• Tidak ada hasil yang ditemukan

Pengaruh Lama Penggerusan terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO 2 -MgO

N/A
N/A
Protected

Academic year: 2021

Membagikan "Pengaruh Lama Penggerusan terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO 2 -MgO"

Copied!
15
0
0

Teks penuh

(1)

Pengaruh Lama Penggerusan terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO2-MgO

Hadi Priyo Utomo (906322403617). Jurusan Fisika FMIPA Universitas Negeri Malang

e-mail: hadi_piyu@yahoo.co.id

ABSTRAK

Penelitian ini bertujuan untuk mengetahui pengaruh lama penggerusan terhadap konstanta dielektrik, kekerasan dan mikrostruktur keramik oksida SiO2 -MgO. Bahan Silika dikenal dengan kekerasannya, selain itu silika juga dapat mengurangi keplastisan dan mengurangi susut kering. Sedangkan Magnesium Oksida merupakan bahan keramik elektronik yang dibuat sebagai insulator listrik, sehingga baik untuk pembuatan bahan dielektrik. Pemberian variasi lama penggerusan dimaksudkan untuk mengoptimalkan proses penggerusan dan memaksimalkan kepadatan keramik. Sehingga paduan antara keramik oksida SiO2 dan MgO dengan menvariasi lama penggerusan diharapkan dapat menghasilkan keramik yang memiliki keunggulan sifat mekanik dan elektrik.

Penelitian ini memadukan keramik oksida SiO2-MgO dengan variasi lama penggerusan 1 jam, 2 jam, 4 jam, 6 jam, dan 8 jam. Sintering dilakukan pada suhu 1100ºC dengan lama penahanan selama 10 jam. Kemudian sampel diukur kapasitansinya menggunakan kapasitansimeter dan dihitung nilai konstanta dielektrik dan diuji kekerasan menggunakan metode Micro Vickers Hardness. Sampel yang telah diuji kekerasan kemudian diambil tiga nilai kekerasan, yaitu kekerasan rendah, sedang/tengah, dan tinggi untuk diuji mikrostruktur dengan SEM.

Hasil penelitian ini menunjukkan bahwa: (1) Lama penggerusan berpenga-ruh terhadap nilai konstanta dielektrik keramik oksida SiO2-MgO secara

polynomial kuadratik, semakin lama proses penggerusan maka nilai konstanta dielektrik semakin besar, (2) Lama penggerusan berpengaruh terhadap nilai kekerasan keramik oksida SiO2-MgO secara polynomial kuadratik, semakin lama proses penggerusan maka kekerasan semakin besar, (3). Nilai kekerasan semakin meningkat apabila jumlah luasan total pori-pori dan luas fraksi pori-pori yang terbentuk pada mikrostruktur berkurang.

Kata kunci: Lama penggerusan SiO2-MgO, konstanta dielektrik, kekerasan, mikrostruktur

PENDAHULUAN

Material keramik adalah bahan non logam yang biasanya berupa senyawa ikatan oksigen, karbon, nitrogen, boron, dan silikon. Keramik merupakan material yang kuat, dan keras serta tahan korosi. Sifat-sifatnya ini bersama dengan

(2)

kerapatan yang rendah dan juga titik lelehnya yang tinggi, membuat keramik merupakan material struktural yang menarik.

Silika atau dikenal dengan silikon dioksida merupakan material mentah yang ditemukan di alam berupa amorf dan kristal. Silika memiliki partikel-partikel yang kasar dan memberikan kontribusi yang besar pada sifat mekanik kekerasan bahan karena bahan tidak mudah lembek dan tahan terhadap penetrasi pada permukaannya. Sedangkan magnesium oksida (MgO) atau magnesia merupakan keramik elektronik yang materialnya memiliki sifat dielektrik dan mampu menyimpan muatan listrik karena dalam pembentukan ikatan MgO terjadi perpindahan elektron sehingga magnesia merupakan salah satu jenis bahan keramik yang digunakan untuk isolator listrik, pembungkus makanan, kosmetik, bidang farmasi, dan campuran dalam pembuatan gelas.

