• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA 2.1. Definisi Pantai - Pemodelan Analitik Pergerakan Garis Pantai Dengan Menggunakan Persamaan Difusi

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB II TINJAUAN PUSTAKA 2.1. Definisi Pantai - Pemodelan Analitik Pergerakan Garis Pantai Dengan Menggunakan Persamaan Difusi"

Copied!
30
0
0

Teks penuh

(1)
(2)

Penjelasan dari gambar defenisi daerah pantai diatas adalah sebagai

berikut :

• Pesisir adalah daerah darat di tepi laut yang masih mendapat pengaruh laut

seperti pasangsurut, angin laut dan perembesan air laut.

• Pantai adalah sebuah bentuk geografis yang terdiri daripasir, dan terdapat

di daerah pesisirlaut.

• Garis pantai adalah garis batas pertemuan antara daratan dan air laut,

dimana posisinya tidak tetap dan dapat bergerak sesuai dengan pasang surut air laut dan erosi pantai yang terjadi.

• Sempadan pantai adalah daerah sepanjang pantai yang diperuntukkan bagi

pengamanan dan pelestarian pantai.

• Perairan pantai adalah daerah yang masih dipengaruhi aktivitas daratan.

Menurut Kamus Besar Bahasa Indonesia, pantai memiliki definisi sebagai berikut:

1. Tepi laut, pesisir,

2. Perbatasan daratan dengan laut atau massa air lainnya dan bagian yang dapat

pengaruh dari air tsb,

3. Daerah pasang surut di pantai antara pasang tertinggi dan surut terendah, 4. Landai.

Berdasarkan tipe-tipe paparan (shelf) dan perairan, pantai di Indonesia dapat digolongkan menjadi tiga golongan seperti berikut ini :

1. Pantai paparan, merupakan pantai dengan proses pengendapan yang dominan.

(3)

a. Muara sungai memiliki delta, airnya keruh mengandung lumpur dan

terdapat proses sedimentasi;

b. Pantainya landai dengan perubahan kemiringan (hingga kearah laut) yang

bersifat gradual dan teratur; dan

c. Daratan pantainya dapat lebih dari 20 km.

2. Pantai samudera, merupakan pantai dimana proses erosi lebih dominan. Pantai

ini memiliki karakteristik :

a. Muara sungai berada dalam teluk, delta tidak berkembang baik dan airnya

jernih;

b. Batas antara daratan pantai dan garis pantai (yang umumnya lurus) sempit; dan

c. Kedalaman pantai kearah laut berubah tiba-tiba (curam).

3. Pantai pulau, merupakan pantai yang melingkar/mengelilingi pulau kecil. Pantai ini memiliki karakteristik :

a. Dibentuk oleh endapan sungai, batu gamping, endapan gunung berapi atau endapan lainnya;

b. Bentuk garis pantai yang menjorok kelaut (tanjung) mempengaruhi proses terjadinya erosi;

c. Garis pantai di daerah teluklebih panjang dibanding tanjung dan energi

gelombang yang disebarkan cenderung ke sepanjang garis pantai.

Pantai memiliki bentuk, dan diantaranya yaitu berikut ini.

(4)

Spit

(5)
(6)
(7)

inlet to rejoin the coastline on the opposite side. Coastline is not measured as

precisely as is shoreline.

Shorelineis the perimeter of the land along the water's edge, measured to the

closest exactness possible. Shoreline is, therefore, usually longer for a particular location than is its coastline.

Menurut Peraturan Menteri Dalam Negeri Nomor 1 Tahun 2006 tentang

Pedoman Penegasan Batas Daerah (Dept. Dalam Negeri dan Otonomi Daerah,2001), garis pantai (coastline) didefinisikan sebagai : “garis yang dibentuk

oleh perpotongan garis air rendahdengan daratan”.

