• Tidak ada hasil yang ditemukan

vol6_pp31-55. 268KB Jun 04 2011 12:06:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol6_pp31-55. 268KB Jun 04 2011 12:06:15 AM"

Copied!
25
0
0

Teks penuh

(1)

The Electronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society.

Volume 6, pp. 31-55, March 2000.

ISSN 1081-3810. http://math.technion.ac.il/iic/ela

ELA

ON TWO{SIDED INTERPOLATIONFOR UPPERTRIANGULAR MATRICES

DANIEL ALPAY

y

AND VLADIMIR BOLOTNIKOV z

Abstrat. ThespaeofuppertriangularmatrieswithHilbert{Shmidtnormanbeviewed as anitedimensionalanalogue ofthe HardyspaeH2 of theunitdisk whenoneintroduesthe adequatenotionof\point"evaluation.Abitangentialinterpolationprobleminthissettingisstudied. ThedesriptionofallsolutionintermsofBeurling{Laxrepresentationisgiven.

Keywords.Interpolation,matries.

AMSsubjet lassiations.47A57,47A48

1. Introdution. Inthispaperwepursueourstudyofbitangentialinterpolation in analogues of the Hardy spae of the unit disk H

2

. To start with we reall the lassialsetting whihhasbeenonsideredin [8℄.

LetH mk 2

denotetheHilbertspaeofmk{matrixvaluedfuntionsoftheform H(z)=

1 X j=0

H j

z j

; 1 X j=0

TrH j

H j

<1;

endowedwiththeL mk 2

innerprodut hH; Gi

L mk 2

=hH; Gi H

mk 2

= 1 2

Z 2 0

TrG(e it

)

H(e it

)dt= 1 X j=0

TrG j

H j

: (1)

TheH mk 2

-funtionsareanalytiin theopenunit diskD andhaveboundaryvalues almost everywhereon theunit irleT. The spae H

mk 2

is aHilbert module (see, e.g,[18℄ andSetion2of [1℄)withrespettotheHermitianmatrix-valuedforms

fH; Gg H

mk 2

= 1 2

Z 2 0

H(e it

)G(e it

)

dt (2)

and

[H; G℄ H

mk 2

= 1 2

Z 2 0

G(e it

)

H(e it

)dt (3)

andhasthereproduingkernelpropertywiththekernels k

^ !

(z)= I

m 1 z!

and k 4 !

(z)= I

k 1 z!

Reeivedbytheeditorson13August1999.Aeptedforpubliationon3Marh2000.Handling Editor: DanielHershkowitz.

y

Department of Mathematis, Ben{GurionUniversity ofthe Negev, Beer{Sheva, 84105, Israel (danymath.bgu..il).

z

(2)

ELA

32 DanielAlpayandVladimirBolotnikov inthesense that

H(!)A

=

H; Ak 4 !

H mk 2

and A

H(!)=[H; k ^ !

A℄ H

mk 2 (4)

for every hoie of a point ! 2 D and of amk matrix A. Note that the latter relationsexpressCauhy'sformulaforH

mk 2

-funtions.In[8℄weonsideredageneral bitangentialNudelmantypeproblemforH

mk 2

funtionswithnormonstraints. The multivariable analogueof the problem referred to in theprevious paragraph in the settingofthepolydiskwasonsideredin [4℄.

It iswellknown(see [10℄, [11℄, [12℄, [15℄) that thereare deepanalogies between analytifuntions and upper(or lower)triangular matries. In[2℄welookedat the analogue of the problem referred to in the previous paragraph, for double innite uppertriangular matries. Inthis paperwefous onthe aseof nitematries. In fat, oneouldtry toobtain theaseof nite matries from ourpreviouspaper[2℄ using time varying oeÆient spaes in the spirit of [13, Setion 12℄ or [14℄. This doesnotseemto usnatural,sinetheproblemonsideredhereisnitedimensional; furthermore,theapproahpresentedinthispaperispurelyalgebraiandmuhmore expliit.

Other situations are also possible, suh asthe ase of lowertriangular integral Hilbert Shmidt operators (the ontinuous timevarying ase analogueof [2℄). This wasarriedoutin [3℄.

ConsiderX mk

,thesetofallmkmatrieswhihisaHilbertspaewithrespet totheinnerprodut

hH; Gi=TrG

H (H; G2X mk

); (5)

whihistheanalogueof(1). A matrix H = [h

i j℄

j=1;:::;k i=1;:::;m

is alled diagonal ifh ij

=0 for i 6=j. It is alled upper(lower)triangularifh

ij

=0fori>j(i<j,respetively). ThesymbolsD mk

, U

mk and L

mk

willbeusedforthespaesof diagonal,uppertriangularand lower triangularmkmatries, respetively.

LetZ m

denote themmshiftmatrixdenedby

Z m

= 2 6 6 6 6 6 6 4

0 1 0 0 0 1

. .

. . . . .

. .

. .

. .

. .

0 1 0 0

3 7 7 7 7 7 7 5 (6)

andletZ k

bethekk shiftmatrixdened similarly. We denotebyp +

;p 0

;p the orthogonal projetions of X

mk

onto U mk

Z k

, D mk

, Z m

L mk

, respetively. We alsousetheprojetionsof X ontoitsupperandlowerparts,anddenotethem by

(3)

ELA

Interpolationforuppertriangularmatries 33 respetively. ThespaeX

mk

isaHilbertmodulewithrespettoHermitian matrix-valuedforms

fH; Gg X

mk =p

0 (HG

) and [H; G℄ X

mk =p 0

(G

H) whiharetheanaloguesof(2)and(3).

