• Tidak ada hasil yang ditemukan

Evaluasi Kestabilan Lereng Pada Tambang Terbuka Di Tambang Batubara.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Evaluasi Kestabilan Lereng Pada Tambang Terbuka Di Tambang Batubara."

Copied!
35
0
0

Teks penuh

(1)

vii

EVALUASI KESTABILAN LERENG PADA

TAMBANG TERBUKA DI TAMBANG BATUBARA

Robert Travolta Butar-butar NRP: 0621035

Pembimbing: Ir. Ibrahim Surya, M.Eng.

Pembimbing Pendamping: Ir. Asriwiyanti Desiani, MT.

ABSTRAK

Aktivitas manusia yang berhubungan dengan Tambang khususnya Tambang Batubara di tambang terbuka akan selalu menghadapi permasalahan dengan lereng (Slope). Lereng tersebut harus dianalisis kemantapannya untuk mencegah bahaya longsor di waktu-waktu yang akan datang, karena menyangkut keselamatan kerja, keamanan peralatan, harta benda, dan kelancaran produksi.

Pada laporan tugas akhir ini akan dilakukan evaluasi stabilitas lereng pada lereng tambang (Pit) KCMB yang terletak di provinsi Kalimantan Selatan. Ketinggian lereng tambang mencapai 108.3052 meter dari permukaan tanah dengan kemiringan lereng sebesar 50 derajat. Analisis kestabilan lereng menggunakan program Rocscience Slide V.5014 dengan dua penyelesaian yaitu Metode Janbu Simplified dan Metode Bishop Simplified. Dari kedua metode tersebut akan dicari nilai faktor keamanannya (Safety Factor) yang terkecil.

Dari hasil analisis kestabilan lereng untuk kondisi Lereng tambang tanpa beban kendaraan, Lereng tambang dengan satu Dump Truk, Lereng tambang dengan dua Dump Truk dan Lereng tambang dengan Dump Truk pada setiap lipatan lereng, nilai faktor keamanan yang terkecil adalah 1.922. Perbedaan antara Metode Simplified Janbu dan Metode Simplified Bishop berkisar antara 6.92 % sampai 13.96 %. Lereng tambang (Pit) KCMB berada dalam kondisi stabil dan aman dari bahaya longsoran karena nilai FOS (Factor of Safety) > 1.

(2)

viii

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa, atas segala rahmat yang dilimpahkan oleh-Nya, sehingga dapat menyelesaikan penyusunan Tugas Akhir. Tugas Akhir merupakan pembahasan laporan penellitian dengan judul EVALUASI KESTABILAN LERENG PADA

TAMBANG TERBUKA DI TAMBANG BATUBARA. Tugas Akhir diajukan

sebagai syarat untuk menempuh ujian sarjana di jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha, Bandung.

Penulis menyadari bahwa Tugas Akhir ini masih jauh dari sempurna serta masih bersifat sederhana, mengingat keterbatasan waktu dan kemampuan penulis. Pada kesempatan ini, penulis mengucapkan terima kasih kepada semua pihak yang telah membantu dalam penyusunan Tugas Akhir, khususnya kepada:

1. Ibrahim Surya, Ir., M.Eng., selaku dosen pembimbing yang telah banyak memberikan bimbingan dan pengarahan dalam penyusunan Tugas Akhir. 2. Asriwiyanti Desiani, Ir., M.T., selaku dosen pembimbing pendamping

yang telah banyak memberikan bimbingan dan pengarahan dalam penyusunan Tugas Akhir.

3. Herianto Wibowo, Ir., M.Sc., Hanny J. Dani, S.T., M.T., Yosafat Aji Pranata, S.T., M.T., selaku dosen penguji yang telah banyak memberikan masukan dan saran dalam penyusunan Tugas Akhir ini.

4. Tan Lie Ing, S.T., M.T., selaku Ketua Jurusan Teknik Sipil yang telah membantu dalam penyelenggaraan Tugas Akhir.

5. Yosafat Aji Pranata, S.T., M.T., selaku Koordinator Tugas Akhir Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha.

6. Segenap staf edukatif dan administrasi Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha.

(3)

ix

8. Yogie Baskoro, S.T., selaku Staff Engineering PT. PAMAPERSADA NUSANTARA yang telah banyak memberikan pengetahuan khususnya tentang Slope Stability dan pengarahan dalam menyusun Tugas Akhir ini. 9. Kedua orangtua saya tercinta, L.Butar-butar dan R.Manurung yang selalu

mengingatkan dan memberikan motivasi, semangat, serta dukungan doa yang luar biasa kepada saya dalam menyusun Tugas Akhir ini.

10.Kedua kakak saya, Hasudungan Butar-butar dan Ucok Toni Eduart yang memberikan semangat dan dorongan agar dapat menyelesaikan Tugas Akhir ini dengan cepat.

11.Kekasihku tercinta, Tiolo Elgaria Situngkir yang tiada henti-hentinya memberikan semangat, kasih sayang dan perhatian dalam proses menyelesaikan Tugas Akhir ini.

12.Ardilez, Leonardo dan Yusuf Rendy selaku teman seperjuangan saya dari semester I.

13.Mahasiswa Sipil angkatan 2006, telah memberikan banyak inspirasi dalam penyusunan Tugas Akhir ini.

Bandung, Juni 2010 Penyusun

(4)

x

DAFTAR ISI

HALAMAN JUDUL i

SURAT KETERANGAN TUGAS AKHIR ii

SURAT KETERANGAN SELESAI TUGAS AKHIR iii

LEMBAR PENGESAHAN iv

PERNYATAAN ORISINALITAS LAPORAN TUGAS AKHIR v

PERNYATAAN PUBLIKASI LAPORAN PENELITIAN vi

ABSTRAK vii

KATA PENGANTAR viii

DAFTAR ISI x

DAFTAR GAMBAR xiii

DAFTAR TABEL xv

DAFTAR NOTASI xvi

DAFTAR LAMPIRAN xviii

BAB I PENDAHULUAN 1

1.1 Latar Belakang Masalah 1

1.2 Tujuan Penulisan 2

1.3 Ruang Lingkup Pembahasan 2

1.4 Sistematika Penulisan 2

BAB II TINJAUAN PUSTAKA 4

2.1 Klasifikasi Lereng 4

2.1.1 Lereng Alam 4

2.1.2 Lereng Buatan 5

2.2 Jenis dan Mekanisme Gerakan Tanah dan Longsoran 5

2.2.1 Runtuhan (Falls) 5

2.2.2 Pengelupasan (Topples) 6

(5)