International Hydrographic Organization(IHO) yang Sebelumnya bernamaInternational Hydrographic Bureau,yang didirikan pada tahun 1919 dan

mulaiberdiri pada tahun 1970yang berkedudukan di Monaco juga menyebutkan tentang pengertian garis pantai.Dalam IHO dijelaskan bahwa definisi garis pantai

secara umum adalah perpotongan antara daratan dengan muka air. Pada daerah yang dipengaruhi oleh pasang surut, garis pantai didekati (approximates) sebagai garis rata-rata muka air tinggi atau Mean High Water Line (MHWL). Sedangkan

pada daerah yang tidak dipengaruhi oleh fluktuasi pasang surut, garis pantai yang digunakan adalahMean Water Level Line(MWL) atauMean Sea Level(MSL).

Pantai merupakan gambaran nyata interaksi dinamis antara air,

gelombangdan material (tanah). Angin dan air bergerak membawa material tanah dari satu tempat ke tempat lain, mengikis tanah dan kemudian mengendapkannya

(8)

proses pantai yang diakibatkan oleh faktor eksternal (arus, gelombang, angin dan

pasang surut) dan internal (karakteristik dan tipe sedimen serta lapisan dasar dimana sedimentersebut berada).Perubahan garis pantai ini

dapatdisebabkanolehhempasan gelombang yang menuju garis pantai sehingga menyebabkan erosi dan abrasi.

Erosi adalahproses pengikisan padatan (sedimen tanah, batuan dan partikel

lainnya) yang berada di garis pantai yang terjadi karena adanya transportasi gelombang laut.Sedangkanabrasi merupakan pengikisan pantai oleh hantaman

gelombang laut yang menyebabkan berkurangnya areal daratan.Namun tidak selamanya hempasan gelombang yang menuju garis pantai dapat menyebabkan erosi dan abrasi, dimana akan terjadi juga yang dinamakan sedimentasi.

Sedimentasi adalah peristiwa pengendapan material batuan yang telah diangkut oleh tenaga air atau anginyang terjadi di pantai.Kombinasi hempasan gelombang

dan arus pada bibir pantai mempengaruhi pergerakan sedimen yang mengubah posisi garis pantai.Selain proses diatas curah hujan dengan intensitas yang tinggi juga dapat mempengaruhi perubahan garis pantai. Perubahan garis pantai juga

dapat diprediksi dengan membuat model matematik yang didasarkan pada imbangan sedimen pantai pada daerah pantai yang ditinjau.

2.3. Gelombang

Gelombang adalah pergerakan naik dan turunnya air dengan arah tegak

(9)

a. Karena angin.

Gelombang terjadi karena adanya gesekan angin di permukaan, oleh karena itu arah gelombang sesuai dengan arah angin.

b. Karena menabrak pantai.

Gelombang yang sampai ke pantai akan terjadi hempasan dan pecah. Air yang pecah itu akan terjadi arus balik dan membentuk gelombang, oleh karena itu

arahnya akan berlawanan dengan arah datangnya gelombang.

d. Karena gempa bumi.

Gelombang laut terjadi karena adanya gempa di dasar laut.Gempa terjadi karena adanya gunung laut yang meletus atau adanya getaran/pergeseran kulit bumi di dasar laut.Gelombang yang ditimbulkan biasanya besar dan disebut

dengan gelombang Tsunami.

Gelombang yang bergerak menuju pantai memiliki ketinggian dan periode

gelombang yang tergantung kepada panjang fetch pembangkitannya. Fetch adalah jarak perjalanan tempuh gelombang dari awal pembangkitannya. Fetch ini dibatasi oleh bentuk daratan yang mengelilingi laut. Semakin panjang jarak fetchnya,

(10)
(11)

b.Lembah gelombang(Trough)adalah titik terendah gelombang, diantara dua

puncak gelombang.

c.Panjang gelombang(Wave length)adalah jarak mendatar antara dua puncak

gelombang atau antara dua lembah gelombang.

d.Tinggi gelombang(Wave height)adalah jarak tegak antara puncak dan lembah gelombang.

e.Priode gelombang(Wave period)adalah waktu yang diperlukan oleh dua puncak gelombang yang berurutan untuk melalui satu titik.