Komposit atau Paduan antara keramik oksida, dalam hal ini memadukan antara silika (SiO2) dan magnesium oksida (MgO) diharapkan bisa menghasilkan keramik yang memiliki beberapa keunggulan dan ketahanan. Hal ini bisa dilihat dari sifat dari kedua keramik oksida tersebut. Silika dapat meningkatkan kekerasan bahan karena memiliki partikel-partikel yang kasar, sementara MgO materialnya memiliki sifat dielektrik yang mampu menyimpan muatan listrik. Dengan memadukan MgO dengan SiO2 diharapkan dapat diaplikasikan sebagai bahan kapasitor keramik dimana memiliki sifat keras dan mampu menyimpan muatan listrik.

KAJIAN PUSTAKA

Silika dengan kemurnian yang tinggi merupakan bahan yang sangat baik untuk pembentukan keramik dengan pemuaian yang sangat rendah. Silika merupakan insulator yang sangat baik sampai mencapai suhu 1000oC dan tahan terhadap korosi logan dan gelas.Silikon dioksida terbentuk melalui ikatan kovalen yang kuat, serta memiliki struktur lokal yang jelas: empat atom oksigen terikat pada posisi sudut tetrahedral di sekitar atom pusat yaitu atom silikon. Struktur silikat primer adalah tetrahedron SiO4, jadi setiap satu atom silikon dikelilingi empat atom oksigen. Gaya-gaya yang mengikat atom tetrahedral berasal dari ikatan ionik dan kovalen sehingga ikatan tetrahedral sangat kuat (Worral, 1986).

(3)

Pada temperatur kamar, satuan tetrahedral dari silika tersusun dalam suatu susunan heksagonal, tetapi pada temperatur 8750C kestabilan susunan tetrahedral silika berubah. Berikut struktur kristal silika SiO2.

Magnesium oksida merupakan oksida basa sederhana, karena mengandung ion oksida juga. Namun demikian, sifat basanya tidak sekuat natrium oksida karena ion oksidanya tidak terlalu bebas. Meskipun dipengaruhi oleh faktor-faktor lain (seperti pelepasan energi ketika ion positif menarik air pada bentuk larutannya), pengaruh dari hal ini adalah reaksi yang melibatkan magnesium oksida akan selalu kurang eksotermik daripada natrium oksida. Magnesium oksida (MgO) atau magnesia memiliki karakter yang sangat unik, antara lain merupakan salah satu jenis bahan keramik yang mempunyai titik lebur yang tinggi, yaitu sekitar 30730K sehingga bersifat tahan api, permukaan yang kuat, tahan air, kedap suara, anti rayap , penahan panas dan dingin dan tahan terhadap serangan jamur dan lumut dan pembusukan juga digunakan pada temperatur refractory yang tinggi, isolator listrik, pembungkus makanan, kosmetik, dan hal-hal yang berkenaan dengan bidang farmasi.

Grinding atau penggerusan adalah proses reduksi ukuran (size reduction atau comminution) dari bijih yang berukuran halus menjadi ukuran sangat halus dalam proses pengolahan mineral yang dilakukan setelah melakukan crushing dengan ukuran kurang dari 25 mm. semakin lama proses penggerusan akan berpengaruh terhadap campuran bahan. Selain bahan akan tercampur semakin homogen, hal ini akan berpengaruh terhadap sifat-sifat yang lain seperti halnya sifat kekerasan, sifat dielektriksitas bahan hingga bentuk dan struktur penampang permukaan jika dilihat menggunakan mikroskop electron (SEM).

Bahan dielektrik adalah bahan yang tidak memiliki muatan bebas yang berpengaruh penting terhadap sifat kelistrikan bahan tersebut. Bahan dieletrik sangat penting dalam kelistrikan karena beberapa sifat bahan dieketrik yaitu dapat menyimpan muatan listrik, melewatkan arus bolak-balik dan menahan arus searah. Konstanta dielektrik adalah perbandingan nilai kapasitansi kapasitor di bahan dielektrik dengan nilai kapasitansi di ruang hampa. untuk menghitung nilai konstanta dielektrik dinyatakan dengan persamaan sebagai berikut.

