• Tidak ada hasil yang ditemukan

Perancangan Kendali Adaptif MIMO Berbasis Laguerre Series Modelling pada Sistem Pengendalian Suhu Kiln

N/A
N/A
Protected

Academic year: 2021

Membagikan "Perancangan Kendali Adaptif MIMO Berbasis Laguerre Series Modelling pada Sistem Pengendalian Suhu Kiln"

Copied!
13
0
0

Teks penuh

(1)

AbstrakReduction kiln merupakan salah satu bagian penting dalam proses pengolahan nikel dan masih banyak yang menggunakan kendali manual. Hal ini sangat tidak efektif dan untuk mengotimalkan kinerja sistem pengendalian maka diperlukan rancang ulang pengendalian yang ada yaitu sistem kendali adaptif MIMO berbasis Laguerre series modelling sebagai informasi untuk penerapan Brainwave®. Tahap pertama yang dilakukan dalam penelitian ini adalah memodelkan proses yang terjadi pada reduction kiln menggunakan hukum kesetimbangan energi, tahap kedua adalah melakukan identifikasi sistem MIMO menggunakan deret Laguerre untuk mendapatkan parameter plant yaitu koefisien Laguerre, tahap ketiga adalah merancang sistem kendalinya. Hasil simulasi menunjukkan bahwa hasil desain kendalinya layak uji dan mampu mengendalikan plant MIMO. Hal ini didasarkan pada hasil uji tracking set point, uji beban, uji noise dan uji gabungan. Untuk uji tracking set point diperoleh nilai steady state error untuk TC4 2,29%, TC6 0,91% dan TC8 0,55%, nilai settling time untuk TC4 105menit, TC6 115menit dan TC8 100 menit dan nilai maksimum overshoot untuk TC4 2,09%, TC6 035% dan TC8 1,4%.

Kata Kunci—kendali manual, kendali adaptif, pemodelan, deret Laguerre, suhu onboard.

I. PENDAHULUAN

Kiln merupakan salah satu bagian penting dari proses pengolahan nikel. Fungsi utama dari kiln adalah mengeringkan dan mereduksi kandungan nikel dan besi oksida yang terkandung pada bijih agar bisa diproses di furnace. Salah satu faktor yang mempengaruhi proses pengeringan dan reduksi adalah suhu. Oleh karena itu diperlukan suatu proses pengendalian suhu untuk menjaga kualitas dari calcine pada kiln.

Selama ini masih banyak mode kendali manual digunakan untuk mengendalikan suhu pada kiln karena pengendalian otomatis berupa PID tidak mampu untuk mengatasi gangguan yang ada. PID paling umum digunakan di industri tetapi tidak cocok untuk proses yang memiliki time delay, nonliniearity, multivariable dan time varying gain (Huaijing Du, 1998). Sedangkan proses pada kiln terdapat kriteria itu smua.

Suhu yang berasal dari termokopel diamati oleh operator. Aksi kendali yang dilakukan operator adalah dengan mengatur aktuator dari air pipe apabila suhu yang ada pada kiln tidak sesuai dengan set point. Hal ini sangat tidak efektif dan untuk mengoptimalkan kinerja sistem pengendalian maka diperlukan rancang ulang pengendalian yang ada sebagai alternatif software BrainWave®.

Penelitian sebelumnya (Yulianto, 2010) telah berhasil merancang sistem pengendalian pada kiln dengan menggunakan sistem kendali adaptif berbasis pemodelan

adaptif dengan deret Laguerre pada TC2 (termokopel 2) secara SISO. Padahal di kiln sendiri ada 6 loop pengendalian yang mana 3 loop beroperasi secara SISO dan 3 loop beroperasi secara MIMO. Oleh karena itu pada penelitian kali ini akan dilakukan perancangan sistem kendali untuk 3 loop yang beroperasi secara MIMO.

