• Tidak ada hasil yang ditemukan

Studi Perbandingan Bahan Bakar Minyak Solar HSD Dicampur Dengan Bahan Bakar Minyak Nabati PPO Aplikasi Pada PLTD Titi Kuning

N/A
N/A
Protected

Academic year: 2017

Membagikan "Studi Perbandingan Bahan Bakar Minyak Solar HSD Dicampur Dengan Bahan Bakar Minyak Nabati PPO Aplikasi Pada PLTD Titi Kuning"

Copied!
22
0
0

Teks penuh

(1)

BAB II

LANDASAN TEORI

2.1 Pembangkit Listrik Tenaga Diesel (PLTD)

Pembangkit Listrik Tenaga Diesel ( PLTD ) ialah Pembangkit listrik yang

menggunakan mesin diesel sebagai penggerak mula (Prime mover) yang mendapat energi dari bahan bakar cair yang dikenal sebagai minyak solar dan mengubah energi tersebut menjadi energi mekanik dan dikopel dengan sebuah generator untuk mengubah energi mekanik dari mesin diesel menjadi energi listrik. Pembangkit Listrik Tenaga Diesel biasanya digunakan untuk memenuhi kebutuhan listrik dalam jumlah beban kecil, terutama untuk daerah baru yang terpencil atau untuk listrik pedesaan dan untuk memasok kebutuhan listrik suatu pabrik.[2]

(2)

2.1.1 Bagian-bagian Pembangkit Listrik Tenaga Diesel

Gambar 2.1. Pembangkit Listrik Tenaga Diesel

Dari gambar di atas dapat kita lihat bagian-bagian dari Pembangkit Listrik Tenaga Diesel, yaitu :

1. Tangki penyimpanan bahan bakar. 2. Penyaring bahan bakar.

3. Tangki penyimpanan bahan bakar sementara (bahan bakar yang disaring). 4. Pengabut.

5. Mesin diesel. 6. Turbo charger.

7. Penyaring gas pembuangan.

8. Tempat pembuangan gas (bahan bakar yang disaring). 9. Generator.

10.Trafo.

(3)

2.1.2 Prinsip Kerja PLTD

1. Bahan bakar dipompakan ke dalam penyimpanan sementara namun disaring terlebih dahulu. Kemudian disimpan di dalam tangki penyimpanan sementara (daily tank).

Jika bahan bakar adalah Bahan Bakar Minyak (BBM) maka bahan bakar dari daily tank dipompakan ke Pengabut (nozzel), di sini bahan bakar dinaikan

temperaturnya hingga manjadi kabut.

2. Menggunakan kompresor udara bersih dimasukan ke dalam tangki udara start melalui saluran masuk (intake manifold) kemudian dialirkan ke turbocharger. Di dalam turbocharger tekanan dan temperatur udara dinaikan terlebih dahulu. Udara yang dialirkan pada umumnya sebesar 500 psi dengan suhu mencapai ±600°C.

3. Udara yang bertekanan dan bertemperatur tinggi dimasukan ke dalam ruang bakar (combustion chamber)

4. Bahan bakar dari convertion kit (untuk BBG) atau nozzel (untuk BBM) kemudian diinjeksikan ke dalam ruang bakar (combustion chamber).

(4)

6. Tekanan gas hasil pembakaran bahan bakar dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.

7. Poros engkol mesin diesel digunakan untuk menggerakan poros rotor generator. Oleh generator energi mekanis ini dirubah menjadi energi listrik sehingga terjadi gaya geral listrik (ggl).

2.2 Mesin Diesel

Mesin diesel adalah salah satu jenis motor torak yang biasanya disebut motor bakar. Motor bakar atau lebih dikenal dengan nama mesin pembakaran dalam (Internal Combustion Engine) adalah suatu jenis pesawat yang prinsip kerjanya

mengubah energi kimia bahan bakar menjadi energi kalor, kemudian diubah lagi menjadi energi mekanik atau gerak. Proses pembakaran berlangsung di dalam motor bakar itu sendiri, sehingga gas pembakaran yang terjadi sekaligus berfungsi sebagai fluida kerja.[3]

Karakteristik utama dari mesin diesel yang membedakannya dari motor bakar yang lain terletak pada metode penyalaan bahan bakarnya. Mesin diesel sebagai penggerak mula PLTD yang berfungsi menghasilkan tenaga mekanis dipergunakan untuk memutar rotor generator.