Massa air permukaan selalu dalam keadaan bergerak, gerakan ini terutama ditimbulkan oleh kekuatan angin yang bertiup melintasi permukaan air dan menghasilkan energi gelombang dan arus.Bentuk gelombang yang dihasilkan

cenderung tidak menentu dan tergantung pada beberapa sifat gelombang, periode dan tinggi dimana gelombang dibentuk, gelombang jenis ini

disebut“Sea”.Gelombang yang terbentuk akan bergerak keluar menjauhi pusat asal gelombang dan merambat ke segala arah, serta melepaskan energinya ke pantai dalam bentuk empasan gelombang. Rambatan gelombang ini dapat

menempuh jarak ribuan kilometer sebelum mencapai suatu pantai, jenis gelombang ini disebut“Swell”.

Ada dua tipe gelombang bila dipandang dari sisi sifat-sifatnya,yaitu:

1. Gelombang pembangun/pembentuk pantai (Constructive wave), mempunyai ketinggiankecil dan kecepatan rambatnya rendah.Sehingga saat gelombang

(12)

pantai akan tertingga

tinggal di pantai (deposit) ketika aliranbalik

ke dalam pasir atau pelan-pelan mengalirke ukkan pada Gambar 2.7. dibawah ini

bar 2.7. Gelombang Pembangun/Pembentuk Pant

rusak pantai (Destructive wave), mempun ambat yang besar (sangat tinggi).Air yang ke bih sedikit waktu untuk meresap kedalam

ang kembali menghantam pantai akan ada ba pul dan mengangkut material pantai menuju ke tenga

perti ditunjukkan pada Gambar 2.8. dibawah ini

(13)

Selain pembagian gelombang dari sisi sifat-sifatnya, gelombang di laut

juga dapat dibedakan menjadi beberapa macam tergantung pada gaya pembangkitnya yaitu :

1. Gelombang yang disebabkan oleh angin.

Angin yang bertiup di atas permukaan laut merupakan pembangkit utama gelombang.Bentuk gelombang yang dihasilkan cenderung tidak menentu dan

bergantung pada beberapa sifat gelombang periode dan tinggi dimana gelombang dibentuk.Gelombang yang bergerak dengan jarak yang sangat jauh

sehingga semakin jauh meninggalkan daerah pembangkitnya, tidak lagi dipengaruhi oleh angin. Gelombang ini akan lebih teratur dan jarak yang ditempuh selama pergerakannya dapat mencapai ribuan mil. Tinggi

gelombang rata-rata yang dihasilkan oleh angin merupakan fungsi dari kecepatan angin, waktu dimana angin bertiup, dan jarak dimana angin bertiup

tanpa rintangan.Umumnya semakin kencang angin bertiup semakin besar gelombang yang terbentuk dan pergerakan gelombang mempunyai kecepatan yang tinggi sesuai dengan panjang gelombang yang besar.Gelombang yang

terbentuk dengan cara ini umumnya mempunyai puncak yang kurang curam jika dibandingkan dengan tipe gelombang yang dibangkitkan dengan angin

yang berkeceptan kecil atau lemah.

2. Gelombang yang disebabkan oleh pasang surut.

Gelombang pasang surut yang terjadi di suatu perairan yang diamati adalah

merupakan penjumlahan dari komponen-komponen pasang yang disebabkan oleh gravitasi bulan, matahari, dan benda-benda angkasa lainnya yang

