• Tidak ada hasil yang ditemukan

T1 192008023 Full text

N/A
N/A
Protected

Academic year: 2017

Membagikan "T1 192008023 Full text"

Copied!
18
0
0

Teks penuh

(1)

1

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL

Oleh:

Arif Widihantoro

NIM: 192008023

TUGAS AKHIR

Diajukan kepada Program Studi Pendidikan Fisika,

Fakultas Sains dan Matematikaguna memenuhi sebagian dari persyaratan untuk memperoleh gelarSarjana Pendidikan

Program Studi Pendidikan Fisika

FAKULTAS SAINS DAN MATEMATIKA

UNIVERSITAS KRISTEN SATYA WACANA

(2)
(3)
(4)

3

2013PERNYATAAN KEASLIAN KARYA TULIS TUGAS AKHIR

Yang bertanda tangan di bawah ini: Nama : Arif Widihantoro NIM : 192008023 Program Studi : Pendidikan Fisika

Fakultas : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana menyatakan dengan sesungguhnya bahwa tugas akhir, judul:

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL

Yang dibimbing oleh:

1. Adita Sutresno, S.Si, M.Sc. 2. Nur Aji Wibowo, S.Si, M.Si. adalah benar-benar karya saya.

Di dalam laporan tugas akhir ini tidak terdapat keseluruhan atau sebagian tulisan atau gagasan orang lain yang saya ambil dengan cara menyalin atau meniru dalam bentuk rangkaian kalimat atau gambar serta simbol yang saya akui seolah-olah sebagai karya saya sendiri tanpa memberikan pengakuan pada penulis atau sumber aslinya.

Salatiga, 12 September 2013 Yang memberi pernyataan,

(5)
(6)

5

MOTO

RAWE RAWE RANTAS

MALANG MALANG PUTUNG

KEBAHAGIAAN TERBESAR AKAN TERASA KETIKA KITA DAPAT

(7)

6

PENGUKURAN KOEFISIEN ABSORPSI BUNYI DARI BAHAN AMPAS TEBU DENGAN METODE RUANG AKUSTIK KECIL

Arif Widihantoro1, Nur Aji Wibowo,1,2

Adita Sutresno1,2*

1

Program Studi Pendidikan Fisika, Fakultas Sains dan Matematika, Universitas Kristen Satya Wacana

2

Program Studi Fisika, Fakultas Sains dan Matematika, Universitas Kristen Satya Wacana

Jl. Diponegoro 52-60 Salatiga 50711, Indonesia

*

e-mail : adita@staff.uksw.edu

ABSTRAK

Dalam penelitian ini digunakan bahan ampas tebu yang dipres diletakkan kedalam ruang

akustik kecil kesemua sisi kotak. Alat multi-instrument digunakan untuk mendapatkan

rekaman waktu dengung tanpa bahan sebagai acuan dengan bahan uji akustik untuk

mencari hasil koefisien absorpsi. Data yang diperoleh dimasukkan ke dalam microsoft office

excel. Persamaan sabine digunakan untuk menghitung koefisien absorpsi yang dihasilkan

pada masing-masing bahan. Dari perhitungan didapatkan hasil koefisien absorpsi yang

berbeda-beda dari rentang frekuensi 1/3 oktaf. Peningkatan koefisien absorpsi terjadi pada

penambahan bahan dan Penambahan masa jenis bahan. Hasil koefisien absorpsi terhadap

frekuensi dapat dilihat dalam tabel dan grafik.

(8)

7 1. PENDAHULUAN

Saat ini telah banyak upaya yang dilakukan untuk dapat mereduksi kebisingan pada suatu ruangan yaitu dengan menggunakan bahan-bahan peredam dan penyerap suara. Bahan tersebut dalam suatu bangunan biasanya berperan sebagai panel akustik yang dipasang menjadi dinding pemisah (partisi) dan plafon. Bahan yang telah diketahui dan banyak digunakan sebagai penyerap dan peredam suara antara lain glasswool, rockwool, dan bahan

ligno-cellulose. Bahan ligno-cellulose yang diketahui memiliki sifat penyerapan yang baik adalah sekam padi, jerami, serat rami, dan sabut kelapa [1]. Bahan lain yang mengandung

ligno-cellulose yaitu Ampas tebu yang sebagian besar mengandung ligno-cellulose. Panjang seratnya antara 1,7 sampai 2 mm dengan diameter sekitar 0,02 mm, sehingga ampas tebu ini dapat memenuhi persyaratan untuk diolah menjadi papan-papan buatan dan bahan peredam alami [1].

