• Tidak ada hasil yang ditemukan

BMAA3-2-16. 96KB Jun 04 2011 12:03:32 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "BMAA3-2-16. 96KB Jun 04 2011 12:03:32 AM"

Copied!
8
0
0

Teks penuh

(1)

ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 3 Issue 2(2011), Pages 167-174.

FURTHER RESULTS ON FRACTIONAL CALCULUS OF SRIVASTAVA POLYNOMIALS

(COMMUNICATED BY H. M. SRIVASTAVA)

PRAVEEN AGARWAL, SHILPI JAIN

Abstract. Series expansion methods for fractional integrals are important and useful for treating certain problems of pure and applied mathematics. The aim of the present investigation is to obtain certain new fractional calculus formulae, which involve Srivastava polynomials. Several special cases of our main findings which are also believed to be new have been given. For the sake of illustration, we point out that the fractional calculus formulae obtained by Saigo & Raina (see [12]) follow as particular cases of our findings.

1. Introduction

Srivastava and Saigo (see [16]) have studied in their paper multiplication of frac-tional calculus operator and boundary value problems involving the Euler-Darboux equation and Ross (see [8]) obtained the fractional integral formulae by using se-ries expansion method. The aim of the present investigation is to obtained fur-ther fractional calculus formulae, using series expansion method, for the Srivastava polynomials which were introduced by Srivastava (see [14]) .The name Srivastava polynomials, it self indicates the importance of the results, because we can derive a number of fractional calculus formulae for various classical orthogonal polynomials. The most widely used definition of an integral of fractional order is via an integral transform, called the Riemann-Liouville operator of fractional integration (see [3], [10]).

cR −α

x =cDxα[f(x)] = 1 Γ (−α)

x

c

(x−t)−α−1

f(t)dt,Re(α)>0. (1.1)

= d n

dxn cD α−n

x [f(x)],0≤Re(α)< n. (1.2)

where f(x) is a locally integrable function and n is a positive integer.

Several authors (see [1]-[4], [6]-[7], [13], and [18]) have defined and studied operators

2000Mathematics Subject Classification. 26A33, 33C20, 33C45, 33C70.

Key words and phrases. Fractional calculus, generalized hypergeometric series, Kampe′

-de-Fe′rietfunctions, Srivastava polynomials.

c

⃝2011 Universiteti i Prishtin¨es, Prishtin¨e, Kosov¨e. Submitted October 27, 2010. Accepted April 22, 2011.

(2)

of fractional calculus via a series expansion approach. Forβ andη be real numbers

I0α,β,η,x [f(x)] =

x−α−β Γ(α)

x

0

(x−t)α−1 2F1

[

α+β,−η

α ; 1−

t x ]

f(t)dt,Re(α)>0

(1.3)

= d n

dxnI

α+n,β−n,η−n

0,x [f(x)],Re(α)≤0 (1.4)

where 0< Re(α) +n≤1, n being a positive integer. Which were analyzed by Saigo (see [9]).

The Srivastava polynomialsSnm(x) introduced by Srivastava (see [14]) is as follows

Snm(x) =

[n/m] ∑

k=0

(−n)mk

k! An,kx

k (1.5)

where m is an arbitrary positive integer and the coefficient An,k(n, k≥ 0) are arbitrary constants, real or complex.

By suitable specializing the coefficients An,k the polynomial setSnm(x) reduces to the various classical orthogonal polynomial (see [17]). The particular cases of our main results have come out in terms of the well-known Kampe′

-de-Fe′

riet double hypergeometric functions, general triple hypergeometric functionsF(3)[., ., .] and Pathan’s quadruple hypergeometric functionsFP(4)[., ., ., .](see [15],[5])

Flp:m:q;;kn [

(aj) : (bq) ; (ck) ; (αl) : (βm) ; (γn) ; x, y

]

= ∞ ∑

r,s=0 ∏p

j=1(aj)r+s

∏q

j=1(bj)r∏kj=1(cj)s

∏l

j=1(αj)r+s

∏m

j=1(βj)r

∏n

j=1(γj)s

xrys

r!s! . (1.6)

The convergence conditions for which are

(i)p+q < l+m+ 1, p+k < l+n+ 1,|x|<∞;|y|<∞; (ii)p+q=l+m+ 1, p+k=l+n+ 1;|x|1/(p−l)