xi

2.3 Penyebab Gerakan Tanah dan Longsoran 7 2.4 Prosedur Penyelidikan dan Perencanaan Kestabilan Lereng 8

2.4.1 Topografi 9

2.4.2 Tinjauan Geologi dan Prosedur Penyelidikan Lapangan 10

2.4.3 Penyelidikan Tanah 10

BAB III ANALISIS STABILITAS LERENG 12

3.1 Rocscience Slide V.5014 12

3.2 Metode Perhitungan Rocscience Slide V.5014 13

3.2.1 Metode Simplified Janbu 13

3.2.2 Metode Simplified Bishop 15

3.3 Penggunaan Program Rocscience Slide V.5014 16

3.3.1 Pengaturan Lembar Kerja 16

3.3.2 Pengaturan Proyek 18

3.3.3 Batas Eksternal 19

3.3.4 Slip Surface 20

3.3.5 Menentukan Sifat Material 21

3.3.6 Menentukan Beban Luar dan Beban Gempa 21

3.3.7 Metode Analisis 23

3.3.8 Analisis Model Lereng 24

3.3.9 Interpretasi Analisis 24

BAB IV APLIKASI KESTABILAN LERENG MENGGUNAKAN

PROGRAM ROCSCIENCE SLIDE V.5014 26

4.1 Deskripsi Daerah Tinjauan Studi 26

4.1.1 Letak Lereng Tambang 27

4.1.2 Penampang Melintang Lereng Tambang 28

4.2 Input Program 28

4.2.1 External Boundararies 28

4.2.2 Material Properties 29

(6)

xii

4.3 Kombinasi Pembebanan 39

4.3.1 Lereng Tambang Tanpa Beban Kendaraan 40 4.3.2 Lereng Tambang Dengan Satu Dump Truck 40 4.3.3 Lereng Tambang Dengan Dua Dump Truck 41 4.3.4 Lereng Tambang Dengan Dump Truck Pada Setiap

Lipatan Lereng 41

4.4 Output Program 42

BAB V KESIMPULAN DAN SARAN 51

5.1 Kesimpulan 51

5.2 Saran 52

DAFTAR PUSTAKA 53

(7)

xiii

DAFTAR GAMBAR

Gambar 2.1 Runtuhan Batuan ………. 6

Gambar 2.2 Ilustrasi Rock Topples dan Debris Topples ……… 7

Gambar 3.1 Gaya-gaya yang bekerja pada setiap irisan ………. 13

Gambar 3.2 Faktor koreksi Janbu ………... 14

Gambar 3.3 Lembar Kerja ……….. 17

Gambar 3.4 Pengaturan Kertas Kerja ………. 17

Gambar 3.5 Pengaturan Grid ……….. 18

Gambar 3.6 Pengaturan Proyek ……….. 19

Gambar 3.7 Batas Eksternal ………19

Gambar 3.8 Pengaturan Grid Spacing ……… 20

Gambar 3.9 Slip Surfaces ………20

Gambar 3.10 Sifat Material Tanah ………... 21

Gambar 3.11 (a) Beban Merata, (b) Beban Terpusat ……… 22

Gambar 3.12 Beban Gempa ……….. 23

Gambar 3.13 Metode Analisis ……….. 23

Gambar 3.14 Interpretasi Analisis ……… 24

Gambar 4.1 Peta Pit KCMB ………... 26

Gambar 4.2 Letak Lereng Tambang ………... 27

Gambar 4.3 Penampang Melintang Lereng Tambang ……… 28

Gambar 4.4 Batas Eksternal Lereng ………... 29

Gambar 4.5 Kegiatan Pemboran (Drilling) ……… 29

(8)

xiv

Gambar 4.7 Bobot berat kendaraan Dump Truck ………... 36

Gambar 4.8 Bobot berat kendaraan roda depan Dump Truck ………. 37

Gambar 4.9 Bobot berat kendaraan roda belakang Dump Truck ……… 38

Gambar 4.10 Peta Wilayah Gempa di Indonesia ……….. 39

Gambar 4.11 Lereng tambang tanpa beban kendaraan ………. 40

Gambar 4.12 Lereng tambang dengan satu Dump Truck ………. 40

Gambar 4.13 Lereng tambang dengan dua Dump Truck ……….. 41

Gambar 4.14 Lereng tambang dengan Dump Truck pada setiap lipatan lereng ………... 41

Gambar 4.15 Janbu Simplified - Lereng tambang tanpa beban kendaraan ….. 43

Gambar 4.16 Bishop Simplified - Lereng tambang tanpa beban kendaraan …. 44 Gambar 4.17 Janbu Simplified - Lereng tambang dengan satu Dump Truck ... 45

Gambar 4.18 Bishop Simplified - Lereng tambang dengan satu Dump Truck .. 46

Gambar 4.19 Janbu Simplified - Lereng tambang dengan dua Dump Truck … 47 Gambar 4.20 Bishop Simplified - Lereng tambang dengan dua Dump Truck .. 48

Gambar 4.21 Janbu Simplified - Lereng tambang dengan Dump Truck pada setiap lipatan lereng ……… 49

(9)

xv

DAFTAR TABEL

Tabel 4.1 Hasil uji laboratorium (Top Soil) [PT. PAMAPERSADA NUSANTARA] ………. 31

Tabel 4.2 Hasil uji laboratorium (Kelompok 1 – Kelompok 5)

[PT. PAMAPERSADA NUSANTARA] ……….. 32 Tabel 4.3 Hasil uji laboratorium (Kelompok 6 – Kelompok 10)

[PT. PAMAPERSADA NUSANTARA] ……….. 33 Tabel 4.4 Hasil uji laboratorium (Kelompok 11 – Kelompok 15)

[PT. PAMAPERSADA NUSANTARA] ……….. 34 Tabel 4.5 Hasil uji laboratorium (Kelompok 16 – Kelompok 18)

(10)

xvi

DAFTAR NOTASI

b = Lebar irisan (m) c = Kohesi (KN/m2)

o

f = Faktor koreksi janbu F = Faktor keamanan

V

F = Gaya vertikal (KN)

H

F = Gaya horisontal (KN) Hu = Koefisien muka air tanah h = Tinggi irisan (m)

c

h = Tinggi dari pusat massa irisan ke dasar irisan (m)

L

h = Tinggi dari gaya ZL ke dasar irisan (m)

R

h = Tinggi dari gaya ZRke dasar irisan (m)

v

k = Koefisien gempa arah vertikal

h

k = Koefisien gempa arah horizontal '

N = Tegangan normal efektif (KN/m2) Q = Gaya luar (KN)

R = Jari-jari lingkaran permukaan gelincir (m)

a

S = Available strength (CN'tan) (KN/m2)

m

S = Mobilized strength (KN/m2)

U = Tekanan air pori (KN/m2)

(11)

xvii

L

Z = Gaya arah kiri irisan (KN)

R

Z = Gaya arah kanan irisan (KN) = Kemiringan dasar irisan (derajat)

= Kemiringan permukaan irisan (derajat)

L

= Sudut gaya irisan kiri (derajat)

R

= Sudut gaya irisan kanan (derajat) = Sudut geser dalam (derajat)

(12)

xviii

DAFTAR LAMPIRAN

(13)

Universitas Kristen Maranatha 54

DAFTAR LAMPIRAN

(14)

Universitas Kristen Maranatha 55

LAMPIRAN I

(15)

GROSS HORSEPOWER 895 kW 1,200 HP

NET HORSEPOWER 879 kW1,178 HP

MAXIMUM GVW 166000 kg 366,000 lb

Machine shown may include optional equipment.