(4)

A

d

C

r 0

dengan: C = kapasitansi kapasitor (F) εo = permitivitasruang hampa (F/m) A = luas plat (m2)

d = jarak antar plat (m)

Kekerasan suatu bahan dapat didefinisikan sebagai tahanan yang dilaku-kan oleh bahan terhadap desadilaku-kan kedalam yang tetap, disebabdilaku-kan oleh alat pen-desak dengan bentuk tertentu dibawah gaya tertentu, suatu pen-desakan kecil (atau tidak dalam) menunjukkan kekerasan yang besar. Uji kekerasan Vicker menggunakan pengindent diamond piramid atau intan yang ujung berbentuk piramida. Nilai kekerasan hasil pengujian metode Vickers disebut juga dengan kekerasan HV atau VHN (Vickers Hardness Number),secara teoritis diartikan sebagai besarnya beban dibagi luas penampang lekukan yang terjadi. Besarnya HV dapat ditentukan dengan persamaan berikut.

2

854

,

1

d

P

HV 

dengan:

HV = Kekerasan Vicker Hardness (kgf/mm2) P = Beban yang diberikan (kgf)

d = Panjang diagonal jejak indentor rata-rata (mm)

Sintering adalah proses pemanasan kurang lebih berkisar 80 % di bawah suhu leleh dan dalam bentuk padat (solid state) untuk membentuk fase tertentu dan mengompakkan komposisi fase yang diinginkan. Sementara Mikrostruktur adalah bentuk penampang permukaan yang terdapat pada keramik oksida SiO2 -MgO meliputi luasan pori-pori dan luasan total fraksi yang nampak pada keramik oksida SiO2-MgO.

(5)

METODE PENELITIAN

Penelitian ini bersifat eksperimen sejati (true experimental research) yaitu pembuatan sampel dengan variasi lama penggerusan silika (SiO2) dan magnesium oksida (MgO) yang dihitung nilai konstanta dielektrik, diuji kekerasan, dan dilihat mikrostrukturnya. Rancangan penelitian dapat diuraikan sebagai berikut.

1. Sampel dengan variasi lama penggerusan SiO2-MgO yang berbeda disintering dengan suhu 1100ºC dengan lama penahanan 10 jam. Sampel ini kemudian dhitung nilai konstanta dielektriknya dengan alat kapasitansimeter.

2. Sampel dengan variasi lama penggerusan SiO2-MgO yang berbeda diuji kekerasan dengan metode Vickers Hardness menggunakan alat Micro Vickers Hardness Tester.

3. Sampel dengan nilai kekerasan terendah, sedang, dan tertinggi dilihat mikrostrukturnya dengan alat SEM (Scanning Electron Microscope).

Dalam penelitian ini sampel yang dihasilkan berbentuk silinder atau lebih dikenal dengan tablet dimana bahan keramik komposit terdiri dari campuran SiO2 dengan MgO. Untuk menghitung massa masing-masing penyusunnya, maka terlebih dahulu dilakukan penimbangan dengan komposisi SiO2-MgO (60%:40%). Kemudian selanjutnya dilakukan proses penggerusan yang secara detail seperti halnya pada tabel berikut.

Tabel 1 Jumlah dan Massa Bahan Sampel Keramik SiO2-MgO

No Sampel Lama peng-gerusan Massa 1 Spesimen Jumlah Spesimen Massa total

Komposit Massa Total Sampel (gr) SiO2 (gr) MgO (gr) SiO2 (gr) MgO (gr) 1 Sampel 1 1 jam 0,6 0,4 4 2,4 1,6 4 2 Sampel 2 2 jam 0,6 0,4 4 2,4 1,6 4 3 Sampel 3 4 jam 0,6 0,4 4 2,4 1,6 4 4 Sampel 4 6 jam 0,6 0,4 4 2,4 1,6 4 5 Sampel 5 8 jam 0,6 0,4 4 2,4 1,6 4 20 12 8 20

(6)

HASIL PENELITIAN DAN PEMBAHASAN

Dari lima sampel yang diuji akan didapatkan data nilai kapasitansi hasil pengukuran dengan kapasitansimeter yang selanjutnya dilakukan perhitungan konstanta dielektrik. Data nilai konstanta dielektrik ditunjukkan pada tabel berikut.