+|y|1/(p−l)

<1, if p > l; max{|x|,|y|}<1if p≤l.

and

F(3)[x, y, z]≡F(3) [

(a) :: (b) ; (b′ ) ; (b′′

) : (c) ; (c′ ) ; (c′′

) ; (e) :: (g) ; (g′

) ; (g′′

) : (h) ; (h′ ) ; (h′′

) ; x, y, z

]

= ∞ ∑

m,n,p=0

Λ (m, n, p)x m

m!

yn n!

zp

p!, (1.7)

where, for convenience,

Λ (m, n, p) =

∏A

j=1(aj)m+n+p

∏B

j=1(bj)m+n

∏B′

j=1 (

b′ j

)

n+p

∏B′′

j=1 (

b′′ j

)

p+m

∏E

j=1(ej)m+n+p

∏G

j=1(gj)m+n∏G

j=1 (

g′ j

)

n+p

∏G′′

j=1 (

g′′ j

)

(3)

∏C

j=1(cj)m

∏C′

j=1 ( c′ j ) n

∏C′′

j=1 ( c′′ j ) p ∏H

j=1(hj)m

∏H′

j=1 ( h′ j ) n

∏H′′

j=1 ( h′′ j ) p provided thatA+B+B′′

+C≤E+G+G′′

+H+ 1 etc.; the equality signs holds for|x|<1,|y|<1,|z|<1.

Fp(4)[x1, x2, x3, x4]≡Fp(4)

[

(a) :: (b) ; (b′ ) ; (b′′

) ; (b′′′

) : (c) ; (c′ ) ; (c′′

) ; (c′′′ ) ; (e) :: (g) ; (g′

) ; (g′′ ) ; (g′′′

) : (h) ; (h′ ) ; (h′′

) ; (h′′′

) ; x1, x2, x3, x4

]

= ∞ ∑

m,n,p,q=0

Λ (m, n, p, q)x m 1 m! xn 2 n!

xp3 p!

xq4

q!, (1.9)

where, for convenience,

Λ (m, n, p, q) =

∏A

j=1(aj)m+n+p+q

∏E

j=1(ej)m+n+p+q

(1.10)

∏B

j=1(bj)m+n+p

∏B′

j=1 (

b′ j

)

n+p+q

∏B′′

j=1 (

b′′ j

)

p+q+m

∏B′′′

j=1 (

b′′′ j

)

q+m+n

∏G

j=1(gj)m+n+p

∏G′

j=1 (

g′ j

)

n+p+q

∏G′′

j=1 (

g′′ j

)

p+q+m

∏G′′′

j=1 (

g′′′ j

)

q+m+n

∏C

j=1(cj)m

∏C′

j=1 ( c′ j ) n

∏C′′

j=1 ( c′′ j ) p

∏C′′′

j=1 ( c′′′ j ) q ∏H

j=1(hj)m

∏H′

j=1 ( h′ j ) n

∏H′′

j=1 ( h′′ j ) p

∏H′′′

j=1 ( h′′′ j ) q

provided that denominator parameters are neither zero nor negative integers. We prove the following fractional calculus formula in this paper

I0α,β,η,x

[

xk(b−ax)−λ

Snm

(

xρ1(bax)−σ1)]

=b−λxk−β∑[n/m]

i=0

(−n)mi

i! An,iΓ [

k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ]

×(xρ1

1 )i

3F2 [

λ+σ1i, k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ;

ax b

]

(1.11) valid for min(k, λ, ρ1, σ1)>0,

axb

<1 andk+ρ1i >max{0, Re(β−η)} −1

and

I0α,β,η,x

[

xkecx(b−ax)−λSnm

(

xρ1(bax)−σ1)]

=b−λxk−β∑[n/m]

i=0

(−n)mi

i! An,iΓ [

k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ]

×(xρ1

1 )i

F2:2:1;−;−− [

k+ρ1i+ 1,−β+η+k+ρ1i+ 1 :λ+σ1i;−;

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 :−;−;

ax b , cx

]

(1.12) valid for min(k, λ, ρ1, σ1)>0,axb

<1andk+ρ1i >max{0, Re(β−η)} −1

I0α,β,η,x

[

xk(b−ax)−λSnm

(

xρ1(bax)−σ1)Sp

q

( xl)]

