• Tidak ada hasil yang ditemukan

III. METODOLOGI PENELITIAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "III. METODOLOGI PENELITIAN"

Copied!
16
0
0

Teks penuh

(1)

III. METODOLOGI PENELITIAN

Dalam pengamatan awal dilihat tiap seksi atau tahapan proses dengan memperhatikan kondisi produksi pada saat dilakukan audit energi. Dari kondisi produksi tersebut selanjutnya ditentukan batasan sistem yang diaudit serta didapatkan pola produksi riil. Dari pola produksi tersebut data dianalisis dalam bentuk grafik untuk menentukan metoda pengambilan data, yaitu waktu pengambilan data dan frekuensi pengambilan data.

A. WAKTU DAN TEMPAT

Penelitian dilaksanakan dalam kurun waktu Maret 2009 sampai dengan Mei 2009. Tempat pelaksanaan penelitian adalah di PT. PUPUK KUJANG 1A, PERSERO di bagian Process Engineering.

B. BATASAN SISTEM

Kegiatan audit energi ini dilakukan di tiga unit, yaitu unit penyediaan sarana penunjang (utility), unit proses produksi pupuk urea dan unit utilitas pendukung proses produksi pupuk urea. Batasan masing-masing unit tersebut dijelaskan sebagai berikut :

1. Unit penyediaan sarana penunjang (utility)

Unit penyediaan sarana penunjang produksi (utility) ini dianggap sebagai suatu kesatuan sistem. Untuk memudahkan dalam kegiatan audit dan menghindari kesalahpahaman terhadap hasil yang disajikan, sistem ini dibagi menjadi empat sub sistem. Sub sistem tersebut antara lain gas turbin generator HITACHI (2006-J), ketel uap panas buang (2003-U) dan ketel uap paket I dan II (2007-U dan 2007-UA).

a. Sub sistem gas turbin generator HITACHI (2006-J)

Gas turbin generator HITACHI (2006-J) berfungsi sebagai unit penyediaan tenaga listrik untuk seluruh pabrik (plant), perumahan dan perkantoran.

(2)

b. Sub sistem ketel uap panas buang (2003-U)

Ketel uap panas buang (2003-U) berfungsi sebagai pembangkit uap dengan memanfaatkan gas buang dari gas turbin generator untuk pembakaran.

c. Sub sistem ketel uap paket I dan II (2007-U dan 2007-UA)

Ketel uap paket I dan II (2007-U dan 2007-UA) berfungsi sebagai pembangkit uap dengan masukan gas alam dan udara sebagai bahan bakar.

2. Unit proses pembuatan pupuk urea

Seperti halnya pada unit penyediaan sarana penunjang produksi (utility), unit proses pembuatan pupuk urea juga dianggap sebagai suatu kesatuan sistem. Untuk memudahkan dalam kegiatan audit dan menghindari kesalahpahaman terhadap hasil yang disajikan, sistem ini dibagi menjadi empat sub sistem. Sub sistem tersebut antara lain seksi sintesa, seksi dekomposisi/purifikasi, seksi recovery dan seksi kristalisasi dan prilling.

a. Sub sistem seksi sintesa

Komponen utama pada seksi sintesa adalah reaktor sintesa (U-DC101). Sedangkan komponen lainnya adalah pompa, kompresor dan alat penukar panas (heat exchanger).

(3)

Gambar 3.1. Aliran proses dan definisi sub sistem sintesa b. Sub sistem seksi dekomposisi/purifikasi

Peralatan pada sub sistem ini antara lain high pressure decomposer (U-DA201), low pressure decomposer (U-DA202), dan gas separator (U-DA203).

U-DC101 Ke unit purifikasi U-EA102 U-EA101 U-FA401 U-GA101A-D U-GA404A,B U-GA102A,B U-GA402A,B Larutan recycle U-GB101A,B U-GB102 CO2 dari pabrik ammonia Udara pasivasi

(4)

Gambar 3.2. Aliran proses dan definisi sub sistem dekomposisi/purifikasi c. Sub sistem seksi recovery

Peralatan pada sub sistem ini antara lain low pressure absorber (U-EA402), off gas absorber (U-DA402), high pressure absorber cooler (U-EA401), high pressure absorber (U-DA401), ammonia recovery absorber (U-EA405), dan ammonia reservoir (U-FA401).