II. DASAR TEORI A. Proses pada Reduction Kiln

Di dalam kiln terdapat proses reduksi yang berfungsi untuk menguapkan air yang terkandung dalam bijih, menghilangkan LOI (xH2O), mereduksi sebagian besi oksida, menghasilkan kalsin pada suhu 700°C, mencampur (blending) bijih (EBO-WBO-Coal-Dust) dan sulfidasi. Material dimasukan berlawanan arah dengan aliran gas panas (counter current). Selain bijih yang berasal dari Dried Ore Storage (DOS) juga dimasukan material lain berupa coal. Penambahan coal pada proses kiln dilakukan untuk membantu proses reduksi di furnace karena selama berada dalam proses di kiln hanya tereduksi sekitar 50%. Perlengkapan tambahan yang ada dalam proses kiln adalah main burner dan oil lance.

Gbr.1 Diagram alir proses di reduction kiln (Proctec

Team,2005)

Secara umum proses reduction kiln terbagi menjadi empat sub proses yang terjadi secara berurutan. Proses pertama adalah pra pemanasan (preheating). Proses kedua adalah kalsinasi yang terjadi pada zona pemanasan padatan atau solid dengan terbentang kurang lebih 8 meter. Proses yang ketiga adalah sintering yang terjadi pada zona reduksi dan sulfidasi. Proses yang terakhir adalah pendinginan yang terjadi setalah material keluar dari furnace. Material yang masuk berupa ore, coal, sulphur, HSFO dan udara dari air pipe, main burner blower serta leakage. Sedangkan material yang dihasilkan adalah calcine, offgas dan debu (dust).

Perancangan Kendali Adaptif MIMO Berbasis Laguerre Series

Modelling pada Sistem Pengendalian Suhu Kiln

Louis Gandhi Prabowo

1)

, Katherin Indriawati, ST, MT

2)

, Dr. Dhany Arifianto, ST, M.Eng

3)

1) 2) 3) Jurusan Teknik Fisika, Fakultas Teknologi Industri ITS Surabaya Indonesia 60111, email: gandhoz_f42@yahoo.com

(2)

Gbr.2 Zona di reduction kiln (Proctec Team,2005)

Di dalam kiln terdapat reaksi pembakaran yang digunakan untuk proses didalamnya karena variabel suhu secara langsung mempengaruhi dinamika proses yang ada. Reaksi pemabakaran ini berlangsung begitu cepat antara bahan bakar (HSFO) dengan oksigen (udara) dan menghasilkan panas (pembakaran sempurna) serta reduktor (pembakaran tidak sempurna). Untuk mendapatkan pembakaran yang baik maka setiap partikel bahan bakar kontak dengan udara dengan cara atomisasi dan cracking. Cara atomisasi adalah tetesan bahan bakar diubah menjadi partikel yang sangat halus dengan bantuan tumbukan steam bertekanan tinggi. Dengan demikian nyala api yang dihasilkan akan terang dan tidak ada karbon B/U. Cara cracking adalah dengan pemutusan rantai karbon bahan bakar.

Berikut perbandingan udara dengan HSFO dalam pembakaran adalah

a. apabila kandungan O2 (udara) sama dengan kandungan C (bahan bakar) maka akan terjadi aerasi 100%.

b. apabila kandungan O2 (udara) lebih besar dari kandungan C (bahan bakar) maka akan terjadi aerasi lebih dari 100%. c. apabila kandungan O2 (udara) lebih kecil dari kandungan

C (bahan bakar) maka akan terjadi aerasi kurang dari 100%.

Gambar hubungan antara aerasi dengan api yang dihasilkan ditunjukkan pada gambar 3.

Gbr.3 Aerasi pembakaran (Proctec Team,2005)

Sedangkan hubungan panas yang dihasilkan dengan aerasi pembakaran ditunjukkan pada gambar 4.

Gbr.4 Hubungan aerasi dengan panas hasil pembakaran

(Proctec Team,2005)

Aerasi dapat dihitung dengan menggunakan persamaan berikut : HSFO

kg

0m

hr

kg

rate

flow

oil

0m

rate

flow

air

Aerasi

)

/

(

3

,

10

*

)

/

(

%

100

min*

60

*

min)

/

(

%

3 3

=

Pembakaran sempurna 1 kg HSFO menghasilkan 10.134 kkal. Fungsi panas di reduction kiln selain untuk menguapkan dan menghilangkan air dalam Ore juga untuk membantu terjadinya cracking HSFO serta menstabilkan nyala api main burner.