=b−λxk−β

[n/m] ∑

i=0 [q/p]

j=0

(−n)mi(−q)pj

(4)

Γ

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ]

×

( xρ1

bσ1

)i xlj

3F2 [

λ+σ1i, k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ; ax

b ]

valid for min(k, l, λ, ρ1, σ1)>0,axb

<1andk+lj+ρ1i >max{0, Re(β−η)−1}

I0α,β,η,x

[

xkecx(b−ax)−λ

Snm

(

xρ1(bax)−σ1)

Sqp

( xl)]

(1.14)

=b−λxk−β

[n/m] ∑

i=0 [q/p]

j=0

(−n)mi(−q)pj

i!j! An,iAq,j

Γ

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ]

×(xρ1

1 )i

xlj

F2:1;− 2:−;−

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1 :λ+σ1i;−;

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 :−;−;

ax b , cx

]

valid for min(k, l, λ, ρ1, σ1)>0, axb

<1andk+lj+ρ1i >max{0, Re(β−η)−1} Proofs: To establish the fractional calculus formulae (1.11) and (1.12), we first express the Srivastava polynomials Smn(x) occurring on its left-hand side in the series form given by (1.5) and than making use of the following binomial expansion for(b−ax)−λ

(b−ax)−λ =b−λ

∞ ∑

l=0

(λ)l

l!

(ax

b )l

,

ax b

<1 (1.15)

By using series expansion ofecx{for (1.12)}and also use of the well known formula as follows, or by using (1.3), takingf(x) =xk, we have

I0α,β,η,x

[ xk]

= Γ (k+ 1) Γ (−β+η+k+ 1) Γ (−β+k+ 1) Γ (α+η+k+ 1)x

k−β (1.16)

wherek >max (0, β−η)−1;( see [11]).

Further using the series expansion of3F2(.),we finally arrive at the desired results.

The fractional calculus formula (1.13) and (1.14) are established with the help of series expansions ofFlp:m:q;;kn[., .] given by (1.6) and than proceeding on lines similar to that of above, we arrive at the required results.

2. Applications

As the special cases of our main results, if we takingσ1= 0,fractional calculus

formula (1.11) readily yields

I0α,β,η,x

[

xk(b−ax)−λ

Snm(xρ1)

]

(2.1)

=b−λxk−β∑[n/m] i=0

(−n)mi

i! An,iΓ [

k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ]

×xρ1i3F2

[

λ, k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ;

ax b

]

valid for min(k, λ, ρ1)>0,axb

(5)

while (1.12) reduce to

I0α,β,η,x

[

xkecx(b−ax)−λ

Snm(xρ1)

]

(2.2)

=b−λxk−β∑[n/m]

i=0

(−n)mi

i! An,iΓ [

k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ]

×xρ1iF2:1;− 2:−;− [

k+ρ1i+ 1,−β+η+k+ρ1i+ 1 :λ;−;

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 :−;−;

ax b , cx

]

valid for min(k, λ, ρ1)>0,axb

<1 andk+ρ1i >max{0, Re(β−η)} −1.

Similarly (1.13) and (1.14) becomes

I0α,β,η,x

[

xk(b−ax)−λ

Smn (xρ1)Sqp

( xl)]

(2.3)

=b−λxk−β

[n/m] ∑

i=0 [q/p]

j=0

(−n)mi(−q)pj

i!j! An,iAq,j

Γ

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ]

×xρ1ixlj

3F2 [

λ, k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ; ax

b ]

valid for min (k, l, λ, ρ1)>0,axb

<1 andk+lj+ρ1i >max{0, Re(β−η)−1}.

I0α,β,η,x

[

xkecx(b−ax)−λ

Smn (xρ1)Sqp

( xl)]

(2.4)

=b−λxk−β

[n/m] ∑

i=0 [q/p]

j=0

(−n)mi(−q)pj

i!j! An,iAq,j

Γ

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ]

×xρ1ixlj

F2:1;− 2:−;−

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1 :λ;−;

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 :−;−;

ax b , cx

]

valid for min(k, l, λ, ρ1)>0,axb

<1 andk+lj+ρ1i >max{0, Re(β−η)−1}.