HD

785

HD785

-7

STANDARD EQUIPMENT FOR BASE MACHINE

OPTIONAL EQUIPMENT

CAB:

● Air conditioner

● Heater and defroster

● Operator seat, air suspension type

● Power window (RH)

● Radio, AM/FM with cassette

● Sunvisor, additional

BODY:

● Body liners

● Platform guard, right hand side

● Muffler (without body heating)

LIGHTING SYSTEM:

● Buck-up light additional

● Back work lights, left and right sides

● Fog lights

● LED rear combination lights

SAFETY:

● Antilock Brake System (ABS)

● Automatic Spin Regulator (ASR)

● Exhaust retarder

● Rear view camera and monitor

● Tire stopper blocks

ARRANGEMENT:

● Batteries for cold area arrangement

● Cold area arrangement

● Sandy and dusty area arrangement

OTHER:

● Auto-greasing system

● Engine coolant heater

● Engine oil pan heater

● Engine side cover

● Engine underguard

● Fire extinguisher

● Fuel quick charge

● Payload meter

● Spare parts for first service

● Three-mode hydropneumatic suspension

● Tool kit

● Transmission underguard

● Vandalism protection

● VHMS with satellite communication kit

TIRES:

● 31/90 R49

ENGINE:

● Automatic Idling Setting System (AISS)

● Alternator, 90A/24V

● Batteries, 4 x 12V/170Ah

● EPA Tiea 2 emission regulation certified

engine, Komatsu SAA12V140E-3

● Mode selection system with VHPC

● Starting motor, 2 x 7.5 kW

CAB:

● Ashtray

● Cigarette lighter

● Cup holder

● Electronic dump control system with

body positioner

● Electronic maintenance

display/monitoring system

● Laminated glass, front

● Operator seat, reclining, suspension type

with retractable 78 mm3" width seat belt

● Passenger seat with retractable seat belt

● Power window (LH)

● ROPS cab with FOPS, sound

suppression type

● Space for lunch box

● Steering wheel, tilt and telescopic

● Sunvisor

● Two doors, left and right

● Windshield washer and wiper

(with intermittent feature)

LIGHTING SYSTEM:

● Back-up light

● Hazard lights

● Headlights

● Indicator, stop and tail lights

GUARD AND COVERS:

● Cab guard

● Canopy spill guard

● Drive shaft guard (front and rear)

● Exhaust thermal guard

● Fire protective covers

SAFETY EQUIPMENT:

● Alarm, backup

● Anti-pitching 4-wheel oil-cooled multiple

disc retarder (AP-FOUR)

● Automatic Retard Speed Control (ARSC)

● Automatic supplementary steering

● Coolant temperature alarm and light

● Hand rails for platform

● Horn, electric

● Ladders, left and right hand sides

● Overrun warning system

● Rearview mirrors and under view mirrors

OTHER:

● Centralized greasing

● Electric circuit breaker, 24V

● Disc wheels (Flange type rims)

● Mud guards

● Vehicle health monitoring system

(VHMS)

BODY:

● Body exhaust heating

● Cab guard, left side

● Spill guard, 150mm6"

TIRES:

● 27.00 R49

www.komatsu.com Printed in Japan 200810 IP. P. AD(15)

Materials and specifications are subject to change without notice is a trademark of Komatsu Ltd. Japan Standard equipment may vary for each country, and this specification sheet may contain attachments and optional equipment that are not available in your area. Please consult your Komatsu distributor for detailed information.

(16)

W

ALK

-A

ROUND

HD785

-7

OFF-HIGHWAY TRUCK

HD785

-7

O

F F

- H

I G H W A Y

T

R U C K

3 2

GROSS HORSEPOWER 895 kW1,200 HP @ 1900 rpm

NET HORSEPOWER 879 kW1,178 HP @ 1900 rpm

MAXIMUM GVW 166000 kg 366,000 lb

Machine shown may include optional equipment.

Productivity and Economy Features

●High performance Komatsu SAA12V140E-3 engine Net horsepower 879kW1,178HP

●Mode selection system with variable horsepower control (VHPC)

●Two-speed selective reverse gears of RH and RL

●Anti-pitching 4-wheel oil-cooled multiple-disc retarder (AP-FOUR) Retarder absorbing capacity

1092kW1,464HP (Continuous descent)

●Automatic retard speed control (ARSC) as standard

Harmony with Environment

●Komatsu SAA12V140E-3 engine is

EPA Tier 2 emission regulation certified

●Lead-free radiator

●Low operation noise

●Low fuel consumption

Operator Environment and Safety

●Spacious cab with excellent visibility ●Ergonomically designed cab

●Easy-to-see instrument panel

●Synchronous control of engine and transmission

●AdvancedK-ATOMiCS with “Skip-shift” function ●Viscous cab mounts

●Electric body dump control ●Built-in ROPS/FOPS cab ●Parking brakes on 4-wheels

●Supplementary steering

●Pedal-operated secondary brake

●Three-mode automatic hydropneumatic suspension (Option)

Reliability Features

●Flat face-to-face O-ring seals ●Sealed DT connectors

Easy Maintenance

Oil-cooled multiple-disc brakes and fully hydraulic controlled braking system

Extended oil change intervalDisc Wheels (Flange type rims)Electric circuit breaker

(17)

Automatic selection Selection with the switch 700 800 900 kW

P

E

Power mode Economy mode 895kW (1200HP) 809kW (1085HP) 750kW (1005HP) 698kW (936HP) 5

HM350-1

ARTICULATED DUMP TRUCK

4

P

RODUCTIVITY &

E

CONOMY

F

EATURES

HD785

-7

OFF-HIGHWAY TRUCK

HD785

-7

O

F F

- H

I G H W A Y

T

R U C K

Mode selection system with VHPC

The system allows selection of the appropriate mode between two modes <Power mode > or <Economy mode> according to each working condition. The mode is easily selected with a switch in the operator’s cab. When the key switch is turned on, Economy mode is selected automati-cally. Select Power mode by using the switch when needed.

AP-FOUR (Anti-pitching 4-wheel oil-cooled multi-ple disc retarder)

The machine is equipped with 4-wheel retarder “AP-FOUR (Anti-pitching 4-wheel oil-cooled multiple disc retarder)” that applies retarding force on all four wheels. With this retarder, the retarding force is shared between four wheels.

This reduces the possibility of tire-lock and enables effec-tive use of retarder capacity, allowing stable downhill travel. The machine descends slopes smoothly and comfortably without machine body pitching since retarding force on front and rear wheels is controlled independently.

Auto Retard Speed Control (ARSC)

ARSC allows the operator to simply set the downhill travel speed and go down slopes at a constant speed. As a result, the operator can concentrate on steering. The speed can be set at increments of 1 km/h0.6 MPH per click (±5 km/h3.1 MPH of setting speed adjustment) to match the optimum speed for the slope. Also, since the retarder cooling oil temperature is always monitored, the speed is automatically lowered.