(5)

Batas sub sistem

Gambar 3.3. Aliran proses dan definisi sub sistem recovery

Ke U-DA202 Dari U-GA203A,B Ke U-GB401 Dari U-DA202 Ke U-DC101 dari/ke U-GA201A,B Dari U-DA205 Dari U-DA201 Ke U-FA401 Steam condensate Steam condensate U-EA402 U-DA402 U-EA407 U-EA408 U-FA403 U-EA406 U-EA401 U-DA401 U-EA405 U-GA403A,B U-GA407A,B U-GA402A,B U-GA408A,B U-GA401A,B U-GA406A,B U-GA405A,B cw cw cw cw cw cw cw cw

(6)

   

d. Sub sistem seksi kristalisasi dan prilling

Peralatan pada seksi kristalisasi dan prilling antara lain crystallizer (U-FA201), mother liquor tank (U-FA203), fluidizing dryer (U-FF301), dan prilling tower (U-IA301).

(7)

   

Batas sub sistem

Gambar 3.5. Aliran proses dan definisi sub sistem prilling Ke U-FA303 Ke pengantongan steam condensat steam steam Ke U-FA203 udara udara Dari U-GF201A-E U-GB303 U-FD303 U-FD304 U-GB302 U-GA302A,B U-PF303 U-FD305 U-PF302 U-GB304A-U-EA301 U-JD301A,B U-FC301 U-FF301 U-EC301 U-GB301 U-FA301 U-PF301A-L U IA301

(8)

   

3. Unit utilitas pendukung proses produksi pupuk urea

Seperti halnya unit sarana penunjang (utility) dan unit proses produksi, unit utilitas pendukung proses produksi pupuk urea di urea plant dianggap sebagai suatu kesatuan sistem. Untuk memudahkan dalam kegiatan audit dan menghindari terjadinya kesalahpahaman dalam pembahasan, sistem ini dibagi menjadi tiga sub sistem. Sub sistem tersebut antara lain penyediaan uap dan kondensat uap, penyediaan air panas (hot water tank (U-FA703)) dan penyediaan air pendingin.

a. Sub sistem penyediaan uap dan kondensat uap

Peralatan pada sub sistem ini antara lain desuperheater I (U-BF701), desuperheater II (U-BF702), flash drum (U-FA701), steam condensate tank (U-FA702), dan condensate cooler (U-EA701). b. Sub sistem penyediaan air panas (hot water tank (U-FA703)) c. Sub sistem penyediaan air pendingin

Peralatan pada sub sistem ini antara lain cooling tower for urea process part EF601) dan cooling tower for crystallizer part (U-EF601)

C. PARAMETER PENGUKURAN

Parameter yang diukur dalam penelitian ini adalah : 1. Penggunaan energi listrik

Data yang digunakan meliputi jenis alat, jumlah alat, lama penggunaan alat, daya tegangan, dan arus listrik yang terpasang dan terukur dan jumlah produksi pupuk urea.

2. Penggunaan energi uap

Data yang digunakan meliputi konsumsi uap, nilai kalor uap, dan jumlah produksi pupuk urea.

3. Penggunaan energi bahan bakar gas alam

Data yang digunakan meliputi konsumsi gas alam, nilai low heating valuedari masing-masing komponen yang terkandung dalam gas alam dan jumlah produksi pupuk urea.

(9)

   

4. Penggunaan energi manusia

Data yang digunakan meliputi jumlah tenaga kerja pada tiap tahapan produksi, jumlah jam kerja, jumlah produksi pupuk urea, dan nilai metabolisme manusia.

5. Efisiensi penggunaan energi

Data yang digunakan dalam menentukan efisiensi penggunaan energi adalah energi input, energi berguna, kapasitas terukur dan kapasitas terpasang.

D. METODE PENGAMBILAN DATA

Metode audit energi yang dilakukan di PT. PUPUK KUJANG 1A mengacu pada metode audit energi yang dilakukan oleh tim KONEBA di PT. Pupuk Kalimantan Timur (1989). Sehingga, audit energi ini terdiri dari dua tahap, yaitu :

1. Tahap pendahuluan (preliminary energi audit)

Pada tahap ini dilakukan pengelompokkan sumber data yang diperlukan seperti kondisi dan pola produksi dan mengidentifikasi data-data tersebut. Setelah itu dilakukan analisis data-data untuk menentukan metode pengambilan data dalam satu bulan, satu minggu dan satu hari dengan tiga kali ulangan. Sehingga, data tersebut dapat dievaluasi pada tahap pemeriksaan menyeluruh (detailed energy audit).

