given k1, . . . , km, pickkm+1> kmsuch that

|hxk1, xkm+1|z2, . . . , zni ≤

1

k, . . . ,|hxkm, xkm+1|z2, . . . , zni ≤

1 k

which is possible since by the weak convergence of (xk),hxki, xk|z2, . . . , zni →0 as

k→ ∞for 1≤i≤m. Let

ym:= 1

m(xk1+. . .+xkm) Then we have

kym, z2, . . . , znk2= 1 m2

m

X

i=1

kxni, z2, . . . , znk 2+ 2

m2

m

X

j=1

j−1

X

i=1

hxni, xnj|z2, . . . , zni

≤ 1

m2

m

X

i=1

kxni, z2, . . . , znk 2+ 2

m2

m

X

j=1

j−1

X

i=1 1 j−1

= 1 m2

m

X

i=1

kxni, z2, . . . , znk 2+ 2

m

so thatym→0 strongly asm→ ∞as required.

Corollary 2.14. Let X be an Hilbert space equipped with the standard n-inner product. Suppose xk ⇀ xinX andkxik< M for alli, whereM is a constant and k · k is the norm induced by the inner product onX. Then there exists a sequence (yk)of finite convex combinations of(xk)such that yk→x(strongly).

Proof. It suffices to check that (6) holds in this case. Clearly, kxixk2 is also bounded in norm, saykxi−xk2< M′. By Hadamard’s inequality,

1 m2

m

X

i=1

kxi−x, z2, . . . , znk2≤ M′kz

2k2. . .kznk2

m →0

(6)

3. APPLICATIONS

In this section, we apply the theorems deduced earlier toL2-space,L2(X, µ), where (X, µ) is a measure space, equipped with the usual inner product

hf, gi=

Z

X

f(x)g(x)dµ(x)

We then equipL2(X) with the standard n-inner product. Note that whenn= 1, the following reduce to the familiar cases. Subsequently,|A|= det(A).

Proposition 3.1. Let fk ∈L2(X, µ),k= 1,2, . . ., be such that

Proof. This follows from Proposition 2.6.

(7)

If, in addition,

Proof. This follows from Theorem 2.12.

Proposition 3.3. Let fk ∈L2(X, µ),k= 1,2, . . ., be such that

combinations of(fk), such that

lim

(8)

Remark 3.4. Note that we also have another equivalent formula for the standard n-inner product andn-norm inL2(X) as follows (see [3, 9])

hf, g|h2, . . . , hni=

1 n!

Z

X

Z

X . . .

Z

X

| {z }

ntimes

det(F) det(G)dµ(x1). . . dµ(xn)

where

det(F) =

   

f(x1) f(x2) · · · f(xn) h2(x1) h2(x2) · · · h2(xn)

..

. ... . .. ... hn(x1) hn(x2) · · · hn(xn)

   

and

det(G) =

   

g(x1) g(x2) · · · g(xn) h2(x1) h2(x2) · · · h2(xn)

..

. ... . .. ... hn(x1) hn(x2) · · · hn(xn)

   

The standardn-norm is therefore

kf, h2, . . . , hnk=

  

1 n!

Z

X

Z

X . . .

Z

X

| {z }

ntimes

[det(F)]2dµ(x1). . . dµ(xn)

  

1/2

The above propositions hold accordingly using this form of n-inner product and n-norm.

Similarly, we can get other results concerning weak and strong convergence in othern-Hilbert spaces. For instance, we mention the Sobolev spaceWs,2(Ω) = Hs(Ω), which is a Hilbert space with inner product

hf, gi=

Z

f(x)g(x)dx+

s

X

i=1

Z

Dif(x)·Dig(x)dx

We can equip Hs(Ω) with the standard n-inner product (1), and all the above

convergence results will hold accordingly.

REFERENCES

1. Chu, H.Y., Park, C., Park, W., ”The Aleksandrov problem in linear 2-normed spaces”,J. Math. Anal. Appl.289(2004), 666–672.

2. Chu, H.Y., Ku, S.H., Kang, D.S., ”Characterizations on 2-isometries”,J. Math. Anal. Appl. 340(2008), 621–628.

3. Chugh, R., Lather, S., ”On reverses of some inequalities inn-inner product spaces”,Int. J. Math. Math. Sci.(2010), Article ID 385824.

4. G¨ahler, S., ”Lineare 2-normietre r¨aume”,Math. Nachr.28(1965), 1–43.

(9)

6. Gunawan, H., ”On convergence inn-inner product spaces”,Bull. Malays. Math. Sci. Soc. (2) 25(2002), 11–16.

7. Gunawan, H., ”A generalization of Bessel’s inequality and Parseval’s identity”,Per. Math. Hungar.(2002), 177–181.

8. Gunawan, H., Mashadi, ”Onn-normed spaces”,Int. J. Math. Math. Sci.27(2001), 631–639. 9. Gunawan, H., ”The space ofp-summable sequences and its naturaln-norms”,Bull. Australian

Math. Soc.64(2001), 137–147.

10. Misiak, A., ”n-inner product spaces”,Math. Nachr.140(1989), 299–319.

11. Soenjaya, A.L., ”Onn-bounded andn-continuous operator inn-normed space”,J. Indonesian Math. Soc.Vol18No. 1 (2012), 45–56.

Referensi

Dokumen terkait

Apabila besarnya ganti rugi yang harus dibayarkan oleh perusahaan didasarkan pada kondisi atau besarnya keuangan perusahaan, maka perusahaan yang menjadi tergugat

Bagi peserta yang keberatan atas pemenang tersebut diatas dapat mengajukan sanggahan secara tertulis kepada Panitia Pengadaan Barang/ Jasa Bidang Bina Marga Seksi

Dalam penelitiaan ini akan menguji kembali apakah partisipan dari sebuah universitas berafiliasi agama dengan partisipan dari universitas non- agama memiliki perbedaan niat

Argumen utama penulis adalah ketidakefektifan AATHP dipengaruhi oleh prinsip non-interference dalam ASEAN yang sangat kuat tecermin dalam isi perjanjian yang menjadikan ASEAN

Pemanfaatan BMN dengan perjanjian Bangun Guna Serah adalah pemanfaatan BMN berupa tanah oleh pihak lain, dengan cara pihak lain tersebut membangun bangunan atau sarana

Pokja Pemilihan Penyedia Barang/Jasa Pekerjaan pada Satker Peningkatan Keselamatan Lalu Lintas Angkutan Laut Pusat akan melaksanakan Pelelangan Umum dengan

Pokja Unit Layanan Pengadaan (ULP) Kantor Unit Penyelenggara Pelabuhan Kelas III Bawean akan melaksanakan Lelang Pemilihan Langsung dengan Pascakualifikasi Metode Sistem

[r]