Foraxed H 2U mk

theseforms makesenseforkkandmmmatriesG, respetively,anddenetwodierent\evaluation"mapsforuppertriangularmatries by

F ^

(W)=p 0

(I

m WZ

m

) 1

F

and F 4

(V)=p 0

F(I

k Z

k

V) 1

; (7)

whereF 2U mk

andW andV arediagonalmmandkkmatries,whihusually playtheroleofpointsinthenonstationarysetting. ThetransformationsF

^

(W)and F

4

(V)arenonommutativeanaloguesofthepointevaluation(4). Wealsodene F

(W;V)=p 0

(I

m WZ

m

) 1

F(I k

Z k

V) 1

Z k

: Remark 1.1. It follows from the denition (6) of Z

m

that for everyhoie of W 2D

mm

,thematrixI m

WZ m

islowertriangularwithalldiagonalentriesequal to1. Inpartiular,det(I

m WZ

m

)=1andthematrixisinvertible. Fromthesame reasonthematrixI

k Z

k

V isinvertibleforeveryhoieofV 2D k k

. Notethatifm=k,thenforanyF2U

mk

thereexistuniquelydeneddiagonal matriesF

[j℄ and F

fjg

whihsatisfy F

[j℄ =Z

j m Z

j m

F [j℄

; F fjg

=F fjg

Z j k Z

j k andaresuhthat

F = m 1

X j=0

Z j m

F [j℄

and F = k 1 X j=0 F

fjg Z

j k :

Thelatter\polynomial"representationsallowsustoexpressevaluations(7)as

F ^

(W)= m 1

X j=0

(WZ m

) j

Z j m

F [j℄

and F 4

(V)= k 1 X j=0 F

fjg Z

j k

(Z k

V) j

: (8)

Theseformulasappearin[7℄. Ifm>k(m<k),therst(the seond)formulain (8) is true. In general, for m <k (m > k) therst (the seond) formula in (8) is not valid,andforthisreasonweshalluseformulas(7).

(4)

ELA

34 DanielAlpayandVladimirBolotnikov Problem 1.2. Given matries

W j

2D `j`j

; j

2D `jm

; j

2D `jk

(j=1;:::;n) V

i 2D

riri ;

i 2D

rim ;

i 2D

rik

(i=1;:::;`) and

ji 2D

`i`j

, ndall H2U mk

suhthat

j H

^

(W j

)= j

; (H i

) 4

(V i

)= i

and j

H i

(W j

;V i

)= ji (9)

for j=1;:::;n andi=1;:::;`.

Thepaperonsistsof sevensetions. Toset theproblem preiselywerstneed somenotationsanddenitions. Thegeneralproblem(whihinludes Problem1.2as apartiularase)isstatedin theseondsetion. Thedesriptionofallitssolutions (formula (31)) is presentedin thethird setion. Theproofrelies on the analysis of twospeialases,namelyrightsidedandleftsidedinterpolationproblems,whihare onsideredindetailsrespetivelyinSetions4and5. Thegeneraltwosidedproblem isstudiedinSetion6. Thelastsetiondealswiththestrutureoftheminimalnorm solution.

2. Formulationoftheproblemsandpreliminaryremarks. Inthissetion weintroduethebitangentialinterpolationproblemtobestudied,andwhihinludes Problem 1.2 asa partiularase. Given twosetsof positiveintegersf`

i

gand fr j

g, let

n R

=r 1

+:::+r t

; n L

=` 1

+:::+` s

; (10)

letZ rj

andZ `i

betheshiftmatriesdenedvia(6)andlet Z

=diag(Z r

1 ;:::;Z

r t

)2C n

R n

R

and Z

=diag(Z `

1 ;:::;Z

` s

)2C n

L n

L : Therelations

Z

(I Z Z

)=0; Z Z

D=DZ Z

; (11)

(I Z

Z

)Z

=0; Z

Z

F=FZ

Z ; (12)

(I Z Z

)(I Z

D) 1

=(I Z Z

); and (13)

(I Z

Z

)(I Z

F) 1

=(I Z

Z ); (14)

whihholdforeveryhoieofblokdiagonalmatriesD2D nRnR

andF 2D nLnL

, willbeuseful.

In the lass U mk

weonsider the interpolation problem whose data set is an orderedolletion

=fC +

; C ; A

; A

; B +

; B ; g (15)

ofsevenmatries C 2D

mnR

; C 2D k nR

; B 2D mnL

; B 2D k nL

(5)

ELA

Interpolationforuppertriangularmatries 35 A

2D

nRnR ; A

2D

nLnL

; 2D nRnL

: Remark 2.1. Byabuse of notation, by A

2 D

nRnR and A

2 D

nLnL we meanthatA

andA

aren

R n

R andn

L n

L

matrieswithdiagonalblokentries (A

)

ij 2D

` i

` j

(i;j=1;:::;s) and (A

) ij

2D r

i r

j

(i;j=1;:::;t): Similarly, byC

+ 2D

mn R

wemeanthat C +

isablokrowandeverymr i

blok is diagonal (in other words, we reserve the symbols n

L and n

R

to indiate blok deomposition of the underlying matries). We shall refer to suh matries as to blok diagonal. The same onvention holds with U and L instead of D for blok upper triangular andfor bloklower triangular matries. Theother notations(suh asD

mnR orD

k nL

)shouldbelear. Wesaythat thedata(15)isadmissible if

Span n

Ran

(A Z

)

j C

; j=0;:::;n R

1 o

=C n

R ; (16)

Span n

Ran

A Z

j B

+

; j=0;:::;n L

1 o

=C n

L ; (17)

= Z

Z ; (18)

andtheSylvesterequalityholds A

Z

Z

A

=B

C B +

C +

: (19)

WedenotebyIPthefollowingtwo{sided interpolationproblem. Problem 2.2. Given anadmissible dataset ,nd allH 2U

mk

suhthat p

0 n

HC ( I Z A

)

1 o

=C +

; (20)

p 0

n H

B

+ ( I Z

A

)

1 o

=B ; (21)

P 0

n I A

Z

1 B

+

HC (I Z A

)

1 Z

o

= ; (22)

whereinthe rstequation,p 0

istheorthogonal projetionofX mnR

ontoD mnR

,in the seondequation p

0

denotes the orthogonal projetion of X k nL

ontoD k nL

,and nally, inthe thirdequation,

P 0

=p 01

p 0s andp

0i

isthe orthogonal projetion of X `i`i

ontoD `i`i

.