2. Pemeriksaan menyeluruh (detailed energy audit)

Setelah ditentukan metode pengambilan data yaitu data diambil setiap dua jam sekali selama 24 jam selama bulan Maret 2009, selanjutnya dilakukan pemeriksaan menyeluruh dengan melakukan penjajagan (surveying) terhadap peralatan yang dipakai di suatu pabrik dan melakukan analisa, baik terhadap alat yang tetap digunakan secara kontinyu maupun alat yang bersifat tidak tetap.

Tahapan selanjutnya dari pemeriksaan menyeluruh ini adalah melakukan pemeriksaan dan pencatatan atau pengambilan data. Pengambilan data untuk audit energi ini dilakukan dengan 2 (dua) cara, yaitu :

(10)

   

1. Pengumpulan data primer

Waktu pengumpulan data primer ditentukan setelah dilakukan preliminary energy audit. Sedangkan pengambilan data dilakukan dengan tiga kali ulangan. Data-data yang diambil yaitu pada data peralatan yang menggunakan energi listrik, turbin uap, ketel uap, gas turbin generatot dan data pada proses produksi. Data-data tersebut dijelaskan sebagai berikut :

a. Pengamatan dan pengukuran pada peralatan yang menggunakan listrik. Data yang diambil adalah kuat arus listrik terukur pada setiap alat/mesin.

b. Pengamatan dan pengukuran pada turbin uap. Data yang diambil pada turbin uap adalah tekanan uap dan suhu uap.

c. Pengamatan dan pengukuran pada tiga jenis ketel uap, yaitu ketel uap paket I (2007-U), ketel uap paket II (2007-UA) dan ketel uap panas buang (2003-U). Data yang diambil pada ketel uap adalah suhu uap, tekanan uap, suhu air umpan, laju alir massa air umpan, laju alir massa gas alam, suhu gas buang masuk economizer, suhu gas buang keluar economizer. Alat yang digunakan adalah alat yang terpasang pada ruang pengendali (control room).

d. Pengamatan dan pengukuran pada gas turbin generator HITACHI (2006-J). Data yang diambil yaitu tegangan dan arus terukur. Alat yang digunakan adalah alat yang terpasang pada ruang pengendali (control room).

e. Pengamatan dan pengukuran pada proses produksi pupuk urea berupa data tekanan, temperatur, laju alir massa, jumlah produksi urea, konsumsi uap air, ammonia dan air pengumpan ketel.

2. Pengumpulan data sekunder

Data sekunder merupakan data penunjang lainnya yang diperoleh dari bagian Process Engineering termasuk data yang tidak dapat diukur di ruang pengendali (control room) seperti data mengenai komposisi gas alam yang diterima oleh PT. PUPUK KUJANG 1A.

(11)

   

E. BAHAN DAN ALAT

Objek yang diaudit pada penelitian ini antara lain gas turbin generator HITACHI (2006-J), ketel uap panas buang (2003-U), ketel uap paket I dan II (2007-U dan 2007-UA), turbin, pompa, kompresor dan motor listrik. Sedangkan alat ukur yang digunakan dalam kegiatan audit ini adalah semua alat ukur sensor yang terpasang di ruang pengendali (control room) dan alat ukur yang terpasang di lapangan.

Bahan yang digunakan dalam kegiatan audit ini adalah gas alam, air dan udara.

F. PENGOLAHAN DATA DAN ANALISIS

Audit energi yang dilakukan pada proses produksi pupuk urea ini dilakukan pada setiap tahap yang telah ditentukan. Semua perhitungan akhir energi dikonversikan ke dalam satuan energi yang sama yaitu kJ/kg urea. 1. Energi listrik

Kebutuhan energi listrik dalam proses produksi pupuk urea dapat dihitung dengan persamaan berikut :

El = (P * t * η) / Q (3.1)

P = v * I * cos θ * √3 (3.2)

Dimana :

El = Energi listrik yang digunakan untuk memproduksi tiap kg pupuk urea (MJ/kg)

P = Daya motor/mesin terukur (kW) t = Waktu (jam)

η = Efisiensi alat (%)

Q = Jumlah produksi pupuk urea (kg) v = Tegangan (volt)

I = Arus (ampere) cos θ = Faktor daya

(12)

   

2. Energi uap

Kebutuhan energi uap dalam proses produksi pupuk urea dapat dihitung dengan persamaan berikut :

Es = ms * h (3.3)

Dimana :

Es = Energi uap (kJ/jam)

ms = Laju aliran massa uap (kg/jam)

h = Entalpi uap pada tekanan dan suhu tertentu (kJ/kg) 3. Energi bahan bakar gas alam

Energi bahan bakar gas alam dalam proses produksi pupuk urea dapat dihitung dengan persamaan berikut :

ENG = mNG * LHV (3.4)

Dimana :

ENG = Energi gas alam (kJ/jam)

mNG = Laju aliran massa gas alam (lb/jam) LHV = Low Heating Value gas alam (kJ/lb)

Pada perhitungan energi bahan bakar gas alam, satuan yang digunakan untuk laju aliran massa adalah lb/jam dikarenakan nilai LHV yang diperoleh memiliki satuan kJ/lb.