High performance Komatsu SAA12V140E-3 engine

This engine delivers faster acceleration and higher travel speeds with high horsepower per ton. Advanced technology, such as High Pressure Common Rail injection system (HPCR), air-to-air aftercooler efficient turbo-charger enables the engine to be North American EPA Tier 2 emis-sion certified. High torque at low speed, impressive acceler-ation, and low fuel consumption ensure maximum productiv-ity. Go down slope at constant speed UP SET DOWN CANCEL AUTO RETARD SPEED CONTROL Conventional AP-FOUR

R : Retarder ( 2-Wheel ) F, R : Retarder ( 4-Wheel )

• Retarder absorbing capacity

1092 kW1,464 HP (continuous descent) • Brake surface area

Front total :37467 cm2 5,807 in2

Rear total :72414 cm2 11,956 in2

F7-R2 (RH/RL) fully automatic transmission

The transmission is configured with 7 forward and 2 reverse gears. Fully automatic control is applied to all for-ward gears and an optimum gear is automatically selected according to the travel speed

and engine speed. The shift-ing point is automatically selected depending on the acceleration of the machine to reduce excessive fuel consumption.

VHPC (Variable horsepower control)

Both in Power and Economy modes, the VHPC system detects whether machine condition is loaded or unloaded and selects optimum horsepower setting mode, providing both high production and low fuel consumption.

Power mode:Makes best use of the horsepower to attain optimal production. This mode is suitable for operation in job sites including uphill travel with load where throughput takes top priority.

Economy mode:Sets the maximum horsepower at low level to reduce fuel consumption. The machine maintains sufficient power for normal operation in this mode.

Two-speed selective reverse gears (RH/RL)

In order to meet various operating conditions, two reverse gears are provided. The switch on the panel allows the operator to select optimum reverse gear of RH or RL depending on the job site conditions at hand. Furthermore, the reverse gear is equipped with a lockup clutch, just like forward gear, allowing the operator to reverse the machine without worrying about overheating.

RH

Suitable for normal operation. Thanks to the lockup clutch, the machine can be reversed at higher speed than the cur-rent machine while having the same rimpull.

RL

(18)

O

PERATOR

E

NVIRONMENT

HD785

-7

OFF-HIGHWAY TRUCK

HD785

-7

O

F F

- H

I G H W A Y

T

R U C K

6 7

Automatic Idling Setting System (AISS)

This system facilitates quick engine warm-up and cab cool-ing/warming. When setting the system ON,

engine idle speed is kept at 945 rpm when coolant temperature is 50°C122°F or lower. Speed automatically returns to 750 rpm when coolant temperature reaches 50°C122°F.

Small turning radius

The MacPherson strut type front suspension has a special A-frame between each wheel and

the main frame. The wider space created between the front wheels and the main frame increases the turn-ing angle of the wheels. The larger this turning angle, the smaller the turn-ing radius of the truck.

10.1m 33’2"

A-frame

Long wheelbase and wide tread

With an extra-long wheelbase, a wide tread and an excep-tionally low center of gravity, the HD785-7 hauls the load at higher speed for greater productivity, and delivers superior driving comfort over rough terrain.

Large body

A wide target area makes for easy loading with minimal soil spillage and more efficient hauling.

Heaped capacity :60.0m3 78.5yd3

Target area (inside length x width) :

7065mm23' 2" x 5200mm17' 1"

Spacious cab with excellent visibility

Wide windows in the front, side and back, plus plenty of space in the richly upholstered interior, provide quiet, com-fortable environment from which to see and control every aspect of operation. Front under view mirrors have been added to improve safety.

Ergonomically designed cab

The ergonomically designed operator's compartment makes it very easy and comfortable for the operator to use all the controls. The result is more confident operation and greater productivity.

Easy-to-see instrument panel

The instrument panel makes it easy to monitor critical machine functions. In addition, a caution light warns the operator of any problems that may occur. Problems are recorded in the monitor and indicated as service codes. This makes the machine user friendly and easy to service.

Ideal driving position settings

The 5-way adjustable operator seat and the tilt-telescopic steering column provide an optimum driving posture, for increased driving comfort and more control over machine operation. The suspension seat dampens vibrations trans-mitted from the machine and reduces operator fatigue as well as holding the operator securely to assure confident operation.78mm 3" width seat belt is provided as stan-dard equipment.

Eliminating hydraulic losses & optimizing trans-mission control

Hydraulic circuits such as brake cooling, steering, body dump control, etc. are thoroughly reviewed and the trans-mission control is optimized to reduce fuel consumption. As a result, the fuel consumption for operation with medium and light load is improved.

6

Machine sho

(19)

Electric body dump control

Electric lever is used for body dump control. The lever is short in control travel and can be operated with light control effort. “Kick-out function” provided for the lever facilitates body dump operation, eliminating the need to hold the lever in dump position. Furthermore,

body seating shock is significantly reduced because a sensor detects the body just before reaching the seat and reduces speed of decent.

Advanced K-ATOMiCS

The electronically controlled all clutch modulation system “K-ATOMiCS” that optimizes the clutch engagement oil sure at every gear is further improved so that the oil pres-sure at lockup clutch engagement is optimized to realize smooth shifting without torque off.

“Skip-shift” function

Automatically selects the gear according to the slope grade when driving uphill. It reduces the number of down-shifts, makes the driving smoother, improves the operator’s com-fort and reduces spilling of material.

Viscous cab mounts

Large capacity viscous cab mounts with excel-lent damping performance are used to mount the cab. They reduce cab vibration significantly and provide comfortable cab space with superb quietness and less vibrations. Noise level at operator’s ear 75 dB(A)

Built-in ROPS/FOPS cab

These structures con-form to ISO3471 ROPS standard, and ISO 3449 FOPS standard.

Supplementary steering and secondary brake

Supplementary steering and secondary brakes are standard features.

Steering: ISO 5010, SAE J1511 Brakes: ISO 3450

Pedal-operated secondary brake

If there should be a failure on the foot brake circuit, both front and rear parking brakes are

activated as a pedal operated secondary brake. In addition, when hydraulic pressure drops below the rated level, the parking brake is automatically actuated.

Parking brakes on 4-wheels

The machine is equipped with spring applied parking brakes on 4-wheels. Wet multiple disc brakes built in both front and rear axles apply braking force to all four wheels. These brakes are highly reliable require no periodic mainte-nance.

Three-mode Automatic hydropneumatic suspension (Option)

Suspension mode is automatically switched to one of three stages (soft, medium and hard) according to load and oper-ating conditions, for a more comfortable and stable ride.

Antilock Braking System (ABS) (Option)

Using its outstanding electronics technology, Komatsu is the first in the industry to introduce ABS on construction machinery. This system prevents the tires from locking, thus minimizes skidding under slippery conditions while applying the service brake.