Note thatby Remark 1.1and in viewofthe blok strutureof A

, A

, Z

and Z

,thematriesI Z A

andI Z

A

areinvertible.

Remark 2.3. Conditions (20) and (21)generalize the Nevanlinna{Pik ondi-tions(9)andoinidewiththelastonesforthespeialhoieof

(6)

ELA

36 DanielAlpayandVladimirBolotnikov

A

Thenext lemma showsthat onditions(20)and (21)ontain moreinformation aboutasolutionH oftheinterpolationproblem.

Lemma 2.4. LetH belong toU mk

andsatisfy (20),(21). Then q

and

p

and therefore,

q

Thersttermontherighthandsideoftheequality (I Z isstritlyblokuppertriangular,andthus, foreveryuppertriangularH,

p Sinetheoperator(Z

isblokdiagonal,itfollowsfrom(20)that p

isblokdiagonal, (Z Makinguseofthethreelastequalitieswededue(23)from(25):

(7)

ELA

Interpolationforuppertriangularmatries 37 Takingadvantageoftherelation

p n

H

B +

( I Z

A

) 1

o =

nL 1 X j=0

p

0 n

H

B +

(I Z

A

) 1

Z j

o Z

j ; itanbehekedinmuhthesamewaythat (21)implies(24).

Corollary 2.5. Conditions (20) and (21) are equivalent to (23) and (24) re-spetively.

Indeed,applyingp 0

to bothsidesof(23)and(24)weobtain(20),(21). Therest followsfromLemma 2.4.

Sometimesitwill beonvenientto useonditions(20) and(21)in thefollowing \adjoint"forms

P 0

n (I A

Z

)

1 C

H

o

=C +

and P 0

n I A

Z

1 B

+

H o

=B

: (26)

Remark 2.6. Conditions(20),(21)areequivalenttoonditions(26). Proof. TakingH 2U

mk

in theform H = k 1 X j=0

H j

Z j k

withH j

2D mk

,weget

p 0

n

HC (I Z A

)

1 o

= k 1 X j=0

H j

Z j k

C (Z A

)

j ;

P 0

n (I A

Z

)

1 C

H

o

= k 1 X j=0

(A Z

)

j C

Z

j k

H j

: Comparingrighthand sidesintwolast equalitiesweonludethat

p

0 n

HC (I Z A

)

1 o

=P

0 n

(I A

Z

) 1

C

H

o

andtherefore,(20)isequivalenttotherstonditionin(26). Theequivaleneof(21) andtheseondonditionin(26)ishekedin muhthesameway.

Remark2.7. TheSylvesteridentity(19)followsfrom(20){(22)andistherefore, aneessaryonditionfortheproblemIPtobesolvable.

Proof. Firstwenotetheequality P

0 Z

M(I Z Z

)

=0; (27)

whihholdsforeveryM 2X nRnL

. Indeed,takingM in theform M =

nL 1 X j=0

Z j

M j

+ nR 1

X i=1

M nL 1+i

Z i

with M `

2D n

R n

L ; weget

Z

M(I Z Z

)=Z

nL 1 X

Z j

M j

(I Z Z

)+

nR 2 X

Z j

M j

! Z

(I Z

Z

(8)

ELA

38 DanielAlpayandVladimirBolotnikov

andometo (27),sinethersttermontherighthand sideinthelatterequalityis stritlybloklowertriangularand theseond termisequaltozerodueto(12).

Let H belong to U mk

and satisfy (20){(22) (or equivalently, (22) and (26)). Uponapplying(27)to

M= I A taking into aount that the matrix A

is blok diagonal and making use of the equality

Z

nLnL

,weget Furthermore,

A

andC areblokdiagonal,itfollowsfrom(26)that A andthisompletestheproof.

Itwill beshownin Setion6thattheproblem IPalwayshasasolution. Letus denotebyIP

theproblemIPtowhihhasbeenaddedthenormonstraint hH; Hi

X mk

def = Tr(H

H) (28)

(9)

ELA

Interpolationforuppertriangularmatries 39 ThevaluekH

min k

HS

(as wellasH min

itself)dependsonlyontheproblemdata(15) and theondition kH

min k

HS

is neessaryandsuÆient fortheproblem IP

to besolvable. The expliit formulafor H

min

and a desriptionof all solutionsof the problemIP

willbegiveninSetion6. WedenotebyIP

R (

R

)theright{sidedproblem (20)(i.e.,whenonditions(21) and(22)arenotin fore)towhih hasbeenaddedthe\matrixnorm"onstraint

fH; Hg def

= p 0

(HH

) R (29)

forsomepreassignednonnegativematrix R

2D mm

. Similarly, wedenote by IP

L (

L

)theleft{sided problem(21)to whih hasbeen addedthematrix\norm"onstraint

[H; H℄ def

= p 0

(H

H) L (30)

forsomepreassignednonnegativematrix L

2D k k

.

Itturnsoutthattheonstraints(29)and(30)donotsuittheleft{sidedondition (21)andtheright{sidedondition(20)respetively. Thatiswhyweonsider atwo{ sidedproblemonlyunder theonstraint(28)whihonaountof

hH; Hi=Tr fH; Hg=Tr [H; H℄ suitstoleftonditionsaswellastorightones.

3. Statement of the main result and rst formulas. The main result of thepaperisnowstated:

Theorem 3.1. The setof allsolutions ofProblem IPisgiven by H=H

min +

L h

R (31)

whereH min

2U mk

isthe minimalHilbert{Shmidtnormsolution, R

2U

(k +nR)k and

L 2U

m(m+nL)

are twopartialisometries with upper triangular blokentries, built fromthe interpolation dataandhisafree parameterfromU

(m+nL)(k +nR) . Inthis setionweonstrutexpliitly

L and

R

(seeformulas(43) and(42)), while the formula for H

min

will be given in Setion 7. Webegin with preliminary lemmas.