B. Sistem Pengendalian pada Reduction Kiln

Sistem pengendalian suhu di reduction kiln masih menggunakan mode kendali manual yang dikerjakan oleh operator. Dalam mengendalikan suhu, operator menggunakan referensi suhu sebagai set point yang berasal dari Human Machine Interface. Referensi suhu itu berasal dari TC2, TC4, TC6, TC8 dan TC10 (TC singkatan dari Termocouple). Apabila suhu onboard menunjukkan kondisi diluar nilai referensi maka operator akan melakukan aksi kendali berupa mengatur kecepatan conveyor yang membawa material, mengatur kecepatan anguler menggunakan VSD main drive, mengatur laju aliran bahan bakar pada burner, mengatur laju aliran udara di air pipe (AP) dan mengatur kecepatan putar Induction Draft Fan (ID Fan). Dalam laporan Tugas Akhir ini penulis hanya menggunakan aliran udara di air pipe (AP) sebagai manipulasi variabel pada pengendalian suhu. Untuk variabel yang lain dianggap konstan atau bisa juga dianggap sebagai gangguan dalam sistem pengendalian yang akan didesain. Untuk profil suhu onboard dapat dilihat pada gambar 5.

Gbr.5 Referensi suhu reduction kiln (Proctec Team, 2006)

Termokopel diletakkan di dalam dan akan ikut berputar sejalan dengan perputaran kiln. Selama kiln berputar, termokopel akan mengukur suhu ore (solid) sepanjang 1/3 putaran dan akan mengukur suhu gas sepanjang sisa putarannya yaitu 2/3 putaran. Suhu memiliki time constant yang besar sehingga pada saat termokopel mengukur belum sampai kondisi steady pengukuran yang sebenarnya dari ore maupun dari gas sudah berubah dengan adanya waktu putar pada kiln yang lebih cepat dari pada time constant.

(3)

Gbr.6 Profil suhu pembacaan termokopel onboard (Proctec

Team, 2005)

Di reduction kiln terdapat lima loop pengendalian suhu dan satu loop pengendalian tekanan drift. Berdasarkan pengujian di HMI menunjukan bahwa TC2 hanya dipengaruhi AP1 sedangkan TC4, TC6 dan TC8 dipengaruhi oleh AP2, AP4 dan AP6. Tiga loop pengendalian ini dijadikan satu loop pengendalian karena bersifat MIMO (multivariable input multvariable output). Untuk TC10 hanya dipengaruhi laju aliran bahan bakar.

C. Perpindahan Panas pada Reduction Kiln

Kiln adalah sebuah distribusi parameter sistem yang mana memiliki sebuah sifat dinamik yang kompleks. Interaksi antara nyala api dan padatan menyebabkan ketidakstabilan distribusi yang sama pada tiap bagian dari kiln. Panjang kiln biasanya tergantung dari berapa lama waktu yang digunakan untuk memanaskan bahan baku.

Gbr.7 Bentuk geometri reduction kiln (Spang, 1972)

Dalam memodelkan kiln memperhatikan asumsi-asumsi yang telah ditulis sebelumnya. Persamaan perpindahan kalor untuk suhu material padatan, gas dan dinding kiln didasarkan pada variasi arah yaitu aksial dan radial. Suhu hanya bergantung pada posisi dan waktu (Spang,1972). Persamaan perpindahan panas konduksi untuk silinder berongga adalah:

Q t T ρ c z T θ T r 1 r T r r r 1 k T k p 2 2 2 2 2 2 + ∂ ∂ =       ∂ ∂ + ∂ ∂ +       ∂ ∂ ∂ ∂ = ∇

dimana k adalah konduktivitas termal kiln, Cp adalah panas spesifik, ρ adalah densitas, dan Q adalah panas yang ditimbulkan di dalam kiln. Definisi rata-rata suhu per unit area adalah

∫∫

= rdθdθ A 1 T

dimana A adalah luas penampang reduction kiln 3,

∫∫

= rd dr

A . θ.