(5)

mesin, suhu udara meningkat, sehingga ketika bahan bakar yang berbentuk kabut halus bersinggungan dengan udara panas ini, maka bahan bakar akan menyala dengan sendirinya tanpa bantuan alat penyala lain. Karena alasan ini mesin diesel juga disebut mesin penyalaan kompresi (Compression Ignition Engines). [4]

Langkah kerja mesin diesel PLTD pada umumnya sebagai berikut:

Gambar 2.2 Siklus 4 Langkah Mesin Diesel

1. Langkah Isap

Pada langkah isap, torak bergerak turun, ditarik oleh batang engkol(r) yang bergerak menjauhi kepala silinder yang menimbulkan vakum dalam silinder, dan udara luar ditarik atau dihisap kedalam silinder melalui katup pemasukan yang sampai torak mencapai titik math bawah (TMB)

2. Langkah Kompresi

(6)

dalam bentuk semprotan kabut dimasukkan ke dalam udara panas dalam silinder.

3. Langkah Daya /Usaha (Power Stroke)

Langkah ini adalah akhir dari langkah kedua, gas panas mendorong torak turun dan maju. Gas mengembang dari volume silinder yang membesar dan melalui batang engkol, kemudian engkol meneruskan energi yang ditimbulkan kepada poros engkol berputar.

4. Langkah Buang (Exchaust Stroke)

Segera sebelum torak mencapai TMA, katup buang (e) membuka dan hasil pembankaran yang panas dan masih bertekanan tinggi mulai dari lubang buang keluar. Torak bergerak ke atas didorong oleh engkol membuang hasil pembakaran yang tersisa. Begitu seterusnya sehingga terjadi siklus pergerakan piston yang tidak berhenti. Siklus ini tidak akan berhenti selama faktor yang mendukung siklus tersebut tidak ada yang terputus.

Siklus diesel dapat dilihat pada gambar 2.2 proses yang terjadi pada siklus diesel adalah :

Proses a-b : Langkah kompresi.

Proses b-c : Proses pemasukan kalor pada tekanan konstan.

Proses c-d : Langkah ekspansi.

Proses d-a : Proses pembuangan kalor pada volume konstan. [5]

(7)

Proses 1-2 : Kompresi esentropik

Proses 2-3 : Penambahan kalor

Proses 3-4 : Ekspansi isentropik

Proses 4-1 : Pelepasan kalor pada volume konstan

Gambar 2.3 Diagram Siklus PV-TS

2.3 Bahan Bakar Cair

Bahan bakar cair seperti minyak tungku/ furnace oil dan LSHS (low sulphur heavy stock) terutama digunakan dalam penggunaan industri. Berbagai sifat bahan bakar cair diberikan dibawah ini. [6]

2.3.1 Densitas

(8)

2.3.2 Specific gravity

Didefinisikan sebagai perbandingan berat dari sejumlah volum minyak bakar terhadap berat air untuk volum yang sama pada suhu tertentu. Densitas bahan bakar, relatif terhadap air, disebut specific gravity. Specific gravity air ditentukan sama dengan 1.

Karena specific gravity adalah perbandingan, maka tidak memiliki satuan. Pengukuran specific gravity biasanya dilakukan dengan hydrometer. Specific gravity digunakan dalam penghitungan yang melibatkan berat dan volum.

2.3.3 Viskositas

(9)

2.3.4 Titik Nyala

Titik nyala suatu bahan bakar adalah suhu terendah dimana bahan bakar dapat dipanaskan sehingga uap mengeluarkan nyala sebentar bila dilewatkan suatu nyala api. Titik nyala untuk minyak tungku/ furnace oil adalah 66 0C.