Automatic Spin Regulator (ASR) (Option)

ASR automatically prevents the rear tires on either side from slipping on soft ground for optimal traction.

F4 F4 Shift hold F4 Shift down F1 F4 F4 Shift down F3 F3 Shift down F2 F2 Shift down F1 Conventional Skip-shift

SAFETY

Synchronous control of engine and transmission

At the time of gear shifting, the engine speed is controlled to coincide with transmission rotation speed to reduce shift-ing shocks. The synchronous control contributes to improve durability of power train since it reduces torque fluctuation.

The MacPherson strut type front suspension

The MacPherson type independent suspension is installed to the front wheels. The linkage arrangement with less fric-tion allows the front wheel to follow the undulafric-tion of road surface smoothly, realizing excellent riding comfort.

HD785

-7

OFF-HIGHWAY TRUCK

HD785

-7

O

F F

- H

I G H W A Y

T

R U C K

9 8

(20)

R

ELIABILITY

F

EATURES

E

ASY

M

AINTENANCE

HD785

-7

OFF-HIGHWAY TRUCK

HD785

-7

O

F F

- H

I G H W A Y

T

R U C K

11 10

Wet multiple-disc brakes and fully hydraulic con-trolled braking systems realize lower maintenance costs and higher reliability. Wet disc brakes are fully sealed to keep contaminants out, reducing wear and maintenance. Brakes require no adjustments for wear, meaning even lower maintenance. The parking brake is also an adjust-ment-free, wet multiple-disc system for high reliability and long life. Added reliability is designed into the braking sys-tem by the use of three independent hydraulic circuits pro-viding hydraulic backup should one of the circuits fail. Fully hydraulic braking systems eliminate the air system so air bleeding is not required, and water condensation that can lead to contamination, corrosion and freezing is eliminated.

High-rigidity frame

Front support is integrated with the frame. The frame rigidity is increased

drastically. As a result, flexural rigidity and torsional rigidity that are indicators of drivability and riding quality are significantly improved.

Komatsu components

Komatsu manufactures the engine, torque converter, transmission, hydraulic units, and electrical parts on this dump truck. Komatsu dump trucks are manufactured with an integrated production system under strict quality control sys-tem guidelines.

Sealed DT connectors

Main harnesses and controller connectors are equipped with sealed DT connectors providing high reliability, water resistance and dust resistance.

Reliable hydraulic system

A large capacity oil cooler is installed in each hydraulic circuit, improving the reliability of the hydraulic units during sudden temperature rises. Further, in addition to the main filter, ␤10= 3 (min) line filter is located at the entrance to the

transmission control valve. This system helps prevent sec-ondary faults.

Flat face-to-face O-ring seals

Flat face- to- face O-ring seals are used to securely seal all hydraulic hose connections and to prevent oil leakage.

Extended oil change intervals

In order to minimize operating costs, oil change intervals have been extended:

●Engine oil 500 hours

●Hydraulic oil 4000 hours

Disc wheels (Flange type rims)

Disc wheels (Flange type rims) provide easy removal/installa-tion for the tires.

Vehicle Health Monitoring System (VHMS)

VHMS controller monitors the health conditions of major components, enables remote analysis of the machine and its operation. This process is supported by the Komatsu distrib-utors, factory and design team.

Centralized greasing points

Greasing points are central-ized at three locations, it enables to approach from ground level.

Centralized arrangement of filters

The filters are centralized so that they can be serviced easily. KOMATSU WebCARE Server Personal computer terminal (for downloading data) Internet Komatsu distributors Customer job site Satellite communication (Option) O-ring Nipple Hose

Protection functions supported by electronic control

Item Function

! " # $

% $

% $ " & $ ! $

%

Rugged and durable dump body design

The standard dump body is made of high-tensile-strength steel with a Brinell hardness of 400 for excellent rigidity and reduced maintenance

cost. The shape and V-bottom design also

increase structural strength. The side and bottom plates of the dump section are reinforced with ribs for added strength.

Lead-free radiator

In addition to compliance with emission regulations, a lead-free aluminum core is used for the radiator to meet global environmental requirements.

Brake cooling oil recovery tank

To protect the environment, a tank is installed to recover brake cooling oil in the event of brake floating seal leakage.

Electric circuit breaker

A circuit breaker is adopted in important electric circuits that should be restored in a short time when a problem occurs in the electrical sys-tem.

Advanced monitoring system

The Komatsu advanced monitoring system identifies main-tenance items, reduces diagnostic times, indicates oil and filter replacement hours and displays abnormality codes. This monitor system helps to maximize machine production time.

Payload Meter (PLM)(Option)

PLM allows the production volume and the working condi-tions on the dump truck to be analyzed and controlled directly via a personal computer. And also the loadage is indicated with the outside lamp. The system can store up to 2900 working cycles.

(21)

12

HD785

-7

OFF-HIGHWAY TRUCK

DIMENSIONS

27.00 R49 27.00 R49 4¡8 5530mm18'2" 450mm 1'6" 4325mm14'2" 850mm2'9" 505mm 1'8" 10100mm 33'2"

165mm 6.5"

892mm

2'1

1"

2150mm7'1" 4950mm16'3" 3190mm10'6"

10290mm33'9" 7065mm23'2" 9745mm32'0" 5050mm 16'7" 4695mm 15'5" 1860mm 6'1" 985mm 3'3" 4285mm 14'1" 10080mm 33'1" 3500mm 11'6" 5200mm 17'1" !

"#$

"%

"#$ "%

& ' ( ) & * (+*

TRAVEL PERFORMANCE CURVE POWER-MODE &

!" #

$ % &' ( $') &*)

TRAVEL PERFORMANCE CURVE ECONOMY-MODE ' +' !" # $ TRAVEL PERFORMANCE ! " # $ ! % #&% ' ()*

+,-./0 1*023, 41,04514

! " # !$#

% & '() * * * * * * *%

+,-./0 1)023, 41,04514

Grade distance: Continuous Descent Grade distance: 450 m (1,480 ft)

To determine travel performance: Read from gross weight down to the percent of total resistance. From this weight-resistance point, read horizontally to the curve with the highest obtainable speed range, then down to maximum speed. Usable rimpull depends upon traction available and weight on drive wheels.

To determine brake performance: These curves are provided to establish the maximum speed and gearshift position for safer descents on roads with a given distance. Read from gross weight down to the percent of total resistance. From this weight resistance point, read

horizontally to the curve with the highest obtainable speed range, then down to maxi-mum descent speed the brakes can safely handle without exceeding cooling capacity.