Dengan mengalikan persamaan (2) dengan r, kemudian diintegralkan, lalu menggunakan teorema divergensi didapatkan. AQ t T ρA c γ n T K z T KA 2 p 2 + ∂ ∂ = ∂ ∂ + ∂ ∂

dimana suku kedua sebelah kiri (ditandai dengan kotak putus-putus) tersebut adalah turunan suhu terhadap batas luar penampang kiln, merepresentasikan perpindahan panas karena konveksi dan radiasi yang efeknya diasumsikan sebagai tambahan pemodelan kiln. Diasumsikan bahwa perpindahan panas konveksi akan mengacu hukum Newton tentang pendinginan yang mengkondisikan bahwa perpindahan panas proporsional dengan beda suhu linear (Spang,1972). Selanjutnya kita asumsikan bahwa radiasi di representasikan oleh hukum radiasi benda hitam orde empat.

Panas yang hilang (heat loss) antara dinding kiln dan udara luar kiln juga diperhitungkan. Suhu luar ditentukan dengan konduksi dinding dan heat loss radiasi dan konveksi. Panas total per unit area adalah:

(

w a

)

1 T T r 2 k q − − =

Perpindahan panas antara material padatan dan gas proporsional dengan beda suhu di dalam material padatan dan gas tersebut yang kemudian dapat dimodelkan menggunakan konveksi. Gas dan material padatan tercampur sempurna dengan perpindahan panas yang disebabkan oleh laju material padatan dan gas dan hanya sebagian kecil oleh konduksi.persamaannya (Spang,1972)adalah: q z T ρv c Q dan 0, z T k 2 p 2 − ∂ ∂ = = ∂ ∂

Dimana q adalah panas yang ditimbulkan oleh reaksi kimia di dalam material padatan dan oleh flame. Karena gas lebih cepat berada pada keadaan mantap dari pada material padatan dan dinding reduction kiln, kita asumsikan bahwa:

0 t Tg = ∂ ∂

Berkat konstanta termal dinding reduction kiln, sangat sedikit konduksi yang terjadi pada arah z yang berarti bahwa:

0

z

T

k

2w 2 = ∂ ∂

Laju reaksi oleh api ditentukan dengan berdasarkan laju difusi oksigen dan partikel (Spang,1972). Laju reaksi ini merupakan laju reaksi orde satu yang dirumuskan:

(

)

( )

2 F 0 F g O F 2 a 1 M g r k dC RT M ρ P M C ψ ρ 1 R 2         − =

dimana d0 adalah koefisien difusi. Model ini memperhitungkan bahwa laju reaksi akan lebih lambat pada suhu tinggi karena densitas oksigen berbanding terbalik dengan suhu. Diasumsikan bahwa api selalu steady

(Spang,1972).

Panas yang digenerasikan oleh lidah api (flame) adalah:

(

)

(

)

( )

2 F 0 F g O F 2 a 1 M g g f f f k dC RT M ρ P M C ψ v ρ ΔH G q 2         − =

D. Identifikasi Sistem MIMO Menggunakan Deret Laguerre Sistem yang akan diidentifikasi adalah MIMO yang mana secara prinsip metode yang digunakan untuk identifikasi sama dengan sistem SISO hanya saja untuk masukan dan keluaran diperbanyak sesuai dengan sistem MIMO (Oliver, 1997). (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(4)

Dalam memodelkan fungsi transfer sistem SISO ditentukan dari data masukan-keluaran berbasis ekspansi deret Laguerre pada data masukan-keluaran yang disaring atau difilter. Fungsi Laguerre memiliki kelebihan dalam memodelkan kondisi transien dibandingkan fungsi yang lainnya karena dapat dikonstruksi dalam sebuah bentuk filter sederhana linier dengan orde pendekatan. Dalam waktu kontinyu, fungsi Laguerre dapat digambarkan dengan persamaan berikut :

]

[

)!