(14)
(15)
(16)

gelombang adalah peristiwa perubahan arah gelombang yang bergerak ke arah

pantai dari kedalaman air yang dalam menuju kedalaman air yang dangkal. Karena adanya perubahan kedalaman air, peristiwa refraksi gelombang

diakibatkan oleh perbedaan kecepatan gelombang yang biasanya disertai juga dengan perubahan panjang gelombang yang mengecil.Gelombang yang menjalar dari laut dalam menuju pantai akan mengalami perubahan bentuk. Didalam laut

bentuk gelombang adalah sinusoidal.Dilaut transisi dan dangkala, puncak gelombang menjadi semakin tajam sementara lembah gelombang menjadi

semakin landai.Pada suatu kedalaman tertentu puncak gelombang sedemikian tajam sehingga tidak stabil dan pecah.Setelah pecah gelombang terus menjalar ke pantai, dan semakin dekat dengan pantai tinggi gelombang semakin

berkurang.Selain mempengaruhi arah gelombang, refraksi juga sangat berpengaruh terhadap tinggi gelombang dan distribusi energi gelombang di

sepanjang pantai.

Difraksi terjadi apabila tinggi gelombang di suatu titik pada garis puncak gelombang lebih besar daripada titik di dekatnya, yang menyebabkan perpindahan

energi sepanjang puncak gelombang ke arah tinggi gelombang yang lebih kecil.Difraksi gelombang akan terjadi apabila gelombang yang datang terhalang

oleh suatu penghalang, dapat berupa bangunan pemecah gelombang maupun pulau-pulau kecil yang ada disekitarnya. Akibat dari terhalangnya gelombang datang akan membelok di sekitar ujung rintangan/penghalang dan masuk ke

daerah terlindung yang ada di belakangnya. Besar kecilnya gelombang yang dipantulkan tergantung pada bentuk dan jenis rintangan.Dalam hal ini, akan

(17)
(18)
(19)

Gambar 2.11.Surging

Gelombang akan membentuk gerakan maju melintasi permukaan air sehingga terjadi gerakan kecil kearah depan dari massa air itu sendiri.Semua

fenomena yang di alami gelombang pada hakekatnya berhubungan erat dengan topografi dasar laut (sea bottom topography).

2.5. Arus di Dekat Pantai

Di daerah lepas pantai (offshore zone) gelombang menimbulkan gerak

orbit partikel air, gerak orbit partikel air tidak tertutup sehingga menimbulkan transpor masa air. Gelombang yang bergerak menuju garis pantai akan membawa energi dan momentum dalam arah pergerakan gelombang tersebut. Transpor

tersebut dapat disertai dengan terangkutnya sedimen dasar dalam arah menuju pantai (onshore) dan meninggalkan pantai (offshore).Gelombang

pecahmenimbulkan arus dan turbulensi yang sangat besar yang dapat menggerakkan sedimen dasargerak massa air tersebut disertai dengan terangkutnya sedimen. Arus yang terjadi si surf zone dan swash zone adalah yang

paling penting di dalam analisis pantai, dimana sangat tergantung pada arah datang gelombang (Triatmodjo, 1999)

Untuk onshore, sudut angindidefinisikan relatif terhadap garis pantai.Angin darat bertiup langsung dari laut menuju pantai, di sekitar arah yang sama gelombang bergerak. Angin lepas pantai bertiup dari pantai ke laut, ke arah

(20)

pada saat terjadi gelombang angin di pantai bertiup kearah lepas pantai.) Angin

yang bertiup dari kanan atau kiri sisi pantai sejajar dengan pantai.

Sedangkan untuk offshore, pada saat cuaca terang zona lepas pantai

terletak di bawah dasar gelombang dan tidak terpengaruh oleh gelombang normal.Zona lepas pantai biasanya hanya menerima sedimen halus yang mengendap dari suspensi (namun dapat menerima sedimen berbutir kasar selama

badai, ketika basis gelombang diturunkan).

Triatmodjo (1999) menyebutkan Arus pasang terjadi pada waktu pasang

dan arus surut terjadi pada saat periode air surut. Titik balik (slack) adalah saat di mana arus berbalik antara arus pasang dan arus surut. Titik balik ini bisa terjadi pada saat muka air tertinggi dan muka air terendah. Pada saat tersebut kecepatan

arus adalah nol. Arus sepanjang pantai dapat juga dibentuk oleh pasang surut permukaan laut.