Tabel 2 Konstanta Dielektrik dengan Variasi Lama Penggerusan SiO2-MgO

SiO2(60%) -MgO (40%) Kapasitansi C (Farad) x Ketebalan d (meter) Luas A (m2) Permitivitas = C ( F/m) Konstanta Dielektrik K = ε / εo (Hz) Lama penggerusan 1 Jam 4,8.10-12 3.10-3 1,2.10-2 1,27.10-10 14.40 2 Jam 5,83.10-12 3.10-3 1,2.10-2 1,55.10-10 17.50 4 Jam 7,41.10-12 3.10-3 1,2.10-2 1,97.10-10 22.24 6 Jam 8,54.10-12 3.10-3 1,2.10-2 2,20.10-10 25.64 8 Jam 9,63.10-12 3.10-3 1,2.10-2 2,50.10-10 28.91 `

Berdasarkan data dalam Tabel 4.1 di atas selanjutnya dibuat Grafik hubungan antara konstanta dielektrik dengan lama penggerusan keramik SiO2 -MgO (60%-40%) berikut.

Gambar 1 Grafik Hubungan antara Lama Penggerusan SiO2-MgO (60%-40%) dengan

Konstanta Dielektrik

Pada Gambar 1 menunjukkan Grafik hubungan antara lama penggerusan keramik SiO2-MgO (60%-40%) dengan konstanta dielektrik. Dimana hubungan tersebut adalah semakin lama penggerusan keramik SiO2-MgO (60%-40%),

(7)

diperoleh konstanta dielektrik yang semakin meningkat. Bertambahnya nilai konstanta dielektrik dari lama penggerusan 1 jam hingga lama penggerusan 8 jam disebabkan oleh berkurangnya rongga pada paduan keramik SiO2–MgO. Karena ketika suatu bahan dielektrik disisipkan menggantikan ruang hampa diantara dua plat penghantar mengakibatkan terjadinya mekanisme polarisasi dalam bidang dielektrik yang berdampak bertambah besarnya muatan listrik yang tersimpan dalam kapasitor. Semakin lama waktu penggerusan, maka nilai permitivitas bahan dielektrik akan semakin besar dan menyebabkan nilai konstanta dielektriknya pun akan semakin bertambah besar. Hal ini dikarenakan Sumbangan dipol–dipol listrik akibat mekanisme polarisasi dan jumlah muatan yang tersimpan dalam kapasitor berpengaruh terhadap permitivitas dielektrik bahan atau dapat dinyatakan dengan besaran ε yang merupakan perilaku bahan dielektrik. Bila diantara plat kapasitor terdapat bahan maka rapat muatan akan betambah karena terjadi polarisasi, pergeseran muatan negatif ke elektroda positif dan muatan positif ke elektroda negative dapat meningkatkan nilai rapat muatan (Vlack,1992:564).

Selanjutnya dari lima sampel tersebut diuji nilai kekerasannya informasi yang didapatkan adalah data diameter penjejakan oleh indentor kemudian dihitung nilai kekerasan. Data nilai kekerasan ditunjukkan pada tabel berikut.