1

(

2

)

(

1 2 1 1 pt k k k pt k

t

e

dt

d

k

e

p

t

l

− − −

=

Dimana k adalah orde dari fungsi (i=1,2,,,N) dan p adalah time scale. Fungsi ini adalah sebuah bagian orthogonal dalam domain waktu [0,∞]. Dalam transformasi laplace, filter Laguerre ditulis dalam bentuk :

domain frekuensi fungsi Laguerre ke-k ditulis:

(

)

(

)

k 1 k k p s p s 2p (s) L − − = − ,

domain waktu fungsi Laguerre ke-k ditulis:

(

)

(

)

(

) (

)

+ = − + − − −       = k 1 1 n 2 1 n k ! 1 n k ! 1 n pt k! 2 pt exp 2p (t) L

persamaan ekspansi fungsi Laguerre ditulis sebagai berikut:

∞ = = 1 k k kL (t) a f(t)

∞ = = 1 k k kL(s) a F(s)

dimana koefisien ak dapat ditentukan dalam domain waktu atau frekuensi melalui perhitungan standar.

s k t k k f(t),L (t) F(s),L (s) a =< > =< >

dimana inner product domain waktu adalah L2 dan inner

product domain frekuensi adalah L2 diinduksikan pada domain

s dengan teori Parseval yaitu:

∞ = > < 0 t

f(t)g(t)dt

g(t)

f(t),

∞ ∞ − − = > < f f s F(s)G( s)ds 2π 1 G(s) F(s),

Dalam kondisi otronormal, fungsi Laguerre ditulis sebagai berikut: n k s n k t n k

(t),

L

(t)

L

(s),

L

(s)

δ

s

L

>

=<

>

=

<

dimana kn s

δ

adalah delta dirac standar.

Filter laguerre dapat diimplementasikan dalam bentuk ladder network. Filter Laguerre berdasarkan model ditunjukkan pada gambar 8.

Gbr.8 Laguerre ladder network waktu kontinyu

(Chen,1998)

Jika diubah ke dalam bentuk persamaan waktu diskrit maka persamaan polinomial Laguerre manjadi:

(

)

( ) (z a) az 1 a z a 1 (z) L 1 i 2 i − − − − = − ,

Laguerre ladder network untuk domain waktu diskrit ditunjukkan pada gambar 9.

Gbr.9 Laguerre ladder netwok waktu diskrit

(Chen,1998)

Gambar 9 dapat diekspresikan sebagai bentuk stabil (stable), teramati (observable), dan terkendali (controllable) untuk sistem SISO yaitu:

Bu(k) Al(k) 1) l(k+ = + l(k) c y(k)= T dimana T N 1 T (k)] l (k),..., [l

l(k) = disebut state of ladder atau output setiap blok pada gambar 9. C (k) [c1(k),...,cN(k)]

T

k =

disebut koefisien Laguerre pada waktu k [Chen,1998].

A adalah matrik segi empat (0 x 0) yang dirumuskan sebagai berikut:

( )

(

)

                  − − + − − − = − − − 1 s 3 2 1 1 N s 3 2 1 2 N 2 1 N 1 1 s 3 2 1 1 τ T τ τ τ ... T τ τ τ τ 1 ... τ ... ... 0 ... τ T τ τ τ 0 ... 0 τ A               − − = − 4 1 N s 2 4 s 2 4 τ T τ ... τ T τ τ B

Konstanta τ1, τ2, τ3, dan τ4 dirumuskan sebagai berikut:

s pT 1 e τ = −

(

e

1

)

p

2

T

τ

pTs s 2 = + − −

(

e

1

)

p

2

e

T

τ

pTs pTs s 3 =− − − − −

(

)

p τ 1 2p τ 1 4 − =

Dalam perumusan sistem MIMO setiap sinyal masukan memiliki sebuah lokasi pole Laguerre yang independen sehingga lokasi pole bisa digunakan untuk mempengaruhi tingkat peluruhan dari sinyal kendali tambahan. Deskripsi pengembangan untuk sistem multi-input dengan fleksibilitas penuh dalam pemilihan parameter a dan 0 adalah sebagai berikut :

)]

(

...