(22)

13

HD785

-7

O

F F

- H

I G H W A Y

T

R U C K

S

PECIFICATIONS

AXLES

Rear axles . . . Full-floating Final drive type . . . Planetary gear Ratios:

Differential . . . 3.357 Planetary . . . 6.333

TRANSMISSION

Torque converter . . . 3-elements, 1-stage, 2-phase Transmission . . . Full-automatic, planetary-shaft type Speed range . . . 7 speeds forward and 2 reverse (RH, RL) Lockup clutch . . . Wet, multiple-disk clutch Forward . . . Torque converter drive in 1st gear, direct drive in 1st lockup and all higher gears Reverse . . . Torque converter drive, direct drive (lockup) Shift control . . . Electronic shift control with automatic

clutch modulation in all gear Maximum travel speed . . . .65 km/h 40.4 mph

ENGINE

Model . . . Komatsu SAA12V140E-3 Type . . . Water-cooled, 4-cycle Aspiration. . . Turbo-charged, after-cooled Number of cylinders . . . 12 Bore x Stroke . . . 140 mmx 165 mm 5.51" x 6.50" Piston displacement . . . 30.48 ltr 1,860 in3

Horsepower

SAE J1995. . . Gross 895 kW 1,200 HP ISO 9249 / SAE J1349 . . . Net 879 kW 1,178 HP Rated rpm. . . 1,900 rpm Fan drive type . . . Mechanical Maximum torque . . . 518 kg•m 3,747 lb. ft Fuel system . . . Direct injection Governor . . . Electronic control Lubrication system

Method . . . Gear pump, force-lubrication Filter. . . Full-flow type Air cleaner. . . Dry type with double elements and precleaner, with dust indicator

MAIN FRAME

Type . . . Box-sectioned structure Integral front bumper

STEERING SYSTEM

Type . . . Fully hydraulic power steering with two double-acting cylinders Supplementary steering . . . Meets ISO 5010, SAE J1511 Minimum turning radius . . . 10.1 m 33'2" Maximum steering angle . . . 41°

BRAKES

Brakes meet ISO 3450 standard. Service brakes:

Front. . . Fully hydraulic control, oil-cooled multiple-disc type Rear . . . Fully hydraulic control, oil-cooled multiple-disc type Parking brake . . Spring applied, multiple-disc type(actuates on all wheels) Retarder . . . Oil-cooled, multiple-disc front and rear brakes act as retarder. Secondary brake . . . Manual pedal operation. When hydraulic pressure drops below the rated level, parking brake is automatically actuated. Brake surface

Front . . . 37467 cm2 5,807 in2 Rear. . . 72414 cm211,224 in2

WEIGHT (APPROXIMATE)

Empty weight . . . 72000 kg 158,800 lb Max. gross vehicle weight . . . 166000 kg366,000 lb

Not to exceed max. gross vehicle weight, including options, fuel and payload.

Weight distribution:

Empty: Front axle . . . 47% Rear axle . . . 53% Loaded: Front axle . . . 31.5% Rear axle . . . 68.5%

BODY

Capacity:

Struck . . . 40 m3 52.3 yd3

Heaped (2:1, SAE). . . 60 m3 78.5 yd3

Payload . . . 91.0 metric tons 100.3 U.S. tons Material . . . 400 Brinell hardness high tensile strength steel Structure . . . V-shape body with V-bottom Material thickness:

Bottom . . . 19 mm0.75" Front. . . 12 mm0.47" Sides . . . 9 mm0.35" Target area

(inside length x width) . . . 7065 mm x 5200 mm23'2"x 17'1" Dumping angle . . . 48° Height at full dump . . . 10080 mm33'1" Heating . . . Exhaust heating

HYDRAULIC SYSTEM

Hoist cylinder . . . Twin, 2-stage telescopic type Relief pressure . . . 20.6 MPa 210 kg/cm22,990 psi Hoist time

Raise . . . 13 sec Lower. . . 14 sec

CAB

Dimensions comply with ISO 3471 ROPS (Roll-Over Protective Structure) standard, and ISO 3449 FOPS standard.

TIRES

Standard tire . . . 27.00 R49

SERVICE REFILL CAPACITIES

Fuel tank . . . 1308 ltr. 345.6 U.S. Gal Engine oil . . . 129 ltr. 34.1 U.S. Gal Torque converter, transmission and

retarder cooling . . . 205 ltr. 54.2 U.S. Gal Differentials . . . 137 ltr. 36.2 U.S. Gal Final drives (total) . . . 128 ltr. 33.8 U.S. Gal Hydraulic system. . . 175 ltr. 46.2 U.S. Gal Brake control. . . 36 ltr. 9.5 U.S. Gal Suspension (total) . . . 93 ltr. 24.6 U.S. Gal

SUSPENSION SYSTEM

Independent, hydropneumatic suspension cylinder with fixed throttle to dampen vibration.

Effective cylinder stroke:

(23)

Home > Products & Services > Construction & Mining Equipment / Product Outline > Dump Trucks

HD785

Dump Trucks

Designed for hauling construction materials and excavated earth and rocks. In addition to rigid dump trucks,

articulated dump trucks are available, which feature excellent performance of low ground pressure on rough roads.

• Available models may vary by region or country. Please contact your local distributor for the most suitable specifications in your area.

• Product specifications are subject to change without notice.

Rigid Dump Trucks

Model Fl ywheel Horsepower

Maxi mum Gross Vehicl e Weight

Maximum

Payl oad Brochure (kW) (HP) (kg) (tonnes)

HD255-5 235 316 47525 25

(2.2MB)

HD325-6 364 488 65200 36.5

(0.3MB)

HD325-7 371 498 69280 36.5

(0.8MB)

HD325-7R 371 498 69280 36.5

(0.8MB)

HD405-6 364 488 73175 41

-HD405-7 371 498 75080 41

(1.3MB)

HD405-7R 371 498 75080 41

(0.8MB)

HD465-7 533 715 98800 55

(1.1MB)

HD465-7E0 533 715 99680 55

(1.1MB)

HD465-7R 533 715 99680 55

(0.9MB)

HD605-7 533 715 109900 63

-HD605-7E0 533 715 110180 63

(2.6MB)

HD605-7R 533 715 110180 63

(1.0MB)

HD785-5 753 1010 166000 91

-HD785-7 879 1178 166000 91

(1.5MB)

HD1500-7 1048 1406 249480 144 *1

(1.5MB)

730E 1388 1860 324322 184 *1

(0.4MB)

Contact Us

Crawler Excavators Mini Excavators Wheel Excavators

Minimal Swing Radius Excavators Crawler Dozers

Wheel Loaders Dump Trucks Motor Graders Backhoe Loaders Skid Steer Loaders Mobile Crushers/Recyclers Special Applications

KOMATSU : Dump Trucks - Construction & Mining Equipment file:///C:/Users/Lowbath/Desktop/TA%20(Robert%20travolta-062103...