Out of these two results, (2.1) and (2.2) on specialization ofAn,i reduce to a very special results, due to Saigo and Raina (see [12]).

If we takeλ= 0 in (2.1) to (2.4), these formulae reduce to

I0α,β,η,x

[

xkSnm(xρ1)

]

(2.5)

=xk−β

[n/m] ∑

i=0

(−n)mi

i! An,iΓ

[

k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ]

xρ1i

valid for min(k, ρ1)>0,andk+ρ1i >max{0, Re(β−η)} −1

I0α,β,η,x

[

xkecxSnm(xρ1)

]

(2.6)

=xk−β

[n/m] ∑

i=0 ∞ ∑

j=0

(−n)mi

(6)

Γ

[

k+ρ1i+ 1,−β+η+k+ρ1i+ 1

−β+k+ρ1i+ 1, α+η+k+ρ1i+ 1 ]

xρ1i(cx)j

valid for min(k, ρ1)>0,andk+ρ1i >max{0, Re(β−η)} −1

I0α,β,η,x

[

xkSnm(xρ1)Sqp

( xl)]

(2.7)

=xk−β

[n/m] ∑

i=0 [q/p]

j=0

(−n)mi(−q)pj

i!j! An,iAq,j

Γ

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ]

×xρ1ixlj

valid for min(k, l, ρ1)>0,andk+lj+ρ1i >max{0, Re(β−η)} −1 I0α,β,η,x

[

xkecxSnm(xρ1)Sqp

( xl)]

(2.8)

=xk−β

[n/m] ∑

i=0 [q/p]

j=0

(−n)mi(−q)pj

i!j! An,iAq,j

Γ

[

k+ρ1i+lj+ 1,−β+η+k+ρ1i+lj+ 1

−β+k+ρ1i+lj+ 1, α+η+k+ρ1i+lj+ 1 ]

×xρ1,ixlj

valid for min(k, l, ρ1)>0,andk+lj+ρ1i >max{0, Re(β−η)} −1,These formulae

believed to be new.

Particular Cases

On account of the most general nature of Snm[x] occurring in our main results given by (1.11) to (1.14), a large number of formulae involving simpler functions of one and more variables can be easily obtained as their particular cases. We however have given here only few particular cases by way of illustration

(i) By settingρ1, σ1, b, a, m= 1 ,k=αand

An,i=

(1 +α+β+n)i(1 +α)n

n! (1 +α)i

in (1.11) and (2.1), we obtain results involving Jacobi polynomial Pn(α,β) and

Kampe′

de F e′

rietseries, given in (1.6) (ii) By settingρ1, σ1, b, a, c, m= 1 , k=αand

An,i =

(1 +α+β+n)i(1 +α)n

n! (1 +α)i

in (1.12) and (2.2), we obtain results involving Jacobi polynomialPn(α,β)and general triple hypergeometric functionF(3)[., ., .],given in (1.7).

(iii) By puttingρ1, σ1, b, a, m, l, p= 1 ,k=αand

An,i =

(1 +α+β+n)i(1 +α)n (1 +α)i

and

Aq,j =

(1 +α)q

(7)

in (1.13) and (2.3) yields a results involving the Jacobi polynomial Pn(α,β), La-guerre polynomialPq(α)and general triple hypergeometric functionF3[., ., .], given in (1.7).

(iv) By puttingρ1, σ1, b, a, m, l, p, c= 1 ,k=αand

An,i=

(1 +α+β+n)i(1 +α)n (1 +α)i

and

Aq,j =

(1 +α)q

q! (1 +α)j

in (1.14) and (2.4) yields a results involving the Jacobi polynomialPn(α,β), Laguerre polynomialPq(α)and Pathan’s quadruple hypergeometric functionsFP4[., ., ., .],given in (1.9).

(v) By settingρ1, m= 1 , k=αand

An,i=

(1 +α)n

n! (1 +α)i

in (2.5) and (2.6), we obtain results involving Laguerre polynomialPn(α)well known Gauss’ function. pFq(.) and Kampe′-de-Fe′riet series, given in (1.6) respectively. (vi) By puttingρ1, m, l, p= 1 ,k=αand

An,i=

(1 +α)n

n! (1 +α)i and

Aq,j =

(1 +α)q

q! (1 +α)j

in (2.7) and (2.8) yields a results involving the Laguerre polynomialsPn(α),Pq(α)and Kampe′

-de-Fe′

riet function and general triple hypergeometric functionsF3[., ., .], given by (1.6) and (1.7) respectively.