2.3.5 Titik Tuang

Titik tuang suatu bahan bakar adalah suhu terendah dimana bahan bakar akan tertuang atau mengalir bila didinginkan dibawah kondisi yang sudah ditentukan. Ini merupakan indikasi yang sangat kasar untuk suhu terendah dimana bahan bakar minyak siap untuk dipompakan.

2.3.6 Panas Jenis

Panas jenis adalah jumlah kKal yang diperlukan untuk menaikan suhu 1 kg minyak sebesar 10C. Satuan panas jenis adalah kkal/kg0C. Besarnya bervariasi mulai dari 0,22 hingga 0,28 tergantung pada specific gravity minyak. Panas jenis menentukan berapa banyak steam atau energi listrik yang digunakan untuk memanaskan minyak ke suhu yang dikehendaki. Minyak ringan memiliki panas jenis yang rendah, sedangkan minyak yang lebih berat memiliki panas jenis yang lebih tinggi.

2.3.7 Nilai Kalor

Nilai kalor merupakan ukuran panas atau energi yang dihasilkan., dan diukur sebagai nilai kalor kotor/ gross calorific value atau nilai kalor netto/ nett calorific value. Perbedaannya ditentukan oleh panas laten kondensasi dari uap air

(10)

value (GCV) mengasumsikan seluruh uap yang dihasilkan selama proses pembakaran sepenuhnya terembunkan/terkondensasikan. Nilai kalor netto (NCV) mengasumsikan air yang keluar dengan produk pengembunan tidak seluruhnya terembunkan. Bahan bakar harus dibandingkan berdasarkan nilai kalor netto.

Nilai kalor batubara bervariasi tergantung pada kadar abu, kadar air dan jenis batu baranya sementara nilai kalor bahan bakar minyak lebih konsisten. GCV untuk beberapa jenis bahan bakar cair yang umum digunakan terlihat dibawah ini:

Tabel 2.1 Nilai kalor kotor (GCV) untuk beberapa bahan bakar minyak ( Diambil dari Thermax India Ltd.)

Bahan bakar minyak Nilai kalor kotor (GCV) (Kkal/Kg )

(11)

2.3.9 Kadar Abu

Kadar abu erat kaitannya dengan bahan inorganik atau garam dalam bahan bakar minyak. Kadar abu pada distilat bahan bakar diabaikan. Residu bahan bakar memiliki kadar abu yang tinggi. Garam-garam tersebut mungkin dalam bentuk senyawa sodium, vanadium, kalsium, magnesium, silikon, besi, alumunium, nikel, dll. Umumnya, kadar abu berada pada kisaran 0,03 – 0,07 %. Abu yang berlebihan dalam bahan bakar cair dapat menyebabkan pengendapan kotoran pada peralatan pembakaran. Abu memiliki pengaruh erosi pada ujung burner, menyebabkan kerusakan pada refraktori pada suhu tinggi dapat meningkatkan korosi suhu tinggi dan penyumbatan peralatan.

2.3.10 Residu Karbon

Residu karbon memberikan kecenderungan pengendapan residu padat karbon pada permukaan panas, seperti burner atau injeksi nosel, bila kandungan yang mudah menguapnya menguap. Residu minyak mengandung residu karbon 1 persen atau lebih. [6]

2.3.11 Kadar Air

(12)

2.4 Bahan Bakar Solar

Minyak solar adalah bahan bakar minyak hasil sulingan dari minyak bumi mentah, bahan bakar ini mempunyai warna kuning cokelat yang jernih.

Minyak solar ini biasa digunakan sebagai bahan bakar pada semua jenis motor diesel dan juga sebagai bahan bakar untuk pembakaran langsung didalam dapur-dapur kecil yang menghendaki hasil pembakaran yang bersih. Minyak ini sering disebut juga sebagai gas oil, ADO, HSD, atau Dieseline. Temperatur biasa, artinya pada suhu kamar tidak menguap dan titik nyalanya jauh lebih tinggi dari pada bahan bakar bensin.