(24)

830E 1761 2360 385852 223 *1

(0.5MB)

830E-AC 1761 2360 385848 222 *1

(0.1MB)

930E-4 1902 2550 501974 292 *1

(0.4MB)

930E-4SE 2558 3429 505755 290 *1

(0.7MB)

960E-1 2495 3346 576072 327 *1

(2.1MB)

*1 : Nominal payload

Articulated Dump Trucks

Model Fl ywheel Horsepower

Maxi mum Gross Vehicl e Weight

Maximum

Payl oad Brochure (kW) (HP) (kg) (tonnes)

HM250-2 222 298 47680 24.0

(0.8MB)

HM300-1 242 324 49875 27.3

(0.8MB)

HM300-2 246 329 51420 27.3

(0.8MB)

HM300-2R 246 329 51420 27.3

(0.8MB)

HM350-1 290 389 60925 32.3

(5.0MB)

HM350-2 294 394 63440 32.3

(0.5MB)

HM350-2R 294 394 63440 32.3

(0.5MB)

HM400-1 321 430 66875 36.5

(2.0MB)

HM400-2 327 438 69040 36.5

(0.5MB)

HM400-2R 327 438 69040 36.5

(0.5MB)

Terms and Conditions Site map

KOMATSU : Dump Trucks - Construction & Mining Equipment file:///C:/Users/Lowbath/Desktop/TA%20(Robert%20travolta-062103...

(25)

Universitas Kristen Maranatha 56

LAMPIRAN 2

(26)

Slide Analysis Information

Document Name

File Name: DESIGN 03.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right

Units of Measurement: SI Units Pore Fluid Unit Weight: 9.81 kN/m3 Groundwater Method: Water Surfaces Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Radius increment: 10

Minimum Elevation: Not Defined Composite Surfaces: Enabled

Reverse Curvature: Create Tension Crack

Loading

Seismic Load Coefficient (Horizontal): 0.03 4 Line Loads present:

Line Load Angle from horizontal: 277.55 degrees Magnitude: 1285.00 kN Line Load Angle from horizontal: 277.55 degrees Magnitude: 1285.00 kN Line Load Angle from horizontal: 275.28 degrees Magnitude: 1285.00 kN Line Load Angle from horizontal: 275.28 degrees Magnitude: 1285.00 kN

Material Properties

Material: Sandstone 1

Strength Type: Mohr-Coulomb

(27)

Friction Angle: 48.87 degrees Water Surface: Water Table Custom Hu value: 1

Material: Silty Claystone Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 23.3 kN/m3 Saturated Unit Weight: 23.93 kN/m3 Cohesion: 699 kPa

Friction Angle: 32.75 degrees Water Surface: Water Table Custom Hu value: 1

Material: Claystone 1

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 24.01 kN/m3 Saturated Unit Weight: 24.24 kN/m3 Cohesion: 699 kPa

Friction Angle: 32.75 degrees Water Surface: Water Table Custom Hu value: 1

Material: Claystone 2

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 23.35 kN/m3 Saturated Unit Weight: 23.73 kN/m3 Cohesion: 274 kPa

Friction Angle: 16.2 degrees Water Surface: Water Table Custom Hu value: 1

Material: Sandstone 2

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 23.76 kN/m3 Saturated Unit Weight: 24.01 kN/m3 Cohesion: 1272 kPa

Friction Angle: 29.81 degrees Water Surface: Water Table Custom Hu value: 1

Material: Siltysand 1

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 25.03 kN/m3 Saturated Unit Weight: 25.16 kN/m3 Cohesion: 1272 kPa

Friction Angle: 29.81 degrees Water Surface: Water Table Custom Hu value: 1

Material: Siltyclay 1

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 23.59 kN/m3 Saturated Unit Weight: 23.88 kN/m3 Cohesion: 2062 kPa

(28)

Custom Hu value: 1

Material: Carbonaceus Coallyclay Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 22.47 kN/m3 Saturated Unit Weight: 22.7 kN/m3 Cohesion: 2062 kPa

Friction Angle: 19.75 degrees Water Surface: Water Table Custom Hu value: 1

Material: Sandysilt

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 24.23 kN/m3 Saturated Unit Weight: 24.4 kN/m3 Cohesion: 2062 kPa

Friction Angle: 19.75 degrees Water Surface: Water Table Custom Hu value: 1

Material: Siltstone

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 24.83 kN/m3 Saturated Unit Weight: 24.96 kN/m3 Cohesion: 2062 kPa

Friction Angle: 19.75 degrees Water Surface: Water Table Custom Hu value: 1

Material: Sandy Claystone Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 24.24 kN/m3 Saturated Unit Weight: 24.49 kN/m3 Cohesion: 2195 kPa

Friction Angle: 55.41 degrees Water Surface: Water Table Custom Hu value: 1

Material: Sandstone 3

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 24.79 kN/m3 Saturated Unit Weight: 24.88 kN/m3 Cohesion: 2195 kPa

Friction Angle: 55.41 degrees Water Surface: Water Table Custom Hu value: 1

Material: Silty Claystone 2 Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 25.31 kN/m3 Saturated Unit Weight: 25.42 kN/m3 Cohesion: 1704 kPa

Friction Angle: 43.63 degrees Water Surface: Water Table Custom Hu value: 1

(29)

Material: Carbonaceus Coallyclay 2 Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 21.25 kN/m3 Saturated Unit Weight: 21.35 kN/m3 Cohesion: 741 kPa

Friction Angle: 19.39 degrees Water Surface: Water Table Custom Hu value: 1

Material: Claystone 4

Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 24.15 kN/m3 Saturated Unit Weight: 24.47 kN/m3 Cohesion: 741 kPa

Friction Angle: 19.39 degrees Water Surface: Water Table Custom Hu value: 1

Material: Silty Claystone 4 Strength Type: Mohr-Coulomb

Unsaturated Unit Weight: 27.56 kN/m3 Saturated Unit Weight: 27.75 kN/m3 Cohesion: 22.03 kPa

Friction Angle: 18.38 degrees Water Surface: Water Table Custom Hu value: 1

Material: COAL

Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 13.6 kN/m3 Saturated Unit Weight: 13.6 kN/m3 Cohesion: 80 kPa

(30)

Universitas Kristen Maranatha 1

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Aktivitas manusia yang berhubungan dengan Tambang khususnya Tambang Batubara di tambang terbuka akan selalu menghadapi permasalahan dengan lereng (Slope). Lereng tersebut harus dianalisis kemantapannya untuk mencegah bahaya longsor di waktu-waktu yang akan datang, karena menyangkut keselamatan kerja, keamanan peralatan, harta benda, dan kelancaran produksi.

Kemantapan lereng di tambang terbuka sering dievaluasi dengan metoda keseimbangan batas maupun metode numerik. Ada empat parameter yang perlu diperhatikan dalam perancangan kemantapan lereng di tambang terbuka yaitu rencana penambangan, kondisi struktur geologi, sifat-sifat fisik dan mekanik material pembentuk lereng dan tekanan air tanah.

Kemantapan lereng, baik lereng alami maupun lereng buatan (oleh kerja manusia), dipengaruhi oleh beberapa faktor, yang dapat dinyatakan secara sederhana sebagai gaya-gaya penahan dan gaya-gaya penggerak yang bertanggung jawab terhadap kemantapan lereng tersebut. Dalam keadaan gaya penahan (terhadap longsoran) lebih besar dari gaya penggeraknya, maka lereng tersebut akan berada dalam keadaan yang mantap (stabil). Tetapi apabila gaya penahan menjadi lebih kecil dari gaya penggeraknya, maka lereng tersebut menjadi tidak mantap dan longsoran akan terjadi. Sebenarnya , longsoran tersebut merupakan suatu proses alam untuk mendapatkan kondisi kemantapan lereng yang baru (keseimbangan baru), di mana gaya penahan lebih besar dari gaya penggeraknya.