2.6. One Line Model(Model Satu Garis)

One line model (model satu garis) merupakan model bentuk sederhana

yang digunakan untuk menguji perilaku groin di pantai danmenjelaskan riwayat waktu dari posisi garis pantai sepanjang garis pantai. Konsep One Line model

bertumpu pada pengamatan umum bahwa profil pantai mempertahankan bentuk rata-rata yang merupakan karakteristik dari pantai tertentu, terlepas dari saat perubahan yang ekstrim seperti yang dihasilkan oleh gelombang laut. Didalam

(21)

Persamaan One-Line berawal dari rumus transport sedimen lepas pantai,

dapat di tunjukan dalam persamaan (2.1) :

=

2( − )

16( − )(1 − ) = 2( − )… … … (2.1)

Dimana Cq merupakan kesesuaian dan ( − )adalah ukuran sudut

gelombang datang relatif pada garis pantai normal yang diukur dari sumbu y. Kemudian rumus transport sedimen lepas pantai tersebut disesuaikan dengan

konservasi dari persamaan pasir. Pada transport sediment diselisih antara debit sediment yang sudah diketahui dengan debit sediment yang dicari disesuaikan

kembali dengan kondisi yang ada di profil pantai yaitu diantaranya, kedalaman air laut saat batas gelombang pecah datang (ho) dan batas antara garis pantai dengan sempadan pantai atau berm height (B). Debit sediment yang diselisihkan

disesuaikan terhadap setiap titik grid sepanjang pantai (Δ x), dimana kondisi profil

pantai berhubungan terhadap perubahan nilai profil pantai (Δ y) dan waktu yang

terjadi (Δ t). Hal ini dapat diperhatikan melalui persamaan (2.2)

∆ [ ( ) − ( + ∆ )] = [ ( + ∆ ) − ( )](ℎ + )∆ … … … (2.2)

Atau dengan menggunakan Deret Taylor dan argument bahwa∆ dan∆ menjadi sangat kecil, maka didapatkan persamaan (2.3)

+ 1

(ℎ + ) = 0… … … . .(2.3)

Dengan mensubstitusikan ekspresi untuk kecepatanpengangkutan persamaan (2.1) kedalam persamaan berikut maka diperoleh solusi analitis.

(22)

Q =C sin 2(δb − ɣ)

= C [sin 2δb (cos ɣ − sin ɣ) − 2 cos 2δb sin ɣ cos ɣ] (2.4)

Kemudian Q disubstitusikan dengan sin dan cos dengan nilai ⁄

yang lebih kecil, maka didapat persamaan (2.5) seperti berikut

= Cq 2 − 2Cq 2 = − (ℎ + ) … … (2.5)

Dari persamaan (2.3) diasumsikan nilai ⁄ ≪1, sehingga diperoleh

persamaan (2.6) berikut

≃ − (ℎ + ) … … … .. (2.6)

Kemudian turunan Q disederhanakan kedalam persamaan (2.3) dengan

pertambahan waktu, sehingga diperoleh persamaan (2.7) berikut

= … … … .. (2.7)

Persamaan diatas merupakan persamaan difusi satu dimensi klasik yang

akandikembangkan sesuai dengan persamaan debit sediment di setiap titik sejajar pantai dengan penambahan waktu sehingga diperoleh solusi untuk nilai y untuk situasi pantai yang berbeda dengan perhitungan analitik dimetodeOne-Line model.

2.7. Heat Equation (Persamaan Panas):

2.7.1 Solution By Fourier Series (Solusi Dengan Seri Fourier)

Persamaan yang melibatkan satu atau lebih turunan parsial dari fungsi dua atau lebih variabel independen disebut persamaan diferensial parsial.Urutan

(23)

persamaan diferensial adalah linier jika tingkat pertama dalam variabel dipenden

dan turunannya parsial. Jika setiap istilah persamaan tersebut megandung variabel dipenden atau salah satu turunannya, persamaan dikatakan sama, selain itu

dikatakan tidak sama.