Kualitas solar dinyatakan dengan angka setana atau cetane number (CN). Bilangan setana yaitu besar prosentase volume normal cetane dalam campurannya dengan methylnaphthalene yang menghasikan karakteristik pembakaran yang sama dengan solar. Secara umum solar dapat di klasifikasikan sebagai berikut: (1) Light Diesel Fuel (LDF) mempunyai CN=50, (2) Medium Diesel Fuel (MDF)

mempunyai CN=50, dan (3) Heavy Diesel Fuel (HDF) mempunyai CN=35. LDF dan MDF sering dikatakan sebagai solar no.1 dan 2. Kedua jenis solar ini sebenarnya letak perbedaanya adalah pada efek pelumasannya saja. LDF dalam hal ini lebih encer, jernih, dan ringan, sedang MDF lebih gelap, berat dan dalam pemakaiannya dalam motor bakar diperlukan syarat-syarat khusus.

(13)

untuk menggerakan motor diesel. Bahan bakar diesel (solar) mempunyai sifat utama sebagai berikut:

(1) Tidak berwarna atau sedikit kekuning-kuningan dan berbau

(2) Encer dan tidak menguap dibawah temperatur normal,

(3) Titik nyala tinggi 40℃ sampai 100℃ ,

(4) Terbakar spontan pada 350℃, sedikit di bawah bensin,

(5) Berat jenis 0,82 s/d 0,87

(6) Menimbulkan panas yang besar (10.917 kkal/kg), dan

(7) Mempunyai kandungan sulphur yang lebih besar dibanding dengan bensin.

Syarat-syarat penggunaan solar sebagai bahan bakar harus memperhatikan kualitas solar, antara lain adalah sebagai berikut:

(1) Mudah terbakar, artinya waktu tertundanya pembakaran harus pendek/singkat, sehingga mesin mudah dihidupkan. Solar harus memungkinkan kerja mesin yang lembut dengan sedikit knocking.

(2) Tetap encer pada suhu dingin (tidak mudah membeku), menunjukan solar harus tetap cair pada suhu rendah sehingga mesin akan mudah dihidupkan dan berputar lembut.

(14)

(4) Kekentalan, berkait dengan syarat melumas dalam arti solar harus memiliki kekentalan yang baik sehingga mudah untuk dapat di semprotkan oleh injector.

(5) Kandungan sulphur, karakteristik sulphur yang dapat merusak pemakaian komponen mesin sehingga mempersyaratkan kandungan sulphur solar harus sekecil mungkin (< 1 %) dan

(6) Angka setana, yaitu suatu cara untuk mengontrol bahan bakar solar dalam kemampuan untuk mencegah terjadinya knoking, tingkat yang lebih besar memiliki kemampuan yang lebih baik.

Menurut peraturan direktorat jendral minyak dan gas (Ditjen Migas) No.113.K/72/DJM/1999, tanggal 27 oktober 1999 tentang spesifikasi bahan bakar minyak dan gas menetapkan batasan-batasan untuk minyak solar sebagai berikut:

Tabel 2.2 Batasan sifat bahan bakar solar menurut Ditjen Migas

Sifat Batasan

Min

Batasan Max Specific gravity at 60/60°F 0,820 0,870

Color ASTM 45 3,0

Cetane number, or

alternatively 48 -

Calculate cetane index - -

(15)

Flash point PM cc°F 150 -

Recovery at 300°c % vol 40 -

Nilai kalor (Kcal/Kg) 10.917 10.917 Sumber: www.pertamina.com

2.5 Bahan Bakar Nabati ( Minyak Kelapa Sawit)

Bahan bakar nabati adalah semua bahan bakar yang berasal dari minyak nabati. BNN dapat berupa Bio-diesel, Bio-etanol, Bio-oil.