)

(

)

(

[

)

(

k

u

1

k

u

2

k

u

k

u

=

m

Dan matrik input (B) dibagi menjadi beberapa bagian sesuai dengan banyaknya masukan.

] ... [B1B2 Bm

B =

Dimana menunjukkan jumlah masukan dan Bi menunjukkan matrik kolom ke i dari matrik B untuk setiap masukannya sehingga dapat ditulis sebagai berikut:

(12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22.a) (22.b) (22.c)

(5)

) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 k u B k L A k L k u B k L A k L k u B k L A k L + = + + = + + = + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 33 2 32 1 31 3 3 23 2 22 1 21 2 3 13 2 12 1 11 1 k L C k L C k L C k y k L C k L C k L C k y k L C k L C k L C k y T T T T T T T T T + + = + + = + + = ) ( 2 12L k CT , ( ) 3 13L k CT , ( ) 1 21L k CT ,

C

23T

L

3

(

k

)

, C31L1(k) T dan ) ( 2 32L k

CT menunjukkan pengaruh masukan loop lain yang

mempengaruhi setiap keluaran. C merupakan sebuah matrix vector yang mana jumlah barisnya disesuaikan dengan jumlah orde dari Laguerre. Keluaran model Laguerre dari persamaan (2.24) dapat diubah dalam bentuk yang linier.

3 3 3 2 2 2 1 1 1 ) ( ) ( ) ( φ φ φ T T T C k y C k y C k y = = = dimana :

[

]

[

]

[

T T T

]

T T T T T T T T T C C C C C C C C C C C C 33 32 31 3 23 22 21 2 13 12 11 1 = = = dan

[

]

[

]

[

1 2 3

]

3 3 2 1 2 3 2 1 1 L L L L L L L L L = = = φ φ φ

Parameter diatas dapat dicari dengan menggunakan metode recursive least squares (RLS). Metode ini digunakan

ketika parameter suatu persamaan aljabar diidentifikasi secara berulang (Chen, 1998). Solusi recursive least squares dapat

ditunjukkan pada persamaan (28) dan persamaan (29) berikut : )] ( ) 1 ( ) ( [ ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) ( y k C k k k k P k k k k P k C k C T T φ φ φ λ φ − − − + − + − =

)

(

)

1

(

)

(

)

(

)

1

(

)

(

)

(

)

1

(

)

1

(

)

(

k

k

P

k

k

k

P

k

k

k

P

k

P

k

P

T T

φ

φ

λ

φ

φ

+

=

dimana

λ

(k)merupakan forgetting factor (

0

<

λ

(

k

)

1

) dan

digunakan untuk kompensasi pengabaian data yang lalu. P(k)

merupakan matrik kovarian error.

E. Kendali Adaptif MIMO Berbasis Laguerre Series Modelling

Konsep kendali adaptif MIMO dikembangkan melalui

sistem identifikasi MIMO. Secara umum kendali

menggunakan model yang jelas dari sistem identifikas untuk menghitung manipulasi variabel rentang waktu kedepan secara optimal sehingga mampu untuk menggiring proses variabel dari waktu saat ini sampai prediksi (d) mencapai set point. Ilustrasi sederhana dari kendali adaptif ditunjukkan pada gambar 10.

Gbr.10 Grafik strategi kendali adaptif (Huzmezan,2004)

Apabila koefisien Laguerre (c) sudah diketahui maka dapat dikembangkan ke algoritma kendalinya. Salah satu alternatif yang bisa digunakan adalah dengan menggunakan

Generalized Predictive Control (GPC) yang mana algoritma

kendalinya didasarkan dari bentuk state space Laguerre MIMO (Zervos dan Dumont,1998).