Lemma 3.2. The Steinequations IP

R A

Z

IP

R Z

A

=C

C and IP L

A Z

IP L

Z

A

=B +

B + (32)

are uniquely solvable, and that their solutions are the blok diagonal matries given by

IP R

= m 1

X j=0

(A

Z

) j

C

C (Z

A

) j

2D nRnR

IP L

= m 1

X (A

Z

)

j B

+

B +

(Z

A

) j

2D nLnL

(10)

ELA

40 DanielAlpayandVladimirBolotnikov

Conditions (16)and(17)areneessaryandsuÆient thatthe operatorsIP R

andIP L areboundedlyinvertible.

Theproofisstraightforwardandwillbeomitted. Lemma3.3. LetIP

R andIP

L

aresolutions oftheSteinequations(32). Thenthe matries

Q

areorthogonalprojetions.

Proof. Thematriesdenedin (33){(36)areevidentlyselfadjoint. Toshowthat Q

R

isaprojetion,westartwiththeequality (I A

whihisanimmediateonsequeneoftherstequationin(32). Itfollowsfrom(33) that

Q

where,onaountof(37), L=(I Z suessively,weget

L=(I Z whih togetherwith (38)leads to Q

2

is a projetion, we rstnotethat

(11)

ELA

Interpolationforuppertriangularmatries 41 Indeed,makinguseof(32),wetransformtheleft handsideas

A andobtain(39),sineinviewof(11),

Z

TheequalityT 2 R

=T R

followseasilyfrom (39)andrelations

(Z

whihareonsequenesof(12). EqualitiesQ 2

areveriedquite similarlywiththehelpof(11){(14)and

I A

whihinturn, followsimmediatelyfromtheseondequationin (32). Lemma 3.4. The matries

R

p(m+nL)

denedby

and

respetively,areblok upper triangular andsatisfy

and

whereQ R

arethe orthogonalprojetionsdenedin(33){(36). Proof. Theuppertriangular strutureof

R and

L

followsimmediately from theirdenitions (42)and (43). Theupper triangularstruture hereismeantin the sense of Remark 2.1: aordingto partitions (10),

R and

L

(12)

ELA

42 DanielAlpayandVladimirBolotnikov where

M=IP Takingadvantageofthersttworelationsin(12)(withD=IP

1

whihbeingsubstitutedinto(46)leadstotherstequalityin(44). Furthermore,on aountof(42),

Substituting (37)into thethird termon therighthand side of(47)and takinginto aount(34),weget

whihprovestheseondequalityin(44). Theequalities(45)areveriedinmuhthe samewaywithhelpof(43)and(41).

Remark 3.5. The matries R

and L

dened via (42) and (43) admit the representations

(13)

ELA

Interpolationforuppertriangularmatries 43

Proof. Inviewof(34)and(48),

andtherefore,

T

whih proves(48). The representation (49) is veried in muh the same way with helpof(36)and(43).

4. Right{sided problem. InthissetionwedesribeallH 2U mk

satisfying ondition (20). We rst exhibit a partiular solution, whih will be shown in the sequelto beoftheminimalHilbert{Shmidtnorm.

Lemma 4.1. LetH R

bethe blokuppertriangular matrixgiven by H

satisestheondition(20)and fH

Proof. Inviewof(37), H

andsine

C

mnR Z

; (53)

ondition(23)(whih isequivalentto (20)byCorollary2.5) followsfrom (52). Fur-thermore,multiplying(52)byIP

1 R

C +

(14)

ELA

44 DanielAlpayandVladimirBolotnikov

By(53),theseondtermontherighthandsideof(54)isstritlyblokupper trian-gularwhiletherstoneisuppertriangularandthus,

fH R

; H R

g def

= p 0

(H R

H R

)=p 0

n C

+ ( I Z

A

)

1 IP

1 R

C +

o =C

+ IP

1 R

C + ; whih provesthe rst equalityin (51). Theseond equality is animmediate onse-queneoftherstone.

Notethat everyH 2U mk

satisfyingtheondition(20)is oftheform H =H

R + (55)

where isanelementfromU mk

suhthat p

0 n

C ( I Z A

)

1 o

=0: (56)

Lemma 4.2. The matrix belongsto U mk

and satises (56)if and only if it admitsa representation

= b H

R (57)

where R

isgiven by(42)and b H 2U

m(k +nR) . Proof. Let

b

H beinU m(k +n

R )m

andlet beoftheform(57). Sine R

isblok uppertriangular, 2U

mk

. Furthermore,in viewof(42)and(37),

R

C (I Z A

)

1 =

0 I

k

+ "

Z

IP 1 2 R

( I Z A

) C

# IP

1 R

(I A

Z

) 1

C

!

C (I Z A

)

1

=

0 C

( I Z

A

)

1

+ "

Z

IP 1 2 R

(I Z A

) C

#

( I Z A

)

1 +IP

1 R

(I A

Z

) 1

A Z

IP

R

= "

Z

IP 1 2 R 0

# +

" Z

IP

1 2 R

( I Z A

) C

# IP

1 R

(I A Z

)

1 A

Z

IP R

:

Itiseasilyseenfromthelastequalitythatthematrix R

C (I Z A

)

1

isstritly blokuppertriangularandtherefore

p 0

n

C ( I Z A

)

1 o

=p 0

n b H

R

C (I Z

A

) 1

o =0 foreveryelement

b H2U

(k +nR)m . Conversely,let belongsto U

mk

andsatisfy(56). ByCorollary2.5, q

n

C ( I Z

A

) 1

(15)

ELA

Interpolationforuppertriangularmatries 45 whihmeansthat thematrix C (I Z

A

)

1

isstritly blokuppertriangular andtherefore

C (I Z A

)

1 (I Z

Z

)=0: It followsfrom thelast relationand from (33)that Q

R

=0,whihtogether with therstequalityin (44)impliesthat

R

R

= (I Q R

)= :

Thelatterequalitymeansthat admitsarepresentation(57)with b H =

R

. Itremainstonotethat by(42),

b H =

n (0; I

k

)+C (I Z A

)

1 IP

1 R

(I A

Z

)IP

1 2 R

Z

; C

o

whihimplies,inviewof(58),that b

H isblokuppertriangular: b H 2U

m(k +nR) . Using(55)andLemma4.2weobtainthefollowingresult.