Tabel 3 Kekerasan dengan Variasi Lama Penggerusan Keramik SiO2-MgO (60%-40%)

SiO2:MgO

(60%-40%) Kekerasan (Kgf/mm

2

)

Lama penggerusan Titik 1 Titik 2 Titik 3 Rata-Rata

1 Jam 12,2 13,8 11,3 12,43

2 Jam 12,6 11,6 14,9 13,03

4 Jam 11,5 18,9 17,2 15,86

6 Jam 18,5 24,1 12,9 18,50

8 Jam 17,5 17,3 30,6 21,80

Berdasarkan data dalam Tabel 3 di atas selanjutnya akan dibuat grafik untuk mengetahui lebih jelas hubungan pengaruh lama penggerusan keramik SiO2-MgO (60%-40%) terhadap nilai kekerasan, penentuan hubungan pengaruh lama penggerusan keramik SiO2-MgO terhadap nilai kekerasan didasarkan pada nilai R2 dari persamaan garis. Sehingga didapatkan Grafik dan ditentukan bahwa

(8)

hubungan lama penggerusan dengan nilai kekerasan tersebut ditunjukkan pada Gambar 2 berikut

Gambar 2 Grafik Hubungan antara Lama Penggerusan SiO2-MgO terhadap Kekerasan

Pada Gambar 4.2 di atas menunjukkan grafik hubungan antara lama penggerusan keramik SiO2-MgO (60%-40%) dengan nilai kekerasan. Dimana hubungan tersebut adalah semakin lama penggerusan keramik oksida SiO2-MgO diperoleh nilai kekerasan semakin meningkat secara polinomial atau kuadratik.

Berdasarkan besarnya nilai R² = 0.993 yang paling tinggi pada persama-an garis eksponensial. Untuk hubungan lama penggerusan dengan nilai kekeras-an tersebut dapat ditunjukkan pada persamaan garis y = 0.372x2 + 0.188x + 11.66 yang merupakan persamaan eksponensial dengan nilai R2 = 0,993. Dari persamaan tersebut dapat diketahui hubungan antara variasi lama penggerusan dengan nilai kekerasan adalah berhubungan secara kuadratik atau polinomial.

Perbedaan lama penggerusan keramik komposit SiO2–MgO pada penelitian ini yang akan menghasilkan ukuran partikel yang berbeda. Semakin lama proses penggerusan maka akan semakin kecil ukuran partikel. Maka luasan pori atau ruang antar partikel akan semakin sempit jika ukuran partikel paduan keramik tersebut semakin kecil. Sehingga hal ini berpengaruh juga terhadap campuran keramik. Artinya sifat paduan keramik kedua bahan SiO2 dan MgO tersebut akan semakin tercampur secara homogen. Oleh karena campuran keramik komposit SiO2–MgO semakin homogen, sehingga kepadatan akan semakin padat dan keras.

(9)

Selain diuji nilai konstanta dielektrik dan kekerasan, dalam penelitian ini dikarakterisasi dengan SEM (Scanning Electron Microscope). Sampel yang telah dikarakterisasi adalah sampel 1 (lama penggerusan 1jam), sampel 3 (lama penggeruan 4 jam), dan sampel 5 (lama penggeruan 8 jam). Ketiga sampel tersebut dipilih karena memiliki nilai kekerasan yang dapat mewakili sampel yang lain yaitu untuk sampel dengan kekerasan terendah (sampel 1), kekerasan sedang (sampel 3), dan nilai kekerasan tertinggi (sampel 5) seperti yang telah disajikan dalam Tabel 4 sebagai berikut.

Tabel 4 Kekerasan terendah, sedang dan tertinggi keramik SiO2-MgO

No. Lama penggerusan Tingkat Kekerasan Nilai Kekerasan

1 1 jam Paling rendah 12,43 kgf/mm2

2 4 jam Sedang 15,86 kgf/mm2

3 8 jam Paling tinggi 21,80 kgf/mm2

Selain dihitung jumlah dan nilai luasan pori-pori atau rongga antar partikel sampel untuk kekerasan terendah (lama penggerusan 1 jam), sedang (lama penggerusan 4 jam) hingga kekerasan tertinggi (lama penggerusan 8 jam), juga dihitung nilai Fraksi atau nilai prosentase luasan pori terhadap luas area pada penampang mikrostruktur untuk kekerasan terendah, sedang hingga tertinggi.

