• Tidak ada hasil yang ditemukan

Emerging Opportunities for Novel Approaches to Natural Gas Conversion, Electrocatalysis: Guido Pez, consultant

N/A
N/A
Protected

Academic year: 2017

Membagikan "Emerging Opportunities for Novel Approaches to Natural Gas Conversion, Electrocatalysis: Guido Pez, consultant"

Copied!
13
0
0

Teks penuh

(1)

Electrically Mediated Hydrocarbon Conversion Processes

Guido P. Pez 3/6/16

Theme

: Conversion of saturated C

1

,C

2

&C

3

HC’s to chemicals by

any

means

that involves electricity.

1. Limiting economics.

2. Direct hydrocarbon fuel cells (DHCFC’s): Chemicals from FC’s?

3. Electrochemically promoted catalysis (EPC): Methane to syn-gas (CO/H

2

) via

(non-Faradaic) “Electroreforming”.

(2)

1. Limiting Economics

Natural gas (NG) @ $2.67 / MMBtu (2015 ave. price)

Ideally

Electricity @ 0.9 cents/KWh

Electricity cost: 8-12 cents/KWh (Pa 2015)

Currently NG ,lowest cost fuel for electric power generation.

But electricity is a relatively costly

reagent

if it’s required for endothermic

hydrocarbon (HC) conversion processes (eg CH

4

to C

2

HC’s or syn gas via plasma).

Consider first an (exothermic) selective

anodic

oxidation of HC’s that provides

both

electricity and chemicals- in a ‘tailored’ direct hydrocarbon fuel cell (DHCFC)*

(3)

Fuel Cell Fundamentals: The H

2

-O

2

FC

H2 + ½ O2 = H2O(g) ERev = 1.17 V at 80C

Rev. Efficiency (ηr ) = (ΔH - TΔ�)/ΔH

Polarization Curve ( E Cell vs Current) Losses from: mass transp. res.( ηtx), Ohmic.res. ,but mainly slow O2 redn. kinetics(ηORR ).

Gasteiger, Wagner et al, Appl. Cat. B 56 (2005), 9 Xianguo Li “Principles of FC’s” Taylor &Francis

Publ. 1962

Figure from p 62 of Li’s book

(4)

Thermodynamically feasible FC’s for chemicals and energy cogeneration

1. Ethane to ethylene.

C

2

H

6

+ 1/2O

2

= C

2

H

4

+ H

2

O(g) E = 0.693 V at ( 80 °C ); 0.855 V (500 °C)

2. Methane coupling to ethane.

2CH

4

+ O

2

= C

2

H

6

+ H

2

O(g) E = 0.815 V at 80 °C; 0.695 V (500 °C)

3. Methane coupling to ethylene.

2CH

4

+ O

2

= C

2

H

4

+ 2H

2

O(g) E= 0.748 V at 80 °C ; 0.755 V (500 °C)

4. Methane to methanol.

CH

4

+ ½ O

2

= CH

3

OH(g) E= 0.565 V at 80 °C ; 0.453 V (500 °C)

Hydrogen/Oxygen FC.

H

2

+ ½ O

2

= H

2

O (g) E= 1.17 V at ( 80 °C) ; 1.062 V (500 °C)

Methane /Oxygen FC

CH

4

+ 2O

2

= CO

2

+2H

2

O(g) E = 1.033 V at (80 °C) ; 1.037 V (500 °C)

(5)

Ethane to Ethylene FC :

C

2

H

6

+ 1/2O

2

= C

2

H

4

+ H

2

O

For performance data see Fig 4A on p 764

(6)

Methane to Ethane-Ethylene FC

CH4 Conversion and Products Selectivity vs Temperature . (Max. 91% Selectivity for C2’s, at 23.7% Conversion of CH4 at 1273K ). Note: C2H4>> C2H6

(7)

Electrolytically induced catalytic methane to methanol conversion

.

Methanol conc. vs anode (applied) potential using V2O5/SnO2 anode for wt % V2O5 ,at 100 C. Max: 61% current efficiency and 88%

selectivity for CH3OH B. Lee, T. Hibino, J. Catal. 2011, 279, 233

(8)

Electrode catalyst design: The Direct Methane FC

Net: CH4 +2O2 = CO2+ 2H2O(g) , E 1.033V at 80 C CH4+2H2O = CO2 + 8H+ +8e- 2O

2 + 8H+ + 8e- = 4H2O

Voltage-Current Polarization Curve for OMC tethered catalysts.

Key Novelty : Pt complex, ‘molecular’ CH4 activation catalyst ,tethered to an ordered mesoporous carbon (OMC) support.

M. Joglekar, V. Nguyen, S. Pylypenko, C. Ngo., Q. Li ,M.E. O’ Reilly, T.S. Gray, W.A Hubbard, T. B. Gunnoe, A. M. Herring, B.G. Trewyn J. Am. Chem. Soc. 2016,138 116

Figure: Schematic of cell design from Abstract

(9)

Electrochemical Promotion of Catalysis (EPOC)

or

Non-Faradaic

electrochemical modification of catalytic activity (NEMCA)

(a) Faradaic : Stoichiometric use of electron as a reactant, (a) (b)

Eg n= 12el / mole C

2

H

4

reacted

.

