• Tidak ada hasil yang ditemukan

aljabar linear lanjut

N/A
N/A
Protected

Academic year: 2017

Membagikan "aljabar linear lanjut"

Copied!
57
0
0

Teks penuh

(1)

Advanced Linear Algebra

Advanced Linear Algebra

References:

[A] Howard Anton & Chris Rorres. (2000). Elementary Linear

Algebra. New York: John Wiley & Sons, Inc

[B] Setya Budi, W. 1995. Aljabar Linear. Jakarta: Gramedia

R. Rosnawati

Jurusan Pendidikan Matematika FMIPA UNY

(2)

Inner Product Spaces

Inner Product Spaces

1

Inner Products

2

Angle and Orthogonality in Inner

Product Spaces

3

Gram-Schmidt Process;

    

3

Gram-Schmidt Process;

QR-Decomposition

4

Best Approximation; Least Squares

5

Least Squares Fitting to Data

6

Function Approximation; Fourier

(3)
(4)
(5)

θ

(6)

3 Gram

3 Gram--Schmidt Process; QR

Schmidt Process;

QR--Decomposition

(7)

QR

(8)

4. Best Approximation; Least

4. Best Approximation; Least

(9)

Least squares solutions to A

Least squares solutions to Ax

x

=

=

b

(10)
(11)
(12)
(13)

6 Function Approximation;

6 Function Approximation;

(14)
(15)
(16)
(17)

Diagonalization & Quadratic

Diagonalization & Quadratic

Forms

Forms

1

Orthogonal Matrices

2

Orthogonal Diagonalization

3

Quadratic Forms

3

Quadratic Forms

4

Optimization Using Quadratic

Forms

5

Hermitian, Unitary, and Normal

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

Central conics in standard

Central conics in standard

(28)
(29)
(30)

4 Optimization Using Quadratic

4 Optimization Using Quadratic

(31)
(32)
(33)

5 Hermitian, Unita and Normal

5 Hermitian, Unita and Normal

(34)
(35)
(36)

Unitarily Diagonalizing

Unitarily Diagonalizing

(37)

I. Linear Transformations

I. Linear Transformations

General Linear Transformations

Isomorphisms

Compositions and Inverse

Compositions and Inverse

Transformations

Matrices for General Linear

Transformations

(38)
(39)

Dilation and Contraction

Dilation and Contraction

(40)
(41)
(42)
(43)
(44)

Compositions and Inverse

Compositions and Inverse

(45)
(46)
(47)

Matrix of Compositions

Matrix of Compositions

(48)
(49)

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Definition 1: A nonzero vector x is an eigenvector (or characteristic vector) of a square matrix A if there exists a scalar λ such that Ax = λx. Then λ is an eigenvalue (or characteristic value) of A.

Note: The zero vector can not be an eigenvector even though A0 = λ0. But λ

(50)

Geometric interpretation of

Geometric interpretation of

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

An n×n matrix A multiplied by n×1 vector x results in another n×1 vector y=Ax. Thus A can be considered as a

transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on

certain vectors by changing only their magnitude, and leaving certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These

vectors are the eigenvectors of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and

(51)

6.2 Eigenvalues

6.2 Eigenvalues

Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ such that Ax = λx or, equivalently,

Ax - λx = 0 or

(A – λI)x = 0

If we define a new matrix B = A – λI, then

Bx = 0

λ

λ λ

λ

λ

λ

Bx = 0

If B has an inverse then x = B-10 = 0. But an eigenvector cannot be zero.

Thus, it follows that x will be an eigenvector of A if and only if B

does not have an inverse, or equivalently det(B)=0, or

det(A – λI) = 0

(52)

Example 1: Find the eigenvalues of

two eigenvalues: 1,  2

Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 λ λ          5 1 12 2 A ) 2 )( 1 ( 2 3 12 ) 5 )( 2 ( 5 1 12 2

2     

          λ λ λ λ λ λ λ λ

λI A

6.2 Eigenvalues: examples

6.2 Eigenvalues: examples

 

Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk. If that happens, the eigenvalue is said to be of multiplicity k.

Example 2: Find the eigenvalues of

λ = 2 is an eigenvector of multiplicity 3.