Gambar 4 Potret SEM sampel dengan nilai kekerasan terendah 12,43 Kgf/mm2 (perbesaran 15000 kali)

(10)

Dari hasil pengukuran pori-pori yang terbentuk pada hasil mikrostruktur dengan nilai kekerasan terendah seperti terlihat pada Gambar 4 terdapat 14 luasan pori yang berukuran besar terlihat secara dominan dan nilai fraksi sebesar 59,28% seperti yang tertera dalam Tabel 5 sebagai berikut.

Tabel 5 Luas Pori dan Nilai Fraksi keramik SiO2-MgO dengan kekerasan terendah

No. Area Pori Luas Pori

1 A 3,00 µm2 2 B 50,00 µm2 3 C 78,63 µm2 4 D 1,27 µm2 5 E 14,70 µm2 6 F 12,38 µm2 7 G 2,37 µm2 8 H 1,12 µm2 9 I 0,76 µm2 10 J 1,25 µm2 11 K 3,72 µm2 12 L 25,19 µm2 13 M 9,84 µm2 14 N 3,18 µm2

Luas Total Pori 207,5 µm2

Luas Area (20 µm x14 µm) 350 µm2

Fraksi 59,28 %

Pada Gambar 4 keramik SiO2–MgO dengan dengan kekerasan sedang yaitu dengan perlakuan lama penggerusan selama 1 jam memiliki luasan total pori–pori 207,5 µm2 dan luas fraksi pori–pori yang terbentuk sebesar 59,28 %. Pada gambar ini terdapat banyak pori–pori besar yang muncul karena lama penggerusan sangat singkat yaitu 1 jam. Timbulnya pori-pori yang cendrung berukuran besar tersebut dapat diakibatkan oleh ukuran partikel yang relatif besar, sehingga rongga kosong diantara partikel sangat banyak dan besar.

Pada hasil mikrostruktur tersebut juga terdapat residu ataupun paduan yang kurang homogen yang dalam Gambar 4 terlihat berwarna putih. Residu adalah sisa bahan lain yang tercampur dalam paduan pada saat penggerusan.

(11)

Gambar 5 Potret SEM sampel dengan nilai kekerasan sedang 15,86 Kgf/mm2 (perbesaran 15000 kali)

Dari hasil pengukuran pori-pori yang terbentuk pada hasil mikrostruktur dengan nilai kekerasan sedang seperti terlihat pada Gambar 5 terdapat 21 luasan pori yang berukuran cukup besar terlihat secara dominan seperti yang tertera dalam Tabel 5 sebagai berikut.

Tabel 6 Luas Pori dan Nilai Fraksi keramik SiO2-MgO dengan kekerasan terendah

No. Area Pori Luas Pori

1 A 4,75 µm2 2 B 0,78 µm2 3 C 7,81 µm2 4 D 6,47 µm2 5 E 9,37 µm2 6 F 0,50 µm2 7 G 0,81 µm2 8 H 2,43 µm2 9 I 1,09 µm2 10 J 2,39 µm2 11 K 8,90 µm2 12 L 1,75 µm2 13 M 0,43 µm2 14 N 1,87 µm2 15 O 1,30 µm2 16 P 1,25 µm2 17 Q 7,03 µm2 18 R 0,56 µm2 19 S 9,18 µm2 20 T 3,93 µm2 21 U 0,84 µm2

Luas Total Pori 74,42 µm2

Luas Area (20 µm x14 µm) 350 µm2

(12)

Pada Gambar 5 keramik SiO2–MgO dengan kekerasan sedang yaitu dengan perlakuan lama penggerusan selama 4 jam memiliki luasan total pori–pori 74,42 µm2 dan luas fraksi pori–pori yang terbentuk sebesar 21,26% .Pada gambar ini juga terdapat pori–pori yang cukup besar yang muncul karena ukuran partikel paduan relatif besar. Pada gambar ini terdapat pori–pori agak besar yang muncul karena lama penggerusan yang sedang yaitu selama 4 jam. Hal ini diakibatkan oleh ukuran partikel yang relatif besar, sehingga rongga kosong diantara partikel masih cukup banyak. Tetapi jika dibandingkan dengan pada Gambar 4, jumlah pori besar yang muncul relatif lebih sedikit.