Pada dasarnya sebuah bahan peredam berfungsi untuk meredam bunyi yang keluar atau masuk ruangan, khususnya untuk meredam bunyi yang bising yang dapat mengganggu serta meresahkan. Kebisingan adalah bunyi yang tidak dikehendaki dan dapat mengganggu kesehatan dan kenyamanan lingkungan yang dinyatakan dalam satuan desibel (dB). Kebisingan juga dapat diartikan sebagai bunyi yang tidak disukai oleh orang, bunyi yang mengganggu atau bunyi yang menjengkelkan [8].

Untuk mengurangi kebisingan dalam suatu ruangan digunakan bahan yang bersifat ligno-cellulose yang bisa dimanfaatkan sebagai bahan absorpsi bunyi. Tujuan penelitian ini adalah untuk mengetahui koefisisen absorpsi bunyi dari bahan ampas tebu dalam suatu ruang absorpsi kecil dengan ukuran 1 m3.

2. DASAR TEORI 2.1 Pengertian Akustik

Akustik adalah cabang ilmu pengetahuan yang mempelajari bunyi. Dimana bunyi merambat melalui suatu medium yang berasal dari sumber bunyi ke penerima [3,4,7].

2.2 Absorbsi Bunyi (Penyerapan Bunyi)

(9)

8

ruang seperti penonton dan bahan tirai, tempat duduk dengan lapisan lunak, karpet serta serta udara dalam ruang dapat dikategorikan sebagai bahan penyerap bunyi [2].

2.3 Waktu Dengung Sabine

Fisikawan yang berasal dari Amerika pertama kali melakukan penelitian untuk menentukan waktu rata-rata peluruhan bunyi adalah Wallace Clement Sabine sekitar tahun 1898. Dengan penelitian ini Sabine menemukan bahwa semakin besar volume ruang ( V ), waktu dengungnya ( T ) semakin panjang. Sebaliknya, semakin banyak bahan absorpsi yang berada didalam ruang maka waktu dengungnya semakin pendek. Secara matematis pesamaannya sebagai berikut:

Pengukuran waktu dengung yang diteliti oleh sabine terhadap beberapa ruang tertutup memiliki karakteristik yang tidak sama, didapatkan nilai konstanta kesebandingan (K) 0,16 (s/m). Dengan demikian rumus waktu dengung sabine dapat ditulis sebagai berikut

A V

T1 0,16 (2)

Pada saat ruang dalam keadaan kosong (tanpa bahan absorpsi), waktu dengungnya Dinyatakan dalam persamaan dibawah ini [4,5].

A V T1 0,16

฀ (3)

Pada saat ruang dilapisi bahan absorpsi, maka waktu dengung ruang berubah menjadi:

(10)

9

dengan T1adalah waktu dengung ruang (sekon), T2adalah waktu dengung ruang dengan bahan (sekon), A adalah total penyerapan ruang.

Sehingga persamaannya dapat ditulis sebagai berikut[3] :

S

Dengan α adalah koefisien absorpsi bunyi, S adalah luas permukaan bahan (m2).

3. METODOLOGI PENELITIAN

Dalam penelitian ini, bahan yang digunakan adalah ampas tebu yang disusun menjadi bujur sangkar seperti pada Gambar 3.1, 4.1. 4 bahan ampas tebu dipasang pada salah satu sisi kedalam ruang absorpsi kecil dengan dimensi 1 m × 1 m × 1 m . Alat yang digunakan untuk pengukuran yaitu mikrofone sebagai penerima, speaker sebagai sumber bunyi, amplifier serta multi– Instrument. Setelah semua data pengukuran direkam, data tersebut diambil dan dimasukan kedalam Microsoft Office Excel.

Gambar 3.1 Skema penyusunan bahan uji pada tiap dinding.

Gambar 3.2. Skema pengukuran awal tanpa bahan Laptop

Amplifier Mikrofone Multi Instrument

(11)

10 3.1 Teknik Pengambilan Data

Nilai T1 diukur pada saat ruang dalam keadaan kosong atau tanpa bahan absorpsi. Dari data T1 kemudian mengambil nilai T2pada saat ruang sudah dilapisi bahan absorpsi.

Langkah berikutnya mengukur nilai T2. Pengukuran nilai T2 hampir sama dengan pengukuran nilai T1. Hanya saja nilai T2 diukur pada saat ruang dipasang bahan atau dilapisi bahan absorpsi, pengolahan data yang diperoleh dengan Microsoft Office Excel. Dengan frekuensi yang digunakan untuk mengukur waktu dengung pada ruang tanpa bahan dan dengan bahan yaitu 125 Hz, 250 Hz, 500 Hz, 800 Hz, 1000 Hz, 2000 Hz dan 4000 Hz dalam 1/3 oktaf.