Theorem4.3. AllH 2U mk

whihsatisfy(20)areparametrizedbytheformula H =H

R +

b H

R (59)

whereH R

and R

aregiven by(50)and(42),respetivelyand b

H isafreeparameter fromU

m(k +n R

) .

Nowweandesribethesetofallsolutionsoftheproblem IP R

( R

). Lemma 4.4. The representation (59)isorthogonal: for every

b H 2U

m(k +nR) f

b H

R ; H

R

g=0 and h b H

R ; H

R i =0: (60)

Proof. It follows from (36) that T R

ZIP

1 2 R Z

A C

= 0. Making use of this equalitytogetherwith(37),(48)and(50)weobtain

R

H R

=T R

" Z

IP

1 2 R

( I A Z

)

1 C

I

k

#

C (I Z A

)

1 IP

1 R

C +

=T R

" Z

IP

1 2 R

n IP

R Z

A

(I Z

A

)

1

+( I A Z

)

1 IP

R o

IP 1 R

C + C (I Z

A

)

1 IP

1 R

C +

#

=T R

" Z

IP

1 2 R

Z A

C

# (I Z

A

)

1 IP

1 R

C +

+T R

" Z

IP

1 2 R

( I A

Z

) 1

C + 0

#

=T R

" Z

IP

1 2 R

( I A Z

)

1 C

+ 0

# : Itisreadilyseenfrom(34)that theprojetionT

R

isblokdiagonal. Thenitfollows from the last equation that

R H

R

isstritly blok uppertriangular. Thus, for ev-eryuppertriangular

b

H, the matrix b H

R H

(16)

ELA

46 DanielAlpayandVladimirBolotnikov therefore,

n b H

R ; H

R o

=p 0

b H

R H

R

=0 whihinturn, implies

h b H

R ; H

R i=Tr

b H

R H

R

=0 andnishestheproofofthelemma.

Theorem 4.5. AllsolutionsH ofthe problemIP R

( R

)areparametrizedbythe formula (59)the parameter

b

H variesin U

m(k +nR)

andissubjetto n

b HT

R ;

b HT

R o

R

C +

IP 1 R

C + ; (61)

whereT R

isthe orthogonal projetion denedin(36). Proof. Inviewof(44),

n b H

R ;

b H

R o

=p 0

b H

R

R

b H

=p

0

b HT

R b H

=

n b HT

R ;

b HT

R o

whihtogetherwith(51),(59)and(60)leadsto fH; Hg=

n H

R +

b H

R ; H

R +

b H

R o

= fH R

; H R

g+ n

b H

R ;

b H

R o = C

+ IP

1 R

C +

+ n

b HT

R ;

b HT

R o

; andthus,thematrixH oftheform(59)satises(29)ifandonlyiftheorresponding parameter

b

H satises(61).

5. Left{sided problem. Inthis setion wedesribeall H 2 U mk

satisfying theondition(21).

Lemma 5.1. LetH L

bethe blokuppertriangular matrixgiven by H

L =B

+ (I Z

A

)

1 IP

1 L

B

: (62)

Then H L

satisesthe ondition(21)and [ H

L ; H

L

℄=B IP 1 L

B

; hH L

; H L

i = TrB IP 1 L

B

: (63)

Proof. Makinguseof(62)and(41)weget H

L B

+ ( I Z

A

)

1

=B ( I Z

A

) 1

+B IP 1 L

I A Z

1 A

Z

IP L (64)

andsinetheseondtermontherighthandsideinthelatterequalityisstritlyblok lowertriangular,theondition(21)followsfrom(64). Furthermore,multiplying(64) byIP

1 L

B

from therightweget H

H

L

=B (I Z

A

) 1

IP 1

B

+B IP 1

I A

Z

1

A

Z

B

(17)

ELA

Interpolationforuppertriangularmatries 47 whihimplies

[H L

; H L

℄=p 0

(H L

H L

)=p 0

n

B ( I Z

A

) 1

IP 1 L

B

o

=B IP 1 L

B

; andinpartiular theseond equalityin (63)isin fore.

It willbeshownthat H L

hasminimal Hilbert{Shmidt normamong allU mk

{ solutionsoftheproblemIP

L

. Therestissimilartoonsiderationsfromtheprevious setion: everyH 2U

mk

satisfyingtheondition(21)isoftheform H =H

L + (65)

where isanelementfromU mk

suhthat p

0 n

B

+ (I Z

A

)

1 o

=0: (66)

Lemma 5.2. The matrix belongsto U mk

and satises (66)if and only if it admitsa representation

= L

b H (67)

where L

isgiven by (43)and b H2U

(m+nL)k . Proof. Let

b

H bein U (m+n

L )k

andlet beoftheform (67). Sine L

isblok uppertriangular, 2U

mk

. Furthermore,in viewof(43)and(41),

L

B +

( I Z

A

) 1 =

0 I

k

+ "

Z

IP 1 2 L

( I Z

A

) B

+

# IP

1 L

I A

Z

1 B

+

! B

+ ( I Z

A

)

1

= "

Z

IP 1 2 L 0

# +

" Z

IP 1 2 L

( I Z

A

) B

+

# IP

1 L

I A

Z

1 A

Z

IP L

:

Therefore,thematrix L

B +

(I Z

A

) 1

isstritlybloklowertriangularandthus, p

0 n

B

+ (I Z

A

)