Dari persamaan gelombang kita beralih untuk persamaan besar berikutnya yaituheat equation(persamaan panas). Dalam persamaan ini suhu y (x,

y, z, t) berada dalam bahan dari material yang sama.seperti berikut

=

dengan

=

Dimana : c² merupakan penyebar panas; K adalah daya konduksi panas; adalah

panas khusus;ρ adalah kepadatan material dari bahan;∇²y adalah Laplacian dari u

dan berubungan dengan kordinat Cartesian x, y, z, maka persamaan menjadi

=

+

+

Suhu diberikan di sepanjang batang tipis atau penampang kawat konstan dan bahan yang homogen yang berorientasi sepanjang sumbu x dan terosilasi lateral sempurna, sehingga panas mengalir dalam arah x saja. Maka persamaan

Laplace tergantung hanya pada x dan waktu (t), dan persamaan panas menjadione dimensional heat equation(persamaan panas satu dimensi), seperti berikut

= c

(2.8)

Persamaan yang dihasilkan memiliki sedikit perbedaan dengan persamaan

gelombang, dimana pada persamaan gelombang digunakan istilah sementara

(24)

Untuk ujung x = 0 dan x = L dengan suhu 0, maka didapat kondisi batas,

Untuk solusi u(x,t) dari persamaan panas satu dimensimetode akan paralel untuk persamaan gelombang jika digunakan aplikasi pemisahan variabel kemudian

diikuti dengan deref Fourier.

Langkah pertama untuk two ordinary differential equations (dua persamaan diferensial biasa) adalah subsitusi persamaan (2.8), sehingga menjadi

y(x,t) = F(x)G(t) (2.11)

sehingga persamaan (2.8) berubah menjadi FG = c²F”G dengan G = dG/dt dan

F”= d²F/dx². Untuk pemisahan variabel kita bagi dengan c²FG, sehingga diperoleh persamaan seperti berikut

̇

= " (2.12)

Sisi kiri hanya tergantung pada t dan sisi kanan hanya pada x, sehingga keduanya

harus sama dengan k. Ini menunjukkan bahwa untuk k≥ 0 satu-satunya solusi

untuk y = FG yang memenuhi persamaan (2.9) adalah u≡0. Untuk negatif k = -p²,

yang diperoleh dari persamaan (2.12) sehingga diperoleh

F” + p²F = 0 (2.13)

dan

(25)

Langkah kedua adalah untuk memenuhi kondisi batas, dengan

memecahkan persamaan (2.13). Maka diperoleh solusi seperti berikut

F(x) = A cos px + B sin px (2.15)

Dari kondisi batas pada persamaan (2.9) maka diperoleh

y(0,t) = F(0)G(t) = 0 dan y(L,t) = F(L)G(t) = 0

Dimana G≡0 maka u≡0, digunakan F(0) = 0, F(L) = 0 dan menghasilkan F(0)

= A = 0 dari persamaan (2.15) dan kemudian F(L) = B sin pL = 0, dengan B≠0

(untuk menghindari F≡0), demikan juga dengan sin ρL = 0 maka = ,

n = 1, 2, …

Untuk B = 1, diperoleh solusi untuk persamaan (2.13) dari persamaan (2.9) seperti

berikut

( ) = n = 1, 2, …

Dari p = nπ/L maka persamaan (2.14) menjadi

̇ + ² = 0dimanaλn =

Memperoleh solusi Gn(t) = ² n = 1, 2, …

Dimana adalah konstan. Maka fungsi berubah menjadi

( , ) = ( ) ( ) = ² n = 1,2,… (2.16)

Persamaan tersebut adalah solusi dari persamaan panas pada persamaan (2.8) dan (2.9), yang merupakan masalah dari fungsi eigen dengan nilai-nilai eigen λn =