Proses pemasangan bahan absorpsi dalam ruang absorpsi kecil yaitu tempelkan bahan absorpsi ampas tebu yang sudah disusun menjadi bujur sangkar ke dalam ruang pada sisi pertama, setelah pengambilan data selesai untuk sisi pertama, langkah selanjutnya bahan absorpsi ditambah dan tempelkan pada sisi kedua, kemudian ulangi langkah pemasangan bahan absorpsi berikutnya hingga ke lima sisi.

Untuk mencari nilai koefisien absorpsi bunyi (α) digunakan persamaan sabine yaitu total penyerapan ruang dibagi dengan luas permukaan bahan.

4. PEMBAHASAN

4.1 Pengaruh penambahan dan pemasangan bahan akustik terhadap nilai koefisien

penyerapan.

Dari hasil penelitian yang dilakukan pada ampas tebu didapatkan tabel dan grafik koefisien absorpsi bunyi terhadap frekuensi 1/3 oktaf dan pemasangan bahan uji didalam ruang akustik pada dinding seperti dibawah ini :

(12)

11

TabelIV.IFrekuensi dan Koefisien absorpsi dari 1- 5 bahan

Frekuensi (Hz)

Berdasarkan Tabel IV.I dapat dijelaskan bahwa nilai koefisien absorpsi yang didapatkan dari frekuensi 1/3 oktaf bervariasi artinya dari 1 bahan sampai 5 bahan, memilki nilai koefisien absorpsi tiap frekuensi berbeda-beda.

(13)

12

Gambar 4.2. Pengaruh Frekuensi terhadap koefisien absorpsi (ket: 1bahan, 2bahan,

3bahan, 4bahan, 5bahan, α = absorpsi )

Dari Gambar 4.2 koefisien absorpsi dari 1 bahan, lebih kecil dari 2 bahan, lebih kecil dari 3 bahan, lebih kecil dari 4 bahan, lebih kecil dari 5 bahan. Jadi koefisien absorpsi yang paling besar tedapat pada 5 bahan pada masing – masing frekuensi.

4.2 Pengaruh penambahan bahan akustik dan pemasangan bahan akustik terhadap nilai koefisien penyerapan.

Dari hasil penelitian yang dilakukan pada ampas tebu didapatkan Tabel IV.II dan Gambar 4.3 koefisien absorpsi bunyi terhadap frekuensi 1/3 oktaf seperti dibawah ini :

(14)

13

Tabel IV.II. Pengaruh Frekuensi dan Koefisien absorpsi dari 1-5 bahan

Frekuensi (Hz)

Berdasarkan Tabel IV.II dapat dijelaskan bahwa nilai koefisien absorpsi yang didapatkan dari frekuensi 1/3 oktaf bervariasi; artinya dari 1 bahan sampai 5 bahan, memiliki nilai koefisien absorpsi tiap frekuensi berbeda-beda. Hasil penelitian pada penambahan bahan akustik ampas tebu dalam kotak meningkatkan nilai koefisien absorpsi dari 1 bahan hingga 5 bahan pada frekuensi 125 Hz, 250 Hz, 500 Hz, 800 Hz, 1000Hz, 2000 Hz dan 4000 Hz. Salah satunya seperti nilai koefisien absorpsi 1 bahan pada frekuensi 125 Hz (α) sebesar = 0,23 lebih kecil dibandingkan dengan nilai koefisien absorpsi 2 bahan pada frekuensi 125 Hz (α) sebesar = 0,36 sedangkan frekuensi 125 Hz pada 3 bahan memiliki nilai koefisien absorpsi (α) sebesar = 0,49 lebih besar dari 1 bahan dan 2 bahan. Selain itu, nilai koefisien absorpsi untuk 4 bahan dari frekuensi 125Hz (α) sebesar = 0,51 relatif lebih besar dari 1, 2, dan 3 bahan. Jika dibandingkan dengan nilai koefisien absorpsi 5 bahan pada frekuensi 125 Hz (α) yaitu = 0,88 relatif lebih besar. Jadi semakin banyak bahan yang diuji maka semakin besar nilai koefisien absorpsinya.

Gambar 4.3. Pengaruh Frekuensi terhadap Koefisien absorpsi (ket : 1bahan, 2bahan,

(15)

14

Dari Gambar 4.3 koefisien absorpsi dari 1 bahan, lebih kecil dari 2 bahan, lebih kecil dari 3 bahan, lebih kecil dari 4 bahan, lebih kecil dari 5 bahan. Jadi koefisien yang paling besar tedapat pada 5 bahan pada masing – masing frekuensi.