1 o

=p 0

n b H

L

B +

(I Z

A

) 1

o =0 foreveryblokuppertriangular

b H 2U

(m+n L

)k . Conversely,let belongsto U

mk

andsatisfy(66). ByCorollary2.5, p

n

B +

(I Z

A

) 1

o =0 andthus,theoperator

B

+ (I Z

A

)

1

isstritlybloklowertriangular. There-fore

B

+ (I Z

A

)

1 (I Z

Z

)=0 andnowitfollowsfrom(35)that

Q

L

=0. Inviewof(45),

L

=

(I Q L

)=

(18)

ELA

48 DanielAlpayandVladimirBolotnikov

Takingadjointsin thelast equalityweonludethat admitsarepresentation(67) with

b H :=

L

,whihbelongstoU

(p+nL)k

, by(43). Using(65)andLemma5.2weobtainthefollowingresult. Theorem5.3. AllH 2U

mk

whihsatisfy(21)areparameterizedbytheformula H=H

L +

L b H (68)

whereH L

and L

aregiven by(62)and(43)respetivelyand b

H isaparameterfrom U

(m+n L

)k .

NowwedesribethesetofallsolutionsoftheproblemIP L

( L

). Lemma 5.4. The representation (68)isorthogonal: for every

b H 2U

(m+n L

)k , [

L b H; H

L

℄=0 and h L

b H; H

L i =0: (69)

Proof. It followsfrom (36)that

A Z

IP 1 2 L Z

; B

+

T L

=0. Takingadvantage ofthelastequalitytogetherwith(41),(49)and(62)weget

H L

L

= B IP 1 L

I A

Z

1 B

+

B

+ ( I Z

A

)

1 IP

1 2 L

Z

; I m

T

L = B IP

1 L

I A

Z

1

A Z

IP 1 2 L Z

; B

+

T L +B (I Z

A

)

1 IP

1 2 L

Z

( I n

L ; 0)T

L = B (I Z

A

)

1 IP

1 2 L

Z

(I n

L ; 0)T

L whihshows(sine theprojetionT

L

isblokdiagonal)that H L

L

isstritlyblok uppertriangular. Therefore,foreveryblokuppertriangular

b

H,thematrixH L

L

b H isalsostritlyblokuppertriangularandhene,

[ L

b H; H

L ℄=p

0 (H

L

L

b H)=0: Inpartiular,

h L

b H; H

L

i=Tr(H L

L

b H)=0; whihendstheproof.

Theorem 5.5. All solutions H of the problem IP L

( L

) are parameterized by the formula(68)the parameter

b

H varies inU (m+n

L )k

andissubjet to h

T L

b H; T

L b H i

L

B IP 1 L

B

: (70)

Proof. Inviewof(44), h

L

b H;

L b H i

=p 0

b H

L

L

b H

=p 0

b H

T L

b H

= h

T L

b H; T

L b H i

whihtogetherwith(63),(68)and(69)leadsto [H; H℄=

h H

L +

L b H; H

L +

L b H i

= [H L

; H L

℄+ h

L

b H;

L b H i = B IP

1 B

+

h T

L b H; T

(19)

ELA

Interpolationforuppertriangularmatries 49 andthus,thematrixH oftheform(68)satises(30)ifandonlyiftheorresponding parameter

b

H satises(70).

6. Solutionsofthe two{sidedproblem. Usingtheresultsfromthetwo pre-vioussetions wenowdesribethe setof allsolutionsof problemsIP and IP

. By Theorem 4.3all operatorsH 2U

mk

satisfyingtheondition(20)are given bythe formula (59). It is possible to restritthe set of parameters

b

H in (59)in suh way thattheoperatorH oftheform(59)wouldsatisfyalso(21)and(22). Webeginwith thefollowingauxiliaryresult;fortheproofsee[2,Lemma6.1℄.

Lemma 6.1. For everyhoie of matries 2U nLk

and 2U nLm

, itholds that

P 0

n I A

Z

1 o

=P 0

n I A

Z

1 L

o

whereL2D n

L k

isdenedby L=P 0

I A Z

1

. Lemma 6.2. Amatrix H of the form (59)belongstoU

mk

and satises ondi-tions (21), (22)if and only if the orresponding parameter

b

H belongs toU m(k +n

R ) andsatisesthe ondition

p 0

n T

R b H

B +

(I Z

A

) 1

o =

b B (71)

where b B 2D

nRnL

isdenedby b B =T

R "

Z

IP 1 2 R

Z B

# (72)

Proof. LetH beoftheform(59). Multiplying(59)by R

ontherightandusing (44)weget

b HT

R

=( H H R

) R

: Makinguseof(48),werewritethelastequalityas

b HT

R =H

C (I Z A

)

1 IP

1 2 R

Z

; I k

T

R (73)

C

+ (I Z

A

)

1 IP

1 2 R

Z

; 0

T R

: SineT

R

isblokdiagonal,theseond termontherighthandsidein(73)isstritly bloklowertriangularandtherefore,

P 0

n I A

Z

1 B

+

C

+ ( I Z

A

)

1 IP

1 2 R

Z

; 0

T R

o =0: Thenitfollowsfrom(73)that

P 0

I A Z

1 B

+

b HT

R = =P

0 I A

Z

1 B

+

H

C (I Z A

)

1 IP

1 2 Z

; I k

T

(20)

ELA

50 DanielAlpayandVladimirBolotnikov

Suppose thatH satises(22)andtheseondequalityfrom(26)(whih isequivalent to(21)byRemark2.6). Then,asIP

,itfollowsfrom(74)that P

Takingadjointsin thelastequality,usingRemark2.6and(72),weget(71): p

Conversely,let b

and taking into aount (71) we obtain

P

Itfollowsfrom (42),(48)and(72),that b

Furthermore,inviewof(50), B whihbeingaddedto(77)leads,onaountof(19),to

(21)

ELA

Interpolationforuppertriangularmatries 51 Substituting (76)into(75)andusing(78)weobtain

P Sine thematrix Z

isstritly blokupper triangular, theseondtermontherighthand sideinthelastequalityequalsto zeroandthus,

P whihisequivalentto(21),byRemark 2.6.

