• Tidak ada hasil yang ditemukan

Matematika diskrit Filsafat Matematika (1) Filsafat Matematika (1)

N/A
N/A
Protected

Academic year: 2018

Membagikan "Matematika diskrit Filsafat Matematika (1) Filsafat Matematika (1)"

Copied!
8
0
0

Teks penuh

(1)

PENDAHULUAN

A. Latar Belakang

Struktur Aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang peranan penting dalam struktur aljabar karena dapat membentuk suatu konsep baru yang disebut modul.

Gagasan utama dalam mempelajari Struktur Aljabar adalah salah satunya mengenai “Koset”. Namun, sekarang ini masih banyak yang belum memahami koset secara sepenuhnya termasuk dalam meninjau dari berbagai aspek, sehingga kaitan antara Defenisi, Teorema, dan penggunaannya dalam menyelesaikan masalah belum nampak jelas.

Oleh karena itu, kami mencoba membahas secara lebih mendalam mengenai “Koset” yang disertai dengan pembuktian dan contoh dari beberapa Teorema agar dapat lebih mudah mengetahui konsep yang dikandung dalam teorema tersebut.

B. Rumusan Masalah

Adapun rumusan masalah dari makalah ini sebagai berikut. 1. Bagaimanakah pemahaman mengenai koset?

2. Sejauhmanakah keterkaitan koset dengan teorema lagrange? 3. Sejauhmanakah keterkaitan koset dengan subgrup normal? C. Tujuan

Adapun tujuan dari makalah ini sebagai berikut. 1. Untuk memahami mengenai koset.

2. Untuk memahami keterkaitan koset dengan teorema lagrange. 3. Untuk memahami keterkaitan koset dengan subgroup normal. D. Manfaat

Adapun manfaat dari makalah yang kami buat adalah sebagai berikut. 1. Dapat memahami mengenai koset.

2. Dapat memahami keterkaitan koset dengan teorema lagrange. 3. Dapat memahami keterkaitan koset dengan subgroup normal.

BAB II PEMBAHASAN

A. Koset

Misalkan H adalah sebuah Subgrup dari sebuah Grup Grup G. Akan kita definisikan Koset kanan (kiri) dari H.

(2)

Misalkan a ada1ah sembarang elemen dari G. Himpunan Ha ={ha: h e H}

disebut Koset Kanan dari H. Analog dengan itu, aH ={ah: h e H} disebut Koset Kiri dari H. .

Berkaitan dengan pengertian di atas, dapat dikemukakan bahwa:

Jika (G, ) merupakan grup dan H subgroup dari G. misalkan a G sebarang, maka koset kanan H ditulis H a = {h a : h H} dan koset kiri H ditulis a H = { a h : h H}.

Berdasarkan pendefinisian koset di atas, patut dipertanyakan “Apakah setiap grup H dari suatu grup G, selau mempunyai koset kiri atau koset kanan?”. Untuk menjawab pertanyaan ini, kita ambil e G, dengan e unsur identitas di G, maka

He = { he : h H } = { h : h H } = H Dan eH = { eh : h H } = { h : h H } = H

Ini berarti H merupakan koset kiri dan koset kanan dari dirinya sendiri di G yang dibangkitkan oleh e. juga sebelumnya telah ditunjukkan bahwa jika H subgroup dari grup G, dan e unsure identitas di G, maka e juga merupakan unsure identitas di H. karena e H maka ea Ha, akibatnya a Ha, dan juga ae aH.

Hal ini menunjukkan pada kita, bbahwa koset kanan Ha paling sedikit mempunyai satu anggota yaitu a, demikian juga koset kiri aH. Akibatnya baik koset kanan maupun koset kiri tidak kosong. Pertanyaan selanjutnya, apakah aH = Ha? Untuk menjawab pertanyaan ini, perhatikan

contoh berikut. Contoh 5.1

Misalkan G = {1,-1,I,-i}

Defenisi operasi perkalian (x) pada G, Maka (G,x) membentuk grup.

Ambil H = {-1,1}, jelas H G dan (H,x) meru[akan grup. jadi H subgrup dari G. Selanjutnya perhatikan koset kanan dan koset kiri dari H berikut ini:

(3)

Contoh 5.2

Misalkan S = {a,b,c}

Bentuk grup simetri , yaitu semua permutasi yang didefenisikan pada S, maka dapat dinyatakan sebagai berikut:

= dengan, = , = , = = , = , =

Misalkan H = = , maka H merupakan subgroup dari (kenapa)? Selanjutnya jika kita ambil maka

◦ = { ◦ , ◦ } = , dan ◦ H = { ◦ , ◦ } =

Jelas dalam kasus ini H ◦ ◦ H.