Pada hasil mikrostruktur tersebut juga terdapat residu ataupun paduan yang kurang homogen yang dalam Gambar 5 terlihat berwarna putih. Residu adalah sisa bahan lain yang tercampur dalam paduan pada saat penggerusan.

Dari hasil pengukuran pori–pori yang terbentuk pada hasil mikrostruktur dengan nilai kekerasan terendah seperti terlihat pada Gambar 6 terdapat 23 luasan pori terlihat secara dominan seperti yang tertera dalam Tabel 7 sebagai berikut;

Gambar 6 Potret SEM sampel dengan nilai kekerasan tertinggi 21,80 Kgf/mm2 (perbesaran 15000 kali)

(13)

Tabel 7 Luas Pori dan Nilai Fraksi keramik SiO2-MgO dengan kekerasan terendah

No. Area Pori Luas Pori

1 A 0,75 µm2 2 B 1,64 µm2 3 C 8,23 µm2 4 D 0,23 µm2 5 E 0,50 µm2 6 F 0,18 µm2 7 G 1,18 µm2 8 H 4,59 µm2 9 I 0,09 µm2 10 J 0,32 µm2 11 K 11,0 µm2 12 L 0,43 µm2 13 M 1,12 µm2 14 N 0,37 µm2 15 O 0,75 µm2 16 P 0,68 µm2 17 Q 0,46 µm2 18 R 0,46 µm2 19 S 2,60 µm2 20 T 3,50 µm2 21 U 2,90 µm2 22 V 0,25 µm2 23 W 3,75 µm2

Luas Total Pori 46,68 µm2

Luas Area (20 µm x14 µm) 350 µm2

Fraksi 13,34 %

Pada hasil mikrostruktur tersebut juga terdapat residu ataupun paduan yang belum homogen yang dalam Gambar 6 terlihat berwarna putih. Residu adalah sisa bahan lain yang tercampur dalam paduan pada saat penggerusan. Pada Gambar 6 keramik SiO2–MgO dengan kekerasan tertinggi yaitu dengan perlakuan lama penggerusan selama 8 jam memiliki luasan total pori–pori 46,68 µm2 dan luas fraksi pori–pori yang terbentuk sebesar 13,34 %.Pada gambar ini cukup jarang muncul pori–pori besar dan jika dibandingkan dengan Gambar 4 dan Gambar 5, jumlah pori besar yang muncul paling sedikit dan terlihat lebih rapat. Hal ini diakibatkan oleh ukuran partikel yang relatif kecil, sehingga rongga kosong diantara partikel sangat kecil dan sedikit.

Berdasarkan dari hasil analisa ketiga sampel menunjukkan bahwa banyak tidaknya pori–pori besar yang muncul disebabkan oleh ukuran partikel yang relatif semakin kecil, sehingga rongga kosong diantara partikel sangat kecil dan sedikit, sehingga keramik yang terbentuk menjadi sangat keras.

(14)

KESIMPULAN

Dari hasil penelitian yang telah dilakukan dapat diambil kesimpulan sebagai berikut:

1. Semakin lama proses penggerusan keramik oksida SiO2–MgO (dalam rentang 1-8 Jam) maka nilai konstanta dielektrik semakin meningkat mengikuti persamaan garis y = 3,715 x +10,59.

2. Semakin lama proses penggerusan keramik oksida SiO2–MgO (dalam rentang 1-8 Jam) maka nilai kekerasan keramik akan semakin meningkat mengikuti persamaan garis y = 0.372x2 + 0.188x + 11.66

3. Semakin lama proses penggerusan keramik oksida SiO2–MgO maka jumlah luasan pori–pori yang muncul dan nilai fraksi pori pada mikrostruktur semakin berkurang sehingga nilai kekerasan cenderung naik.