Minyak kelapa sawit merupakan salah satu jenis bahan dasar untuk pembuatan bahan bakar biodiesel. Proses pembuatan biodiesel dari kelapa sawit adalah melalui proses transesterifikasi, dilanjutkan dengan pencucian, pengeringan dan terakhir filtrasi, tetapi jika bahan baku dari CPO maka sebelumnya perlu dilakukan esterfikasi. Minyak kelapa dapat dimanfaatkan secara langsung menjadi bahan bakar selayaknya solar. Minyak kelapa memiliki kekentalan 50-60 centi stokes, sedangkan solar 5 centi stokes. Suhu antara 80℃−90℃, minyak kelapa memiliki kekentalan yang setara dengan solar. Salah satu inovasi yang dikembangkan Departemen Teknik Pertanian IPB yaitu dengan memanfaatkan suhu knalpot untuk mengubah kekentalan minyak kelapa agar sama dengan solar. Gas buang knalpot memiliki temperatur 350℃−360℃ sehingga diperlukan koil pendingin untuk menurunkan temperatur knalpot, kemudian minyak kelapa melalui sebuah selang dialirkan melalui knalpot sebelum menuju ke ruang pembakaran motor diesel.

(16)

adalah asam oleic, asam linoleic, dan asam lauric. Ada karakteristik penting campuran minyak kelapa dengan minyak solar:

a). berat jenis dan viskositas sedikit lebih tinggi dari pada minyak solar, b). memiliki angka setana lebih rendah dari pada minyak solar,

c). nilai panas atau nilai kalor relatif lebih rendah dari pada minyak solar.

Cara seperti ini tentunya lebih murah dibandingkan dengan memanfaatkan kokodiesel, yaitu minyak kelapa yang telah melalui proses industri untuk diubah menjadi biodiesel. Selain itu, kelapa merupakan tanaman yang umum tumbuh di daerah pesisir, menjadikannya sumber bahan bakar yang potensial bagi nelayan setempat yang cenderung mengalami kesulitan bahan bakar, baik masalah harga maupun ketersediannya. Minyak kelapa yang dimanfaatkan adalah minyak kelapa yang telah melalui proses pemanasan guna menghilangkan asam lemak bebasnya.

2.6 Konsumsi Bahan Bakar

Konsumsi bahan bakar spesifik adalah parameter unjuk kerja mesin yang berhubungan langsung dengan nilai ekonomis sebuah mesin, karena dengan mengetahui hal ini dapat dihitung jumlah bahan bakar yang dibutuhkan untuk menghasilkan sejumlah daya dalam selang waktu tertentu. Pengukuran SFC terdiri dari dua basis pengukuran yaitu: SFC berbasis beban dan SFC berbasis periode.

(17)

SFC =Laju (flow )bahan bakar � liter

h

� �

Output Generator ,(kW ) (Liter/kWh) Pers (1)

Sedangkan SFC periode adalah SFC yang diukur pada periode tertentu yaitu dengan mengukur laju (flow) bahan bakar pada periode waktu tertentu dibagi dengan output (kWh) yang dihasilkan generator selama periode waktu tersebut. Dengan demikian formula SFC berbasis periode dapat ditulis sebagai berikut:[7]

SFC =

Jumlah bahan bakar pada suatu periode waktu (liter )

Produksi kWh ge nerator pada suatu periode waktu (kWh )

Pers (2)

2.7 Efisiensi Thermal

Kerja yang dihasilkan selalu lebih kecil dari pada energi yang dibangkitkan

piston karena sejumlah energi hilang akibat adanya rugi–rugi mekanis (mechanical losses). Dengan alasan ekonomis perlu dicari kerja maksimum yang

dapat dihasilkan dari pembakaran sejumlah bahan bakar. Efisiensi ini sering disebut sebagai efisiensi termal brake (brake thermal efficiency)

η = Daya Keluaran (P)

Laju Panas yang masuk (Q)

x 100 %

Pers (3)

Laju panas yang masuk Q dapat dihitung dengan :

Q = � ���� Pers (4) dimana,

�� = Laju aliran bahan bakar (Kg/jam)

LHV = nilai kalor bawah bahan bakar (J/kg)

(18)

η = �

�� .���. 3600 Pers (5) 2.8 Heat Rate

Reaksi kimia antara bahan bakar dengan oksigen dari udara menghasilkan panas. Besarnya panas yang ditimbulkan jika satu satuan bahan bakar dibakar sempurna disebut nilai kalor bahan bakar (Calorific Value, CV).