(b) Non-Faradaic: Non- stoichiometric use of electron,

with n potentially much larger.

> 1,) often

Ʌ

> > 1

Oxide ion conducting YSZ disc, Pt catalyst-electrode coating.

Following C

2

H

4

Oxidation rate as a function of applied potential.

Faraday Efficiency,

Ʌ

=

∆r/r

e

= 74,000

∆r/r

0

= 25

Mechanism: (as for CO, CO

2

reactants on Pt / YSZ solid el.)

Ethylene Oxidation rate

increases

of up to 25 X (∆r)

with applied potential of ca. 0.6 V (375 C) K. Katsaounis J. Appl. Electrochem. 2010 40 885; C.G. Vayenas et al (2001)

in “Electrochemical activation of catalysis__” Kluwer/Plenum. Pub. Fig 1 p866 of Katsaounis

(10)

Non- Faradaic ”Electroreforming” of methane to syn. gas and H

2

Steam-methane reforming (SMR)

,

current

practice:

CH

4

+2H

2O ↔ CO + 3H2

+H

2

O Ni cat., then WGS to 4H

2

+CO

2

Endothermic React. Heat from external methane combustion.

Tubular metal alloy reactors, at ca. 30 atm. Pressure and ca. 800 °C

. Electroreforming:

CH4 Conv. vs T(K) for Pt/metal oxide cats. Products yield vs T(K) for conventional (left), Electroreforming Apparatus. Open : Conv. SMR : Dark : Electroreforming. and electroreforming (right), for which the E = 500 V -800 V for I= 3mA of Dramatic decrease in reaction temperature yield exceeds the calc. thermo. equilibrium. “ Dark current” ;Elect. Eff. 15-25 %

NEMCA Effect . Faradaic Efficiency, Ʌ (reacted Y. Sekine, et al, (Waseda Univ, Jpn) Catalysis Today, 2011, 116, 125, CH4/mole- electron)= 84 for Pt/Ce0.5Zr0.5O2 cat. Y. Sekine et al , Int. J. of Hydrogen Energy 2013, 38 ,3003 .

From Cat. Today 2011 Reactor Schematic p118

(11)

Electrical Discharges/Plasma for Methane Conversion

Methane oxidative coupling in corona discharge , +/- catalyst

Feed: CH4/O2 = 4 @ 100 sccm A. Marafee, C.Liu, G.Xu, R. Mallison ,L. Lobban

Ind.Eng.Chem.Res. 1997,36,632

From Kado Fig 1 p1378

(12)

Potential for: Hydrocarbons→ Chemicals via

Electrocatalysis

With Electric Power Co- Generation (All exothermic conversions)

With Electric Power Consumption (Exothermic or endothermic conv.)

Hydrocarbon/Air Fuel Cell Systems .

Reports for chem. products (currently) only from SOFC’s

Electrolyte : Polymer (PEM) Phosphoric Acid --- ? Solid Oxide, ceramic (SOFC) Molten Carbonate

Electrochemical Promotion of Catalysis (EPC) : Dramatic rate enhancement in

reduction, oxidation & isomerization reactions. “Triode” operation in SOFC’s. Potentially lowest power consumption . Issue: Practical reactor design

Electroreforming for endothermic CH4 to syn gas &H2 . Large rate increases and

improved conversion equilibria, at lower temps. Electricity use efficiency, only 15-25% Plasma processes for methane to syn gas. Key issue : High power usage.

(Faradaic processes)

(13)

Gambar

Fig 3 (c) on p237 of Lee Hibino

Referensi

Dokumen terkait

Dari kegiatan yang telah kami lakukan menghasilkan suatu jenis makanan baru yang berprotein tinggi yaitu nugget ikan sehingga pengolahan ikan di Aceh lebih moderen

Sedimen, sekarang bergerak melalui fluida, akan merasakan gaya dorong gesekan, FD, yang sebanding dengan kuadrat dari kecepatan relatif dari partikel dalam cairan.. FD akan

Produktivitas karyawan sudah baik karena dapat mencapai target jumlah produksi sepeda sebesar 10.000 unit, Quality of work sepeda yang dihasilkan hampir mencapai

MAJALAH GEOGRAFI INDONESIA, Vol 26, No. 2, September 2012 170 Upaya konservasi dari se gi hukum dan k elembagaan juga perlu ditingkatkan d an dapat d ilakukan d engan

Memperoleh paling sedikit 1 (satu) pekerjaan sebagai penyedia dalam kurun waktu 4 (Empat) Tahun terakhir, baik dilingkungan Pemerintah maupun Swasta termasuk pengalaman

NB : Bagi Perusahaan yang telah memasukkan dokumen kualifikasi dan nama perusahaannya tidak terdaftar didalam undangan diharapkan menghadiri pembuktian sesuai undangan

Secara rinci hasil evaluasi penawaran untuk masing-masing penyedia dapat diminta langsung ke Panitia Pengadaan Barang dan Jasa SKPD Dinas Perkebunan Propinsi Sulawesi

Belas, kami Kelompok Kerja (Pokja) Tim A6 Unit Layanan Pengadaan Barang. Provinsi Jawa Barat, yang dibentuk berdasarkan Surat Keputusan