Theveriationof(22)isdonein muh thesameway: inviewof(59), P

(whihisstritly bloklowertriangular)andtakinginto aount(71)weobtain

P

whihbeingsubstitutedto(79),leadsto P Uponsubstituting(78)into thisequalityandusing(37)weget

P Sinethematries

(22)

ELA

52 DanielAlpayandVladimirBolotnikov

are respetively, stritly blok lower and blok upper triangular, the rst and the thirdtermsontherighthandsideinthelastequalityareequaltozeroandby(18),

P 0

n I A

Z

1 B

+

HC (I Z

A

) 1

Z o

=P 0

n Z

(I A

Z

)

1 Z

o = Z

Z

= :

ThereforeH satisestheondition(22)whihendstheproofofthelemma. Aording toTheorem 4.3, alloperators

b H 2U

(nR+k )m

whihsatisfy (71)are oftheform

b H =

H

L +

L h (80)

where L

isdenedby(43), H

L =B

+ (I Z

A

)

1 IP

1 L

b B (81)

and hisanarbitraryoperator from U

(k +nR)(m+nL)

. SineT R

istheprojetion,it followsfrom(72)that

H

L T

R =

H

L : (82)

Substituting (80)into(59)weometothefollowingtheorem.

Theorem 6.3. All solutions H of the problem IP are parameterized by the formula

H=H R

+ H

L

R +

L h

R (83)

whereH R

; H

L ;

L and

R

areblokuppertriangularmatriesdenedby(50),(81), (43)and(42)respetively andhisafreeparameter fromU

(k +nR)(m+nL) . Notethat equation(83)isinfat (31)with

H min

=H R

+ H

L

R : (84)

AordingtoLemma 5.1andinviewof(82), h

b H L

T R

; b H L

T R

i =h b H L

; b H L

i = Tr b B IP

1 L

b B

while Lemmas 4.4 and 5.4 ensure that the representation (83) is orthogonal with respettotheinnerprodut(5). Due to(44)and(45),

hH; Hi=hH R

; H R

i+h b H L

T R

; b H L

T R

i+hT L

hT R

; T L

hT R

i =TrC

+ IP

1 R

C +

+Tr b B IP

1 L

b B

+hT L

hT R

; T L

hT R

i This equality leads to the desription of all the solutionsto theproblem IP

(i.e., undertheadditionalnormonstraint(28).

Theorem 6.4. (i) Theproblem IP

issolvable if andonlyif TrC

+ IP

1 C

+Tr

b B IP

1 b B

(23)

ELA

Interpolationforuppertriangularmatries 53 (ii) Allsolutions ofthe problem IP

areparameterizedby the formula(83)whenthe parameterh2U

(k +nR)(m+nL)

issuhthat hT

L hT

R ; T

L hT

R

i TrC +

IP 1 R

C +

Tr b B IP

1 L

b B

= kH min

k 2 HS

: Theorem3.1islearlyaonsequeneofthesetwolast theorems.

7. The minimal norm solution. It was shown in the previous setion that the minimal norm solution H

min

of the problem IP is given by the formula (84) and ontainsas anadditiveterm the minimal norm solutionH

R

of the right{sided problem (20). Ofourse, kH

min k

HS

is notlessthankH R

k HS

andtheirdierene is determinedbythesupplementaryleft{sidedproblem(71). Fromsymmetryarguments thepreseneoftheminimalnormsolutionH

L

oftheleft{sidedproblem(21)asaterm intheadditiverepresentationofH

min

should beexpeted. Lemma 7.1. The matrixH

min

denedby (84)anbe representedas H

min =H

L +

L b H R (85)

whereH L

and L

aregiven by (62)and(43)respetively, b

H R

= b C +

IP 1 R

( I A Z

)

1 C

(86)

andwhere

b C +

=T L

" Z

IP 1 2 L

Z C

+ #

: (87)

Proof. Firstwenote that the seond equality in (87) followsimmediately from (36). Asaonsequeneof(87)and(49)weget

L

b C +

=

B +

(I Z

A

) 1

IP 1 2 L

Z

; I m

T

L "

Z

IP 1 2 L

Z C

+ #

=C +

+B +

(I Z

A

) 1

IP 1 L

I A

Z

Z

B +

C +

: Multiplying this equality by IP

1 R

(I A Z

)

1 C

on the right and taking into aount(50),(86),weobtain

L

b H R

=H R

+ B +

( I Z

A

) 1

IP 1 L

n I A

Z

Z

B +

C +

o IP

1 R

(I A Z

)

1 C

: (88)

Furthermore, multiplyingtheequality (77)by B +

(I Z

A

) 1

IP 1 L

from the left andtakingintoaount(62),(81),weget

b H L

R

=H L

+ B +

(I Z

A

) 1

IP 1 L

(Z

A

) B

C Z

IP 1

Z

( I A

Z

) 1

C

(24)

ELA

54 DanielAlpayandVladimirBolotnikov Subtratingthis equalityfrom (88)andusing(19),weget

L

b H R

b H L

R

=H R

H L whihmeansthat(84)and(85)denethesameoperatorH

min . Itfollowsfrom (84)and(89)thatH

min

anberepresentedas H

min

(z)=H L

+H C

+H R (90)

whereH L

,H R

aregivenby(62),(50)respetivelyand H

C =B

+ ( I Z

A

)

1 IP

1 L

(Z

A

) B

C IP

1 R

( I A Z

)

1 C

: Therepresentation(90)isnotorthogonal;neverthelessitturnsoutthat

H L

?(H C

+H R

) and (H L

+H C

)?H R

: Indeed,inviewof(88)and(89),

H C

+H R

= b H L

R

; H L

+H C

= L

b H R andthelaimedorthogonalitiesholdbyLemmas4.4and5.4.