Bedasarkan asumsi ikut tidaknya panas laten pengembunan uap air dihitung sebagai bagian dari nilai kalor suatu bahan bakar, maka nilai kalor bahan bakar dapat dibedakan menjadi nilai kalor atas dan nilai kalor bawah. Nilai kalor atas (High Heating Value,HHV), merupakan nilai kalor yang diperoleh secara

eksperimen dengan menggunakan kalorimeter dimana hasil pembakaran bahan bakar didinginkan sampai suhu kamar sehingga sebagian besar uap air yang terbentuk dari pembakaran hidrogen mengembun dan melepaskan panas latennya. Secara teoritis, besarnya nilai kalor atas (HHV) dapat dihitung bila diketahui komposisi bahan bakarnya dengan menggunakan persamaan

HHV = 34080 C + 141790

(

2

�2

8

)

+ 9200 S

Pers (6) Dimana ,

HHV = Nilai Kalor atas (J/Kg)

C = Persentase karbon dalam bahan bakar H2 = Persentase hydrogen dalam bahan bakar O2 = Persentase Oksigen dalam bahan bakar S = Persentase sulfur dalam bahan bakar

(19)

Umumnya kandungan hidrogen dalam bahan bakar cair berkisar 15 % yang berarti setiap satu satuan bahan bakar, 0,15 bagian merupakan hidrogen. Pada proses pembakaran sempurna, air yang dihasilkan dari pembakaran bahan bakar adalah setengah dari jumlah mol hidrogennya. Selain berasal dari pembakaran hidrogen, uap air yang terbentuk pada proses pembakaran dapat pula berasal dari kandungan air yang memang sudah ada didalam bahan bakar (moisture). Panas laten pengkondensasian uap air pada tekanan parsial 20 kN/m2 (tekanan yang umum timbul pada gas buang) adalah sebesar 2400 kJ/kg, sehingga besarnya nilai kalor bawah (LHV) dapat dihitung berdasarkan persamaan berikut :

LHV = HHV – 2400 (M + 9 H2) Pers (7)

LHV = Nilai Kalor Bawah (J/kg)

M = Persentase kandungan air dalam bahan bakar (moisture)

Dalam perhitungan efisiensi panas dari motor bakar, dapat menggunakan nilai kalor bawah (LHV) dengan asumsi pada suhu tinggi saat gas buang meninggalkan mesin tidak terjadi pengembunan uap air. Namun dapat juga menggunakan nilai kalor atas (HHV) karena nilai tersebut umumnya lebih cepat tersedia. Peraturan pengujian berdasarkan ASME (American of Mechanical Enggineers) menentukan penggunaan nilai kalor atas (HHV),sedangkan peraturan SAE (Society of Automot ive Engineers) menentukan penggunaan nilai kalor bawah (LHV).

2.9 Pembakaran

(20)

cukup tinggi untuk awal mulanya pembakaran. Proses pembakaran pada motor diesel tidak berlangsung dalam beberapa tahapan. Disamping itu penyemprotan bahan bakar juga tidak dilaksanakan sekaligus, tetapi berlangsung antara 30-40 derajat sudut engkol. Dalam hal ini tekanan udara akan naik selama langkah kompresi berlangsung.

Apabila suatu reaksi kimia terjadi, molekul-molekul reaktan akan diuraikan dan kemudia tersusun kembali membentuk produk (gas hasil pembakaran). Suatu bahan bakar dapat dikatakan telah terbakar sempurna jika kandungan seluruh karbon yang terdapat didalam bahan bakar yang dibakar berubah menjadi karbondioksida (CO2) dan seluruh hydrogen yang dibakar menjadi air (H2O).

Sebaliknya apabila kondisi tersebut tidak terpenuhi maka dikatakan proses pembakaran tidak sempurna.