4. Energi air umpan ketel

Kebutuhan energi air umpan ketel dalam proses produksi pupuk urea dapat dihitung dengan persamaan berikut :

Eair = mair * Cpa dT (3.5)

Dimana :

Eair = Energi air umpan ketel (kJ/jam)

mair = Laju aliran massa air umpan ketel (kg/jam) Cpa = Panas jenis air umpan ketel (kJ/kg.mol) T1 = Suhu reference (298 K)

(13)

   

Nilai panas jenis air umpan ketel merupakan fungsi integral terhadap suhu. Nilai Cp dapat dihitung dengan menggunakan tabel Heat Capacity for Inorganic Compounds and Elements.

5. Energi oksigen yang terkandung dalam udara

Kebutuhan energi oksigen yang terkandung dalam udara pada proses produksi pupuk urea dapat dihitung dengan persamaan berikut :

Eudara = mudara * Cpu dT (3.6)

Dimana :

Eudara = Energi udara (kJ/jam)

mudara = Laju aliran massa oksigen yang terkandung dalam udara secara teoritis (kg.mol/jam)

Cpu = Panas jenis udara (kJ/kg.mol) T1 = Suhu reference (298 K) T2 = Suhu udara (K)

Nilai panas jenis udara merupakan fungsi integral terhadap suhu. Nilai Cp dapat dihitung dengan menggunakan tabel Heat Capacity for Inorganic Compounds and Elements.

6. Energi manusia

Kebutuhan energi manusia dalam proses produksi pupuk urea dapat dihitung dengan persamaan berikut :

Emanusia = (n x T x Cmanusia)/Npupuk urea (3.7) Dimana :

Emanusia = Energi manusia (kJ/jam) n = Jumlah pekerja per hari T = Jam kerja per hari (jam)

C = Metabolisme dasar manusia (laki-laki = 4.27 kJ/menit atau 256.2 kJ/jam)

(14)

   

7. Efisiensi penggunaan energi

Efisiensi penggunaan energi dalam proses produksi pupuk urea adalah sebagai berikut :

a. Efisiensi riil

Efisiensi riil yaitu perbandingan antara jumlah energi berguna dengan jumlah energi input. Efisiensi riil dapat dihitung dengan persamaan sebagai berikut :

η riil = Eberguna / Ein x 100% (3.8)

Dimana :

η riil = Efisiensi riil (%)

Eberguna = Energi berguna (kJ/jam) Ein = Energi input (kJ/jam) b. Efisiensi teknis

Efisiensi teknis yaitu perbandingan efisiensi terukur (ηriil) dengan efisiensi alat/mesin terpasang. Efisiensi teknis dapat dihitung dengan persamaan sebagai berikut :

ηteknis = ηriil /ηmenurut spesifikasi x 100% (3.9) Dimana :

ηteknis = Efisiensi teknis (%)

ηmenurut spesifikasi = Efisiensi alat/mesin menurut spesifikasi (%)

ηriil = Efisiensi riil (%)

Setelah didapatkan parameter pengukuran yang dibutuhkan, selanjutnya dilakukan analisis terhadap hasil perhitungan yang diperoleh. Metode analisis yang akan digunakan pada penelitian ini mengacu pada metode audit menurut Wayne C. Turner (1982) dengan tahapan analisis kesetimbangan massa dan energi, analisis energi yang masuk dan yang keluar pada tiap sub sistem dan analisis pindah panas.

Kesetimbangan massa dan energi sangat penting dalam sebuah proses di industri. Kesetimbangan massa adalah aspek penting sebagai pengontrol

(15)

   

proses terutama untuk mengontrol produk yang dihasilkan. Kesetimbangan massa dan energi didefinisikan sebagai suatu keadaan dimana massa dan energi pada saat masuk proses dan keluar proses adalah sama. Secara lebih jelas konsep kesetimbangan massa dan energi dapat dilihat pada Gambar 3.6.

Gambar 3.6. Kesetimbangan massa dan energi (joeperreau@aol.com) Dari Gambar 3.6. di atas dapat dituliskan rumus kesetimbangan massa dan energi sebagai berikut :

Massa masuk = massa keluar + massa tersimpan (3.10) Bahan baku masuk = produk + limbah + material tersimpan (3.11)

ΣmR = Σ mP + ΣmW + ΣmS (3.12)

(dimana Σ (sigma) menunjukan jumlah semua kondisi).