REFERENCES

[1℄ D.AlpayandV.Bolotnikov. Ontangential interpolationinreproduingkernelHilbertspae modulesandappliations.InH.Dym,B.Fritzshe,V.Katsnelson,andB.Kirstein,editors, Topisininterpolationtheory,volume95ofOperatorTheory: AdvanesandAppliations, pages37{68.BirkhauserVerlag,Basel,1997.

[2℄ D.AlpayandV.Bolotnikov. Ontwo-sidedinterpolationforuppertriangularHilbert-Shmidt operators. IntegralEquationsOperatorTheory,31:259{286,1998.

[3℄ D.Alpay,V.Bolotnikov,B.Freydin,andY.Peretz.Onbitangentialinterpolationinthe time-varyingsetting forHilbert-Shmidtoperators: the ontinuous timease. J.Math.Anal. Appl.,228:275{292,1998.

[4℄ D. Alpay, V. Bolotnikov, and L.Rodman. Two{sided tangential interpolation for Hilbert{ Shmidtoperatorfuntionsonpolydisks.InA.Dijksma,R.Kaashoek,andA.Ran,editors, OperatorTheory: AdvanesandAppliations,BirkhauserVerlag,Basel,2000.Toappear. [5℄ D.AlpayandP.Dewilde.Time-varyingsignalapproximationandestimation.InM.Kaashoek, J.H.vanShuppen, andA.C.M.Ran,editors, Signalproessing, satteringand operator theory,andnumerialmethods(Amsterdam,1989),volume5ofProgressinsystemsand ontroltheory,pages1{22.BirkhauserBoston,Boston,MA,1990.

[6℄ D.Alpay,P.Dewilde,and H. Dym. Losslessinverse sattering andreproduingkernels for uppertriangularoperators. InI.Gohberg,editor,Extensionand interpolationof linear operatorsandmatrixfuntions,pages61{135.Birkhauser,Basel,1990.

[7℄ D.AlpayandY.Peretz. Quasi{oisometri realizationsofuppertriangularmatries. Fields InstitutePubliations,AMS,toappear.

[8℄ D.AlpayandV.Bolotnikov. Two-sidedinterpolationformatrixfuntionswithentriesinthe Hardyspae. LinearAlgebraAppl.,223/224:31{56,1995. SpeialissuehonoringMiroslav FiedlerandVlastimilPtak.

(25)

ELA

Interpolationforuppertriangularmatries 55 [10℄ J.A.BallandI.Gohberg.ClassiationofshiftinvariantsubspaesofmatrieswithHermitian formand ompletionof matries. InH.Bart, IGohberg,and M.A. Kaashoek, editors, Operatortheoryandsystems(Amsterdam, 1985),pages23{85.Birkhauser,Basel,1986. [11℄ J.A. Balland I. Gohberg. Pairsof shift invariant subspaes of matriesand nonanonial

fatorization.LinearandMultilinearAlgebra,20:27{61,1986.

[12℄ J.A.BallandI.Gohberg.Shiftinvariantsubspaes,fatorization,andinterpolationfor matri-es.I.Theanonialase. LinearAlgebraAppl.,74:87{150,1986.

[13℄ P.Dewilde andH.Dym. Interpolationforuppertriangularoperators. InI.Gohberg,editor, Time{variantsystemsand interpolation,volume56of Operator Theory: Advanesand Appliations,pages153{260.BirkhauserVerlag,Basel,1992.

[14℄ P. Dewilde and Alle-Jan van derVeen. Time-varying systems and omputations. Kluwer AademiPublishers,Boston,MA,1998.

[15℄ H.Dym. J ontrativematrixfuntions,reproduing kernelHilbertspaesandinterpolation. PublishedfortheConfereneBoardoftheMathematialSienes,Washington,DC,1989. [16℄ H.Dym and B.Freydin. Bitangential interpolation for triangularoperators whenthe Pik operator isstritly positive. InH. Dym, B.Fritzshe, V.Katsnelson, and B.Kirstein, editors, Topis in interpolation theory, volume 95 of Operator Theory: Advanes and Appliations,pages143{164.BirkhauserVerlag,Basel,1997.

[17℄ H.DymandB.Freydin.Bitangentialinterpolationforuppertriangularoperators.InH.Dym, B.Fritzshe,V.Katsnelson,andB.Kirstein,editors,Topisininterpolation theory, vol-ume95ofOperatorTheory:AdvanesandAppliations,pages105{142.BirkhauserVerlag, Basel,1997.

[18℄ S.Itoh.ReproduingkernelsinmodulesoverC

Referensi

Dokumen terkait

Pokja Pemilihan Penyedia Barang/Jasa Pekerjaan pada Satker Peningkatan Keselamatan Lalu Lintas Angkutan Laut Pusat akan melaksanakan Pelelangan Umum dengan

Ekstrak etanol mempunyai aktivitas antioksidan yang lebih tinggi dibandingkan dengan ekstrak n -heksan dan etil asetat, hal ini diduga karena adanya kandungan

Instansi /Nama Instansi Lama Instansi Baru.. MATA

Maka untuk menghitung volume benda ruang yang dibatasi di atas oleh kurva z = f ( x,y ) dan di bawah oleh D dilakukan sebagai berikut...

dengan nenbawa surai iusas dli (di denFl L:sh) dari dircrtlr uha/Fimpitun peruehatr/kepara .ahrq dm kaiu pcns,enal5. s6eEry diradqr dMarni bbih daii r (etu) pqwahen

Kelompok Kerja II Unit Layanan Pengadaan pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan pemilihan langsung dengan pascakualifikasi untuk paket

2016 dengan ini menyatakan GAGAL LELANG ULANG karena dari 5 (Lima) calon penyedia yang diundang sampai dengan batas waktu Pembuktian Dokumen Kualifikasi hanya dua

Pembangunan Jembatan Basirih Dalam Tahun Anggaran 2014 yang dibentuk berdasarkan Surat Keputusan Walikota Banjarmasin Nomor 64 Tahun 2014 tanggal 7 Januari 2014, telah..