(53)

Example 1 (cont.):                      0 0 4 1 4 1 12 3 ) 1 ( :

1 I A

λ

, 4 0

4 2 1 2

1                   

x x t x t

x

6.3 Eigenvectors

6.3 Eigenvectors

To each distinct eigenvalue of a matrix A there will correspond at least one eigenvector which can be found by solving the appropriate set of homogenous equations. If λi is an eigenvalue then the corresponding eigenvector xi is the solution of (A – λiI)xi = 0

0 , 1 4 , 4 0 4 2 1 1 2 1 2 1                     t t x x t x t x x x x                      0 0 3 1 3 1 12 4 ) 2 ( :

2 I A

λ 0 , 1 3 2 1

2  

           

s s

x x

(54)

Example 2 (cont.): Find the eigenvectors of

Recall that λ = 2 is an eigenvector of multiplicity 3.

Solve the homogeneous linear system represented by

                                   0 0 0 0 0 0 0 0 0 0 1 0 ) 2 ( 2 1 x x x A I x

6.3 Eigenvectors

6.3 Eigenvectors

           2 0 0 0 2 0 0 1 2 A λ

Let . The eigenvectors of  = 2 are of the form

s and t not both zero.                                   0 0 0

0 x3

t x

s

x  

3 1 , , 1 0 0 0 0 1 0 3 2 1                                           

s t

(55)

6.4 Properties of Eigenvalues and Eigenvectors

6.4 Properties of Eigenvalues and Eigenvectors

Definition: The trace of a matrix A, designated by tr(A), is the sum of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero eigenvalue.

λ λ

Property 2: A matrix is singular if and only if it has a zero eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on the main diagonal.

(56)

6.4 Properties of Eigenvalues and

6.4 Properties of Eigenvalues and

Eigenvectors

Eigenvectors

Property 5: If λ is an eigenvalue of A then kλ is an eigenvalue of kA where k is any arbitrary scalar.

Property 6: If λ is an eigenvalue of A then λk is an eigenvalue of Ak for any positive integer k.

λ λ

λ λ

λ λ

Ak for any positive integer k.

Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of AT.

(57)

6.5 Linearly independent eigenvectors

6.5 Linearly independent eigenvectors

Theorem: Eigenvectors corresponding to distinct (that is, different) eigenvalues are linearly independent.

Theorem: If λ is an eigenvalue of multiplicity k of an nn matrix A then the number of linearly independent eigenvectors of A associated with λ is given by m = n - r(A- λI). Furthermore, 1 ≤ m ≤ k.

λ

λ λ

Example 2 (cont.): The eigenvectors of  = 2 are of the form

s and t not both zero.

= 2 has two linearly independent eigenvectors

, 1 0 0 0 0 1 0 3 2 1                                           

s t

Referensi

Garis besar

Dokumen terkait

Berita Acara Serah terima hasil pekerjaan (PHO dan FHO) pengalaman perusahaan 4 ( Empat ) tahun terakhir terakhir (sesuai Sub Bidang Jasa Pelaksana Konstruksi Jalan Raya (kecuali

Terkait hasil pengumuman pemenang tersebut di atas, kepada seluruh peserta lelang yang telah memasukkan penawaran kepada Pokja Pekerjaan Pengerukan Alur Pelayaran

informasi kurikulum, informasi file materi, informasi forum, dan informasi komentar forum. Tipe e-learning yang digunakan pada aplikasi yang akan dibangun adalah

Menyampaikan data pengalaman perusahaan paling sedikit 1 (satu) pekerjaan sebagai Penyedia dalam kurun waktu 4 (empat) tahun terakhir, baik di lingkungan pemerintah maupun swasta

Pada saat negara-negara teluk lain telah mulai meningkatkan kerjasama ekonomi dengan China, Bahrain masih bertahan sebagai negara sekutu Barat tanpa ada hubungan diplomasi sama

Agar permohonan penyelidikan yang diajukan pihak berkepentingan dapat ditindaklanjuti dengan penyelidikan oleh Komite, maka permohonan tersebut harus dilengkapi dengan data- data

diharapkan dapat membantu mahasiswa atau kalangan lainnya untuk melakukan pencarian buku dalam lingkup yang lebih luas dan tidak hanya pada database perpustakaan

Map online ditujukan bagi user yang ingin mengetahui apa saja lokasi heritage yang dimiliki oleh kota Surabaya beserta dengan informasi yang terkait dengan