(26)

Langkah ketiga adalah solusi untuk semua masalah. Persamaan (2.16) di

substitusikan kedalam persamaan (2.8), (2.9) dan (2.10) pada fungsi eigen, sehingga diperoleh solusi seperti berikut

( , ) = ∑ ( , ) = ∑ sin ² = (2.17)

Dari persamaan (2.17) kemudian di substitusikan kedalam persamaan (2.10),maka

( , 0) = ∑ = ( )

Selanjutnya persamaan (2.17) disubstitusikan ke persamaan (2.10), dimana ’s harus merupakan koefisien dari seri sinus Fourier seperti yang terdapat pada

persamaan (2.13), sehingga diperoleh solusi

= ∫ ( ) sin n = 1, 2, … (2.18)

Solusi dari masalah ini dapat dibentuk dengan asumsi bahwa f(x) adalah

piecewise kontinu pada interval ≤ ≤ dan memiliki turunan satu sisi pada

semua titik interior dari interval.

2.7.2 Solution By Fourier Integrals and Transforms (Solusi Dengan

Integral Fourier dan Transformasi)

Pada batang tak terbatas dari seri Fourier digentikan dengan Fourier Integrals (integral Fourier) dimana digunakan batang atau kawat sepanjang 300

kaki.Maka akan diperoleh solusi dari persamaan panas sebagai berikut

= (2.19)

Pada batang diberikan suhu panas pada kedua sisinya sehingga terisolasi lateral maka akan diperolehkondisi awal seperti berikut

(27)

Dimana f(x) adalah suhu awal yang diberikan batang. Untuk menyelesaikan

masalah ini maka kita mulai dengan menggantikan persamaan (2.20) menjadi y(x,t) = F(x)G(t) dan diberikan dua persamaan yaitu

F” + P²F = 0 (2.21)

dan

̇ + = 0 (2.22)

Maka solusinya adalah F(x) = A cospx + B sinpx dan G(t) =

Dimana A dan B adalah konstan, maka solusi dari persamaan (2.19) adalah

y(x, t; p) = FG = (A cospx + B sinpx) (2.23)

Pada hal ini k yang digunakan adalah k yang negatif karena nilai-nilai positif dari k akan mengakibatkan peningkatan fungsi eksponensial dalam persamaan (2.22).

Fungsi dari setiap seri pada persamaan (2.23) dengan mengambil p sebagai kelipatan akan mengarah pada fungsi periodik dalam x pada saat t = 0. Tetapi

karena f(x) pada persamaan (2.20) tidak dianggap periodik maka akan digunakan integral Fourier bukan seri Fourier. Karena (2.20) A dan B dianggap sebagai fungsi p maka A = A(p) dan B = B(p).

Karena persamaan panas dalam kasus ini adalah linier dan homogen maka diberikan intergral terpisah terhadap x dan terhadap waktu (t), maka diperoleh

solusi seperti berikut

( , ) = ∫ ( , ; ) = ∫ [ ( ) + ( ) ] (2.23)

Langkah selanjutnya adalah penentuan dari A(p) dan B(p) dari kondisi awal (initial condition) pada persamaan (2.23) dan persamaan (2.20), maka

diperoleh solusi

(28)

Kemudian A(p) dan B(p) disubstitusikan kedalam persamaan (2.22) dan

persamaan (2.23) pada f(x), maka diperoleh solusi sebagai berikut

A(p) = ∫ ( ) , B(p) = ∫ ( )

Dengan mensubstitusi integral Fourier pada persamaan (2.24) dengan A(p) dan B(p), maka diperoleh

y(x,0) = ∫ ∫ ( ) cos( − )

Hal yang sama juga dilakukan pada persamaan (2.23), sehingga menjadi

y(x,t) = ∫ ∫ ( ) cos(px − pv)

Dengan membalikkan integrasi, maka diperoleh

y(x,t) = ∫ ( ) ∫ (2.25)