Acknowledgement

The authors wish to express their thanks to the worthy referee for his valuable suggestions and encouragement.

References

[1] P.K. Banerji and S. Choudhary, On the Fractional Calculus of a general class of polynomials, Indian J. Pure Appl. Math.27(7)(1996), 675-679.

[2] L. Dorc´ak, I. Petr´asˇ, J. Terp´ak and M. Zborovjan, Comparison of the methods for discrete

approximation of the fractional-order operator, Acta Montanistica Slovaca Ronk8(2003). [3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional

Dif-ferential Equations, North-Holland Mathematical Studies, Vol.204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, (2006).

[4] T. Miyakoda, Discretized Fractional Calculus with a Series of Chebyshev Polynomial, Elec-tronic Notes in Theoretical Computer Science (ENTCS)225, (2009), 239-244.

[5] M.A. Pathan, On a transformation of a general hypergeometric series of four variables, Ned-erl.Akad.Wetensch.Indag.Math.41(2)(1979), 171-175.

(8)

[7] R.K. Raina and R.K. Ladda, A new family of functional series relations involving digamma functions, Annales mathematiques Blaise Pascal, tome3,2(1996), 189-198.

[8] B. Ross, A Formula for the Fractional Integration and Differentiation of (a + bx) c, J.Fractional Calculus5(1994), 87-90.

[9] M. Saigo, A generalization of Fractional Calculus, Pitman (London), (1985), 188-98. [10] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions.

Kyushu University Mathematics Reports of the College of General Education XI(2)(1978), 135-143.

[11] M. Saigo and R.K. Raina, Fractional calculus operators associated with a general class of polynomials, Fukuoka Univ. Sci. Rep.18(1988), 15-22.

[12] M. Saigo and R.K. Raina, On the fractional calculus operator involving Gauss’s series and its applications to certain statistical distortions. Rev. Tec. Ing. Univ. Zulia14 (1)(1991), 53-62. [13] T.A. Salman, Fractional calculus and non-differentiable functions. Res. J. Applied Sci., 4

(2009) 26-28.

[14] H.M. Srivastava, A contour integral involving Fox’s H-function, Indian J.Math.14 (1972), 1-6.

[15] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, John Wiley and Sons, New York, 1985.

[16] H.M. Srivastava and M. Saigo, Multiplication of fractional calculus operator and boundary value problems involving the Euler-Darboux equation, J.Math.Anal.Appl.121(1987), 325-369.

[17] G. Szego, Orthogonal polynomials, Amer.Math.Soc. Providence, Rhode Island,23(4)(1975). [18] C.C. Tseng, Series expansion design of variable fractional order integrator and differentiator

using logarithm. Signal Processing88(9)(2008), 2278-2292.

PRAVEEN AGARWAL

Department of Mathematics,, Anand International College of Engineering, Jaipur-303012, INDIA

E-mail address:goyal praveen2000@yahoo.co.in

SHILPI JAIN

Referensi

Dokumen terkait

PEMERINTAH KABUPATEN TANAH BUMBU SEKRETARIAT DAERAH.. UNIT

Untuk Jalan Arteri Primer Sudirman volume arus lalu lintas harian tertinggi terjadi pada hari Senin sebesar 2823,2 smp / jam, kapasitas (C) Jalan Arteri Primer Sudirman adalah

Dengan mempertimbangkan mekanisme interaksi antara air dan mineral lempung yang terkandung dalam tanah ekspansif terlihat bahwa ada tiga komponen yang paling berperan

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

Demikian pengumuman ini kami sampaikan, apabila ada peserta yang berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara tertulis atas penetapan

Demikian pengumuman ini kami sampaikan, apabila ada peserta yang berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara tertulis atas penetapan

Hasil penelitian menunjukkan bahwa usaha sektor formal dan sektor informal mengalami perbedaan kinerja pada aspek pemasaran (distribusi dan jangkauan wilayah