Reaksi pembakaran tersebut dapat dinyatakan dengan persamaan reaksi kimia sebagai berikut :

Reaktan-reaktan Produk-produk

Atau

Bahan bakar + Pengoksidasi Produk-produk

Reaksi pembakaran sempurna dari hydrogen dengan oksigen sebagai berikut :

2 H2 + O2 = 2H2O

Pembakaran dapat didefinisikan sebagai reaksi (oksidasi) yang berlangsung sangat cepat (0,001-0,002 detik) disertai pelepasan energi. Ada tiga klasifikasi kecepatan pembakaran, yaitu:

(21)

2). Deflagaration yaitu pembakaran dengan perambatan api subsonic 3). Detonation adalah pembakaran dengan perambatan api supersonic.

Gambar 2.4 Proses Pembakaran Mesin Diesel

Tahapan Pembakaran Pada Motor Diesel : a. Pembakaran Tertunda (A-B)

(22)

b. Rambatan Api (B-C)

Campuran yang mudah terbakar telah terbentuk dan merata diseluruh bagian dalam ruang bakar. Awal pembakaran mulai terjadi di beberapa bagian dalam silinder. Pembakaran ini berlangsung sangat cepat sehingga terjadilah letupan (explosive).

Letupan ini berakibat tekanan dalam silinder meningkat dengan cepat. Akhir tahap ini disebut tahap pembakaran letupan dengan tekanan 30 kg/cm².

c. Pembakaran Langsung (C-D)

Injektor terus menyemprotkan bahan bakar dan terakhir pada titik D karena injeksi bahan bakar terus berlangsung didalam udara yang bertekanan dan bersuhu tinggi, maka bahan bakar yang di injeksi akan langsung terbakar.

Tahap ini pembakaran dikontrol oleh jumlah bahan bakar yang diinjeksikan, sehingga tahap ini disebut tahap pengontrolan pembakaran.

d. Pembakaran Lanjutan (D-E)

Dititik D, injeksi bahan bakar berhenti, namun bahan bakar masih ada yang belum terbakar. Periode ini sisa bahan bakar diharapkan akan terbakar seluruhnya. Apabila tahap ini terlalu panjang akan menyebabkan suhu gas buang meningkat dan efisiensi pembakaran berkurang.

Gambar

Gambar 2.1. Pembangkit Listrik Tenaga Diesel
Gambar 2.2 Siklus 4 Langkah Mesin Diesel
Gambar 2.3 Diagram Siklus PV-TS
Tabel 2.1 Nilai kalor kotor (GCV) untuk beberapa bahan bakar minyak ( Diambil
+2

Referensi

Dokumen terkait

Minyak kelapa dan minyak kemiri dapat dijadikan sebagai bahan alternatif untuk dicampur dengan solar dalam campuran tertentu, untuk mendapatkan konsumsi bahan bakar

 Untuk mengetahui perbandingan unjuk kerja motor diesel bahan bakar minyak (Solar) dengan bahan bakar minyak (Solar) dan gas..  Untuk mengetahui pengaruh penggunaan bahan bakar

Temperatur ruang bakar yang sangat tinggi ini disebabkan oleh minyak solar yang memiliki bilangan setana dan nilai kalor yang lebih tinggi dibandingkan PPaO dan

Dari hasil pengujian angka setana, maka didapatkan komponen dasar untuk pembuatan minyak solar bertitik nyala 55 o C dan 52 o C yaitu sisa hasil pemotongan distilasi pada 40% vol-

Hasil penelitian menunjukkan bahwa konsumsi bahan bakar mesin diesel menggunakan bahan bakar campuran solar dengan minyak cengkeh lebih irit dan prosentase kepekatan

Dari hasil perhitungan CN yang diperoleh dengan metode yang sama, dapat dilihat bahwa angka setana solar meningkat dengan ditambahkannya MEN pada solar... Aditif ini sangat

3.14 Perbandingan Konsumsi Bahan Bakar Spesifik Perbandingan konsumsi bahan bakar spesifik dari hasil test performance engine antara solar dengan biodiesel B-20 dapat dilihat melalui

Penurunan emisi partikulat ini sangat dipengaruhi oleh mutu bahan bakar solar dan kandungan sulfur yang rendah dimana angka setana yang tinggi akan memperbaiki karakteristik pembakaran