4.3 Pengaruh masa jenis bahan akustik terhadap nilai koefisien absorpsi.

Hasil pengujian sampel bahan akustik ampas tebu dengan penambahan kerapatan masa disajikan pada Gambar 4.4. penambahan serat ampas tebu mampu meningkatkan nilai koefisien penyerapan suara pada rentang frekuensi 125 Hz hingga 1000 Hz dan 4000 Hz. Peningkatan Nilai koefisien penyerap suara tertinggi dicapai pada frekuensi 1000 Hz dengan masa jenis 0,25 gr/cm3.

Gambar 4.4. Pengaruh Frekuensi terhadap Koefisien absorpsi (ket: rapat masa 0,159gr/cm3,

rapat masa 0,18gr/cm3, rapat masa 0,23gr/cm3, rapat masa 0,25,gr/cm3

(16)

15 5.KESIMPULAN

Dari hasil penelitian yang dilakukan dapat disimpulkan bahwa :

1. penambahan bahan akustik memberi pengaruh terhadap koefisien absorpsi bunyi karna semakin luas bahan akustik semakin besar pula penyerapan bunyinya.

2. peningkatan nilai koefisien absorpsi terjadi pada penambahan bahan akustik ampas tebu dari bahan 1 hingga 5 bahan.

3. koefisien peyerapan bunyi bahan akustik ampas tebu dengan masa jenis yang berbeda-beda mempengaruhi penyerapan bunyinya karna semakin besar masa jenisnya semakin besar pula penyerapan bunyinya.

(17)

16 DAFTAR PUSTAKA

1. Metalurgical Physics. 2011. Pengaruh Komposisi Serat Nanas Terhadap Koefisien Penyerapan Bunyi [skripsi]. FMIPA UNP, Padang http://wahyudilhayat.blogspot.com [14 mei 2012]

2. Doelle, Leslie E. 1990. Akustik Lingkungan. Erlangga, Jakarta. 3. Gabriel J. F. 2001. Fisika Lingkungan. Hipokrates, Jakarta.

4. Lord, P., dan Templeton, D.2001. Detail Akustik. Erlangga, Jakarta.

5. Anonimous. 1985. Acoustik Measurement of Sound Absorption in a Reverberation Room. ISO 34.

6. Rizky A. M, Rista D. P. Waktu Dengung Sabine. Erlangga, Jakarta.

7. Rossing, Thomas D. 2007. Spinger Handbook of Acoustics. New York : Springer.

(18)

Gambar

Gambar  3.2. Skema pengukuran awal tanpa bahan
Gambar  4.1 Skema Penyusunan bahan uji pada tiap dinding.
Tabel IV.II. Pengaruh Frekuensi dan Koefisien absorpsi dari 1-5 bahan
Gambar 4.4. Pengaruh Frekuensi terhadap Koefisien absorpsi (ket:

Referensi

Dokumen terkait

Persentase kematangan gonad meningkat dengan meningkatnya kadar protein pakan dan pada umur 10 bulan, induk betina matang gonad mencapat 100% dengan berat

Penelitian mengenai kepadatan dan distribusi keong mas ( Pomacea canaliculata ) di saluran irigasi bendungan Batang Samo Desa Suka Maju Kabupaten Rokan Hulu telah dilaksanakan

Penambahan bubuk kunyit 2,8 g dan asam askorbat 0,01 g pada formula tablet 5 g menghasilkan tablet effervescent yang disukai panelis, dengan RSA 85,97 %, berat 5,2 g, ketebalan 7,2

[r]

Salah satu puskesmas yang ada di Kota Mataram adalah Puskesmas Dasan Agung memiliki prevalensi balita stunting sebesar 27,28%, sehingga perlu dikaji faktor risiko

Dalam tahun I, usaha tani jarak pagar hasil peremajaan pada perlakuan sistem ta- nam ulang paket A masih terbebani kegiatan pembongkaran tanaman lama, pengolahan

Penelitian ini bertujuan menemukan arsitektur tajuk yang memiliki jumlah cabang yang dapat mendukung pertumbuhan dan meningkatkan produksi serta hasil minyak jarak

3HQGDSDW 'DYLG 'ROODU GLDWDV NHPXGLDQ GLEDQWDK ROHK SDUD SHQVWXGL JOREDOLVDVL \DQJ VNHSWLN WHUKDGDS GDPSDN JOREDOLVDVL WHUKDGDS SHQJXUDQJDQ LQHNXDOLWDV JOREDO %UDQNR 0LODQRYLF