ΣmR = mR1 + mR2 + mR3 = Total bahan baku. (3.13)

ΣmP = mP1 + mP2 + mP3 = Total produk. (3.14)

Σmw = mW1 + mW2 + mW3 = Total limbah. (3.15)

(16)

   

Jika tidak ada perubahan kimia selama proses, hukum kesetimbangan massa dapat digunakan untuk masing-masing komponen, sehingga untuk komponen A :

mA pada material yang masuk = mA pada material yang keluar + mA yang tersimpan di dalam proses.

(3.17) Tetapi jika terjadi perubahan kimia selama proses, maka sebagian

massa akan hilang karena reaksi kimia. Sehingga rumus untuk menghitung kesetimbangan massa menjadi :

mAR = mAP + mAW + mAS+ mAU (3.18)

dimana mAU adalah massa yang hilang yang tidak diketahui dan harus diidentifikasi.

Seperti halnya massa, energi dalam suatu proses juga harus dihitung. Energi yang masuk dalam suatu proses harus sama dengan energi yang keluar.

Energi masuk = Energi keluar + Energi tersimpan (3.19)

ΣER = Σ EP +ΣEW +ΣEL + ΣES (3.20) Dimana :

ΣER = ER1 + ER2 + ER3 + ……. = Total energi masuk

ΣEP = EP1 + EP2 + EP3 + ……. = Total energi yang keluar bersama produk

ΣEW = EW1 +EW2 + EW3 + …… = Total energi yang keluar bersama limbah

ΣEL = EL1 + EL2 + EL3 + …….. = Total energi yang hilang ke lingkungan

ΣES = ES1 + ES2 + ES3 + …….. = Total energi tersimpan

Kesetimbangan energi lebih rumit untuk dihitung karena bentuk dari energi itu sendiri yang dapat dikonversikan ke bentuk lainnya seperti energi mekanik yang dikonversi menjadi energi panas. Tetapi jumlah secara keseluruhan haruslah seimbang.

Dengan analisis tersebut diharapkan dapat diketahui aliran energi dari tiap sub sistem pada proses produksi pupuk urea. Sehingga dapat diketahui efisiensi penggunaan energi dan mendapatkan cara terbaik penghematan energi pada proses produksi pupuk urea.

Gambar

Gambar 3.1. Aliran proses dan definisi sub sistem sintesa  b.  Sub sistem seksi dekomposisi/purifikasi
Gambar 3.2. Aliran proses dan definisi sub sistem dekomposisi/purifikasi  c.  Sub sistem seksi recovery
Gambar 3.3. Aliran proses dan definisi sub sistem recovery
Gambar 3.4. Aliran proses dan definisi sub sistem kristalisasi
+3

Referensi

Dokumen terkait

Larva ikan Kerapu Bebek (C. altivelis) yang dipelihara terus mengalami perkembangan morfologi (organoleptik) setelah diberi pakan rotifera yang terlebih dahulu dikayakan

Berdasarkan uraian di atas tentang empat indikator yang meliputi memahami petunjuk penggunaan, pengaturan perlengkapan, pemeliharaan perlengkapan dan tanggungjawab

Adapun data-data meliputi nilai COP (Coefficient of Performance), laju perpindahan panas secara konduksi pada sisi panas modu l TEC (Qh) dan hubungannya terhadap arus pada TEC

Lukisan DDKT adalah karya seni yang di dalamnya tidak saja memuat bukti-bukti visual hasil pencapaian Sudjojono, tetapi juga menun- jukkan pergulatan pemikiran dalam suatu situasi

Serangkaian perubahan besar yang akan dihadapi individu pada masa pensiun tersebut memunculkan permasalahan yang akan berusaha diungkap dalam penelitian kali ini, yaitu;

Pemeriksaan variasi periode kawin pertama postpartus dikumpulkan dari data reproduksi sapi FH dara dan induk di kedua lokasi yang dikumpulkan oleh stasiun bibit BPTU

Konferensi Bogor memutuskan antara lain; konferensi Asia Afrika akan diselenggarakan di Bandung pada bulan 18- 24 April 1955, penetapan tujuan KAA dan menetapkan

Implikasi dari penelitian ini antara lain: 1) jika kita membantu seseorang dalam melakukan suatu bisnis sebaiknya perlu meneliti lebih dalam apakah bisnis