Berdasarkan pada contoh-contoh di atas dapat disimpulkan bahwa jika H subgroup dari grup G, dan a G sebarang maka koset kanan dan koset kiri yang dibangkitkan a, umumnya tidak sama, atau aH ≠ Ha. Pertanyaan selanjutnya, adalah sifat apa yang harus dipenuhi oleh G supaya aH = Ha? Berikut ini akan dibahas, beberapa sifat dari koset yang masing-masing disajikan dalam bentuk teorema

Beberapa sifat dari koset yang masing-masing disajikan dalam bentuk teorema sebagai berikut:

Jika h anggota sebarang dari H, dan H merupakan subgroup dari grup G, maka Hh = H dan hH = H.

Teorema 5.1 5.1

Bukti:

Karena H subgroup dari grup G, maka jelas H ≠ ø. Ambil h H sebarang.

Akan ditunjukkan Hh = H dan hH = H Untuk itu ambil sebarang x Hh.

Maka x dapat ditulis dalam bentuk: x = h’h untuk suatu h’ H

diketahui H subgroup dan h H, h’ H. akibatnya h’h H atau x H, ini menunjukkan

Hh ⊂ H … (i) Selanjutnya ambil sebarang y H

(4)

= y(h-1h) [h H h-1h = e]

Perhatikan kembali Contoh 5.1, yaitu G = {1,-1,i,-i} dan (G,x) membentuk grup, H= {-1,1}, merupakan subgroup G. Selanjutnya, ambil -1,1 H maka

1 × H = {-1,1} = H H × 1 = {-1,1} = H -1 × H = {1,-1} = H H ×-1= {1,-1} = H

Misalkan H subgroup sebarang dari grup G dan a,b anggota sebarang dari G, maka Ha = Hb jika dan hanya jika ab-1 H

(5)

à Bukti dari kiri ke kanan Misalkan H subgroup dari grup G

Ambil sebarang a,b G sedemikian sehingga aH = bH Karena e H (e unsure identitas) maka

ea Ha atau a Ha

dari hipotesis diketahui aH = bH. Akibatnya diperoleh

aH = bH a bH [ karena a Ha dan Ha = Hb] b-1a b-1(bH)

b-1a (b-1b)H b-1a (bb-1)H b-1a eH

b-1a H [ karena eH = H] Ã Bukti dari kanan ke kiri

Misalkan b-1a H, akan ditunjukkan aH = bH, Untuk itu diperhatikan :

b-1a H b-1aH = H [dari Teorema 5.1] bb-1aH = bH

eaH = bH aH = bH dengan demikian disimpulkan,

aH = bH jika dan hanya jika b-1a H.

Untuk sebarang dua koset kanan (kiri) subgroup berlaku salah satu sifat berikut: (i) Keduanya saling lepas atau (ii) keduanya sama

Teorema 5.3

Bukti:

Misalkan H subgroup dari grup G, dan juga misalkan Ha dan Hb merupakan koset kanan dari H yang masing-masing dibangkitkan oleh a dan b.

Akan ditunjukkan bahwa salah satu berikut ini yang berlaku Ha Ç Hb = ø atau Ha = Hb

Untuk itu jika dimisalkan Ha Ç Hb ≠ ø, maka harus ditunjukkan bahwa Ha = Hb. Demikian juga sebaliknya jika Ha ≠ Hb maka haruslah Ha Ç Hb = ø.

Berikut ini salah satunya akan ditunjukkan, yaitu: Misalkan Ha Ç Hb ≠ ø.

(6)

b =( -1 ) a Hb = H( -1 ) a Hb = (H -1 ) a

Hb = Ha [karena -1 H H -1 = H].

Ini berarti dala kasus Ha Ç Hb ≠ ø maka Ha dan Hb sama.

Sebaagi latihan diharapkan pembaca untuk menunjukkan bahwa jika Ha ≠ Hb, maka Ha Ç Hb = ø .

Defenisi 5.4

Misalkan G grup dan H subgroup dari G, maka untuk sebarang a, b G dikatakan a kongruen b modulo H ditulis a b (mod H) didefenisikan a b (mod H) jika dan hanya jika ab-1 H

Misalkan H subgroup dari G, dan didefenisikan relasi kongruen modulo H, yaitu a b (mod H) jika dan hanya jika ab-1 H a, b G, maka relasi tersebut merupakan relasi ekuivalen.

Teorema 5.5

Bukti:

Misalkan H subgroup dari grup G.

Ambil sebarang a, b G, kemudian didefenisikan a b (mod H) ab-1 H

relasi di atas memenuhi sifat berikut.

i. Refleksif

Misalkan a G sebarang. Karena H subgroup dari G,

Maka aa-1 = e H, a G. sesuai dengan defenisi relasi di atas diperoleh a a (mod H) a G. Jadi, relasi memenuhi sifat refleksif.

ii. Simetri

Misalkan a, b G sebarang dengan a b (mod H). Ini berarti bahwa jika a b (mod H) maka ab-1 H

H [ karena H subgroup ]

ba-1 H

b a (mod H) Jadi, relasi memenuhi sifat simetri.

iii. Transitif

Misalkan a, b, c G sebarang dengan a b (mod H) dan b c (mod H). Akan ditunjukkan a c (mod H).