(31)

Universitas Kristen Maranatha 2

penggerak Gaya

penahan Gaya

F

Apabila harga F untuk suatu lereng > 1,0; yang artinya gaya penahan > gaya penggerak, maka lereng tersebut berada dalam keadaaan mantap/aman. Tetapi apabila harga F < 1,0; yang artinya gaya penahan < gaya penggerak, maka lereng tersebut berada dalam kondisi tidak mantap dan mungkin akan terjadi longsoran pada lereng yang bersangkutan.

1.2 Tujuan Penulisan

Tujuan penulisan Tugas Akhir ini bertujuan untuk mengevaluasi lereng yang telah direncanakan dengan menggunakan program Rocscience Slide V.5014.

1.3 Ruang Lingkup Pembahasan

Pembatasan masalah dari Tugas Akhir ini adalah sebagai berikut; 1. Analisis stabilitas lereng menggunakan program Rocscience Slide V.5014. 2. Data tanah diperoleh dari PT.PAMAPERSADA NUSANTARA.

1.4 Sistematika Penulisan

Sistematika Tugas Akhir ini adalah sebagai berikut: BAB 1: PENDAHULUAN

Bab ini menjelaskan tentang latar belakang masalah, tujuan penulisan, ruang lingkup permasalahan, dan sistematika pembahasan.

BAB 2: TINJAUAN PUSTAKA

(32)

Universitas Kristen Maranatha 3 digunakan sebagai landasan dan penjelasan mengenai topik yang ditinjau, yaitu evaluasi kestabilan lereng pada tambang terbuka.

BAB 3: ANALISIS STABILITAS LERENG

Bab ini berisi tentang latar belakang program Rocscience Slide V.5014, Metode Simplified Bishop, Metode Simplified Janbu dan penggunaan program Rocscience Slide V.5014.

BAB 4: APLIKASI KESTABILAN LERENG MENGGUNAKAN PROGRAM ROCSCIENCE SLIDE V.5014.

Bab ini berisi analisis dan pembahasan dari data yang sudah diolah dengan menggunakan program Rocscience Slide V.5014.

BAB 5: KESIMPULAN DAN SARAN

Bab ini berisi kesimpulan yang diperoleh dari analisis dan pembahasan bab-bab sebelumnya dan saran-saran yang diperlukan untuk penelitian lebih lanjut.

(33)

Universitas Kristen Maranatha 51

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan studi yang telah dilakukan mengenai analisa kestabilan lereng pada lereng tambang (Pit) KCMB dengan menggunakan program Rocscience Slide V.5014 diperoleh kesimpulan sebagai berikut:

1. Faktor keamanan untuk kondisi lereng tambang tanpa beban kendaraan adalah 1.949 (Metode Janbu Simplified) dan 2.265 (Metode Bishop Simplified) dengan selisih perbedaan kedua metode sebesar 13.95 %. 2. Faktor keamanan untuk kondisi lereng tambang dengan satu Dump Truck

adalah 1.933 (Metode Janbu Simplified) dan 2.241 (Metode Bishop Simplified) dengan selisih perbedaan kedua metode sebesar 13.74 %. 3. Faktor keamanan untuk kondisi lereng tambang dengan dua Dump Truck

adalah 1.922 (Metode Janbu Simplified) dan 2.234 (Metode Bishop Simplified) dengan selisih perbedaan kedua metode sebesar 13.96 %. 4. Faktor keamanan untuk kondisi lereng tambang dengan Dump Truck pada

setiap lipatan lereng adalah 2.058 (Metode Janbu Simplified) dan 2.211 (Metode Bishop Simplified) dengan selisih perbedaan kedua metode sebesar 6.92 %.

(34)

Universitas Kristen Maranatha 52

5.2 Saran

(35)

Universitas Kristen Maranatha 53

DAFTAR PUSTAKA

1. Abramson, L.W., Lee T.S., Sharma S., Boyce G.M., “Slope Stability and Stabilization Methods”, 1995.

2. Abramson, L.W., Lee T.S., Sharma S., Boyce G.M., “Slope Stability and Stabilization Methods 2nd”, 2001.

3. Das, B.M., “Mekanika Tanah (Prinsip Rekayasa Geoteknis) Jilid 2”, Erlangga, Jakarta, 1998.

4. Fatah, Y.A., Sulistijo B., Maryanto., “Sekilas Tentang Kemantapan Lereng Tambang”, DIREKTORAT JENDRAL PERTAMBANGAN UMUM PUSAT PENGEMBANGAN TEKNOLOGI MINERAL, 1996.

5. Irwandy, A., “Kestabilan Lereng”. Kursus Kemantapan Lereng PT. PAMAPERSADA NUSANTARA. Balikpapan, 1-3 juli 2009.

6. Rahardjo, P.P., Salim, E.F., “Manual Kestabilan Lereng,” Geotechnical Engineering Center, Unpar, 1995.

7. Slide (2002), “User Guide Slide”, Published by Rocscience, Toronto, Canada, 2002.

Referensi

Dokumen terkait

• Untuk tingkatan lokal/daerah/program tertentu dapat dikembangkan indikator yang rinci (indikator input, proses, output, dan outcome) dan indikator yang spesifik untuk

Pesan yang ingin disampaikan dalam perancangan brand Kopi Puntang adalah kopi yang di proses dari perkebunan di Gunung Puntang sehingga menjadi kopi yang dapat dinikmati

Jaringan Trayek dan kebutuhan Kendaraan Bermotor Umum sebagaimana dimaksud dalam Pasal 8 ayat (2) huruf a, yang berada dalam 1 (satu) wilayah Daerah

• Melalui kegiatan mengamati teks pada power point yang ditampilkan, peserta didik mampu membedakan fungsi sosial, struktur teks dan unsur kebahasaan beberapa teks khusus

6 tangkai cili kering (Dalam pantang boleh diganti dengan lada hitam secukupnya) 3 labu bawang besar 4 ulas bawang putih 2cm hirisan halia muda ½ camca ketumbar ½ camca jintan

konsentrasi VFA tertinggi yang juga diperoleh pada perlakuan P2, P3 dan P4 serta degradasi bahan kering dan bahan organik pakan terting- gi pada P2 menggambarkan potensi murbei

Temuan-temuan artefak yang berwujud terakota mendominasi temuan di daerah Trowulan, yang diidentifikasi oleh para ahli bahwa temuan tersebut berasal dari periode

Bentuk yang dipilih akan sangat berpengaruh pada kondisi ruangan, karena tujuan utamanya adalah efisiensi ruangan sehingga bentuk yang digunakan adalah bentuk