Kemudian dilakukan evaluasi pada integral bagian dalam, sehingga di dapat solusi sebagai berikut

∫ 2 =√ (2.26)

Dengan mengambil bentuk integral dalam p = s/c√ sebagai variabel baru, maka

diperoleh b =

Kemudian 2bs = (x– v)p dan ds = √ dpdimasukkan kedalam persamaan (2.26),

sehingga menjadi

∫ cos( − ) = √ −(

Dengan memasukkan hasil diatas ke dalam persamaan (2.25) maka diperoleh representasi seperti berikut

y(x,t) =

√ ∫ ( ) − (

(29)

Pengambilan z = (v–x)/(2c )sebagai variabel integrasi, maka diperoleh bentuk

alternative sebagai berikut

y(x,t)

√ ∫ + 2 √ (2.28)

Jika f(x) dibatasi untuk semua nilai x dan terintegrasi dalam setiap interval, maka fungsi dari persamaan (2.27) dan (2.28) memenuhi fungsi persamaan (2.19) dan

(2.20).

Transformasi Fourier yang memiliki hubungan erat dengan integral

Fourier menggunakan transisi cosinus Fourier dan transformasi sinus.Transformasi Fourier berlaku untuk semua masalah yang menyangkut seluruh sumbu, cosinus Fourier dan transformasi sinus mengubah masalah yang

melibatkan sumbu positif.

2.8. Program MATLAB

MATLAB merupakan suatu perangkat lunak yang digunakan untuk melakukan komputasi matematika, menganalisa data, mengembangkan alogaritma,

melakukan simulasi dan pemodelan, dan menghasilkan tampilan grafik dan antarmuka grafikal( R.H. Sianipar, 2013: 2).Dalam penggunan MATLAB

dilakukan dengan cara melakukan serangkaian perintah atau command pada M-Fileyang kemudian hasil pengoperasiannya terhadap perintah ataucommandyang diberikan, terlampir padaCommand Window.

(30)

garis pantainya dapat dilihat dari grafik yang dihasilkan dari perhitungan dengan

Gambar

Gambar 2.7bar 2.7. Gelombang Pembangun/Pembentuk Pantantai

Referensi

Dokumen terkait

Hasil penelitian menyatakan bahwa kualitas pelayanan ditentukan oleh kepuasan pelanggan (Badri, Attia, & Ustadi, 2008; Chakraborty & Majumdar, 2011; Larsson &

Rumah sakit secara rutin memberikan pendidikan pada area yang berisiko tinggi bagi pasien Pasien dan keluarga didorong untuk berpartisipasi dalam proses pelayanan dengan memberi

Konsep permukiman masyarakat Desa Pegayaman Bali dalam mempertahankan kehidupannya sampai dengan saat ini meliputi proses terbentuknya Desa Pegayaman sebagai hadiah

Pompa Positive Displacement adalah suatu pompa yang cara pemindahan zat cair dari suatu tempat ke tempat lain menggunakan perubahan volume ruang kerja pompa yang

Namun dalam kendala upaya pelaksanaan diversi pada tingkat penyidikan di Polres Sukabumi yang berdasarkan Undang-Undang No 11 Tahun 2012 tentang Sistem Peradilan

Pengantar Pengolahan Tepung Serealia dan Biji-bijian Teknologi Pangan dan Gizi, Fateta IPB, Bogor.. Biskuit, Crackers, dan Cookies Pengenalan Tentang; Aspek Bahan Baku, Teknologi,

Sebagai seorang mahasiswa muslim, mereka harus memiliki pandangan dunia yang mencerminan keyakinannya sebagai muslim tetapi tetap bisa berdialog dengan berbagai

Perlakuan dosis radiasi yang diberikan tidak berbengaruh nyata terhadap panjang tangkai dan jumlah bunga.Panjang tangkai dan jumlah bunga pada perlakuan yang diberikan tidak