DAFTAR PUSTAKA

Astuti, Ambar. 1997. Pengetahuan Keramik. Yogyakarta: Universitas Gajah Mada Press.

Barsoum, M.W.1997. Fundamentals of Ceramics.New York: McGraw Hill. Coble. 1997. Fundamental of Ceramics. Bristol: Insitute of Physics Publishing. Dieter E George, Djaprie Sriati, 1990. Metalurgi Mekanik (Terjemahan).

Erlangga, Jakarta.

Norton,F.H.1956. Ceramics for the artist potter. United States of America: Addison Wesley Publishing Company,inc.

Pranoto, Hadi. 1992. Teori Dasar Pengujian Logam.Malang:Universitas Brawijaya.

Putra, Aji Mardika. 2010.Pengaruh Komposisi Terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO2-MgO. Skripsi tidak diterbitkan. Malang: Universitas Negeri Malang.

Murdanto, Putut. 2002. Bahan pengujian kekuatan.Malang:Jurusan Teknik Sipil FT UM.

Sunarto. 2005. Teori Bahan dan Pengaturan Teknik. Jakarta: PT Rineka Cipta Jakarta.

(15)

Van Vlack Lawrence H, Djaprie Sriati, 1989. Ilmu dan Teknologi Bahan (Terjemahan).Jakarta:Erlangga.

Van Vlack Lawrence H, Djaprie Sriati, 2004. Elemen-elemen ilmu dan Rekayasa Material - Edisi 6 (Terjemahan).Jakarta:Erlangga.

Wardhani, Rahma Ika. 2010.Pengaruh Lama Sintering Terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO2-MgO. Skripsi tidak diterbitkan. Malang: Universitas Negeri Malang.

Widodo, Anton. 2006. Analisa kekerasan & ketangguhan baja pada variasi temperature tempering untuk suhu menengah baja ST60. Skripsi tidak diterbitkan. Malang: Universitas Negeri Malang.

Worrall.1986.Clay and Ceramics Raw Material Second Edition . New York: Elsevier Science Publishing

Gambar

Tabel 2 Konstanta Dielektrik dengan Variasi Lama Penggerusan SiO 2 -MgO
Gambar 2 Grafik Hubungan antara Lama Penggerusan SiO 2 -MgO terhadap Kekerasan  Pada Gambar 4.2 di atas menunjukkan grafik hubungan antara lama  penggerusan keramik SiO 2 -MgO (60%-40%)  dengan nilai kekerasan
Tabel 4 Kekerasan terendah, sedang dan tertinggi keramik SiO 2 -MgO
Tabel 5 Luas Pori dan Nilai Fraksi keramik SiO 2 -MgO dengan kekerasan terendah
+4

Referensi

Dokumen terkait

Tabel 5 menunjukan bahwa variasi formula tidak berpengaruh pada tingkat kesukaan panelis terhadap aroma bubur bayi instan, akan tetapi apabila dilihat dari data

Penelitian ini dilakukan untuk mengamati pengaruh pengaruh pergantian manajemen, opini audit, financial distress, profitabilitas, ukuran KAP dan ukuran klien

Grafik kurva-S dapat dibuat dengan menjumlahkan bobot rencana dari setiap jenis pekerjaan pada setiap minggu (bila menggunakan skala waktu dalam mingguan), kemudian

Objek yang dipakai dalam penciptaan karya tugas akhir seni lukis ini merupakan bentuk dari goresan garis yang telah dipikirkan untuk membentuk sebuah moment

Faktor fisiologis meliputi warna, pencahayaan, musik, suhu ruangan, dan peralatan di ruangan. Warna memainkan peran utama bagaimana pasien memandang praktek dan

Pada direktori /usr/share/drak live-install terdapat aplikasi yang akan ditampilkan ketika akan melakukan instalasi distribusi ILOSbiz 2011 ke dalam komputer,

Terkait permasalahan diatas penulis melakukan penelitian tentang pertanggungjawaban pidana korporasi yang menyangkut tentang tindak pidana korupsi, dengan analisa