Karena a b (mod H) maka ab-1 H.

(7)

Karena H subgroup dan ab-1 , bc-1 H, maka (ab-1 )(bc-1 ) H

atau a(b-1b)c-1 H. karena (b-1b) = e maka aec-1 H ( e unsure identitas). Jadi, ac-1 H atau dengan kata lain a c (mod H).

Hal ini menunjukkan bahwa relasi memenuhi sifat transitif.

Karena ketiga sifat di atas dipenuhi oleh relasi “kongruen mod H” maka relasi tersebut merupakan relasi ekuivalen.

Telah ditunjukkan di atas bahwa jika H subgroup dari grup G, dan relasi “kongruen mod H” yang didefenisikan,

a b (mod H) ab-1 H, a,b G

merupakan relasi ekuivalen, maka relasi kongruen tersebut akan membagi G dalam kelas-kelas saling lepas, atau dengan kata lain relasi kongruen akan membagi G menjadi beberapa partisi yang berbeda.

Untuk memahami lebih mendalam pengertian partisi yang diakibatkan oleh relasi “kongruen mod H” di atas, berikut ini akan ditunjukkan bahwa kelas ekuivalen yang ditentukan oleh a G (ditulis [a]) sama dengan koset kanan Ha.

Sesuai dengan defenisi [a] = { x G : x a (mod H)} Akan ditunjukkan bahwa [a] = Ha

Untuk itu, ambil x [a] sebarang x [a] x a (mod H) x a-1 H x a-1 a Ha

x Ha ini berarti: [a] ⊆ Ha … (i) Selanjutnya ambil sebarang y Ha

y Ha y a-1 Haa-1 y a-1 He y a-1 H

y a (mod H) x [a]

Ini berarti Ha ⊆ [a]

Dari (i) dan (ii) disimpulkan bahwa: [a] = Ha

Relasi ekuivalen menempatkan G ke dalam kelas-kelas yang saling lepas, maka G merupakan gabungan dari semua kelas-kelas ekuivalen yang ditentukan oleh anggota dari G. tetapi setiap kelas ekuivalen yang ditentukan oleh anggota dari G sama dengan koset kanan yang dibangkitkan oleh anggota tersebut. Juga telah ditunjukkan bahwa koset kanan tidak kosong dan tiap dua koset kanan, akan saling lepas atau akan sama yang satu dengan lainnya, maka G juga akan merupakan gabungan dari semua koset kanan yang berbeda dari H di G.

(8)

yang berbeda dari H dengan himpunan semua koset kanan yang berbeda dari H.

Teorema 5.6

Bukti:

Misalkan: G’ adalah himpunan semua koset kiri dari H dan G’’ adalah himpunan semua koset kanan dari H Bentuk pengaitan, f : G’ G’’

Definisikan f(aH) = Ha-1 , a G’ (i) f suatu fungsi

(ii) f satu-satu (iii) f onto (pada)

Jika H subgroup dari grup terhingga G, maka banyaknya koset kanan (kiri) yang berbeda dari H, sama dengan banyaknya koset kiri (kanan) yang berbeda dari H. hal ini merupakan akibat dari Teorema 5.6.

Defenisi 5.7

Referensi

Dokumen terkait

Nilai posttest hasil belajar siswa yang belajar dengan pendekatan problem posing pada kelas eksperimen lebih tinggi daripada hasil belajar siswa yang belajar

http://longsani.blogspot.com/2014/07/makalah-permanina-tradisional.html ). Seiring berjalannya waktu, permainan tradisional semakin memudar. Semakin maju dan

Berdasarkan hasil telaah dan pembahasan bersama para pihak dalam Rakor Hutan Adat yang dilaksanakan pada tanggal 23-24 Januari 2018 lalu di Jakarta, Rapat Kerja Teknis Hutan Adat

dengan menggunakan teknik mnemonic dalam menghapal kosa kata pada Sekolah Menengah Atas Negeri 3 Palangkaraya telah diterima dan hipotesis nihil (h o ) yang

Potensi Agama dan Adat yang terdapat dalam masyarakat yang telah diuraikan diatas, pada prinsipnya dapat digunakan dalam kegiatan pemberdayaan ekonomi orang

The study wants to describe the type of error in grammatical errors in using direct in direct speech.. According to Ary Donald, Content analysis is widely used

Oleh karenanya, perlu diadakan strategi memperkenalkan obyek wisata dengan cara yang atraktif seperti halnya menggunakan metode “Creative Contest Design”: ELDEKA

tuliskan augmented matrik dan hasil akhir penyelesaian persamaan linier simultan. dari matrik yang telah