Dengan mengasumsikan sinyal kendali sebagai berikut :

) 1 ( ... ) 1 ( ) ( ) 1 ( ... ) 1 ( ) ( ) 1 ( ... ) 1 ( ) ( 3 3 3 3 2 2 2 2 1 1 1 1 − + = = + = − + = = + = − + = = + = d k u k u k u d k u k u k u d k u k u k u

maka dapat dituliskan sebagai berikut :

) ( ) ... ( ) ( ) ( 1 1 1 1 1 1 1 1 1 1L k A I Bu k A d k L + = d + d− + + ) ( ) ... ( ) ( ) ( 2 2 2 2 1 2 2 2 2 2L k A I Bu k A d k L + = d + d− + + ) ( ) ... ( ) ( ) ( 3 3 1 3 3 3 3 3 k d A3L k A3 I Bu k L + = d + d+ +

dimana d1, d2 dan d3 adalah prediksi horizon setiap loop.

Kemudian prediksi keluaran dituliskan sebagai berikut :

) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 3 3 1 3 13 2 2 1 2 12 1 1 1 1 11 3 3 13 2 2 12 1 1 11 1 1 1 1 1 1 1 1 k y k u B I A C k u B I A C k u B I A C k L I A C k L I A C k L I A C d k y d T d T d T d T d T d T + + + + + + + + + + − + − + − = + − − − ) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 3 3 1 3 23 2 2 1 2 22 1 1 1 1 21 3 3 23 2 2 22 1 1 21 2 2 2 2 2 2 2 2 k y k u B I A C k u B I A C k u B I A C k L I A C k L I A C k L I A C d k y d T d T d T d T d T d T + + + + + + + + + + − + − + − = + − − − ) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 3 1 3 33 2 2 1 2 32 1 1 1 1 31 3 3 33 2 2 32 1 1 31 3 3 3 3 3 3 3 3 k y k u B I A C k u B I A C k u B I A C k L I A C k L I A C k L I A C d k y d T d T d T d T d T d T + + + + + + + + + + − + − + − = + − − − Jika didefinisikan, ) ( ; ) ( ; ) ( ) ( ; ) ( ; ) ( ) ( ; ) ( ; ) ( 3 3 3 2 2 2 1 1 1 3 33 33 2 32 32 1 31 31 3 23 23 2 22 22 1 21 21 3 13 13 2 12 12 1 11 11 I A C P I A C P I A C P I A C P I A C P I A C P I A C P I A C P I A C P d T T d T T d T T d T T d T T d T T d T T d T T d T T − = − = − = − = − = − = − = − = − = 3 1 3 13 13 2 1 2 12 12 1 1 1 11 11 ) ... ( ) ... ( ) ... ( 3 1 1 B I A C Be B I A C Be B I A C Be d T T d T T d T T + + = + + = + + = − − − (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36)

(6)

3 1 3 23 23 2 1 2 22 22 1 1 1 21 21 ) ... ( ) ... ( ) ... ( 2 2 2 B I A C Be B I A C Be B I A C Be d T T d T T d T T + + = + + = + + = − − − 3 1 3 33 33 2 1 2 32 32 1 1 1 31 31 ) ... ( ) ... ( ) ... ( 3 3 3 B I A C Be B I A C Be B I A C Be d T T d T T d T T + + = + + = + + = − − −

Persamaan (34), persamaan (35) dan persamaan (36) menjadi sebagai berikut :

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 3 13 2 12 1 11 3 13 2 12 1 11 1 1 k y k u Be k u Be k u Be k L P k L P k L P d k y T T T + + + + + + = + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 3 23 2 22 1 21 3 23 2 22 1 21 2 2 k y k u Be k u Be k u Be k L P k L P k L P d k y T T T + + + + + + = + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 33 2 32 1 31 3 33 2 32 1 31 3 3 k y k u Be k u Be k u Be k L P k L P k L P d k y T T T + + + + + + = +

dengan mengasumsikan bahwa nilai keluaran yang akan datang sama dengan nilai referensi atau set point maka :

) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 13 2 12 1 11 1 1 3 13 2 12 1 11 k L P k L P k L P k y y k u Be k u Be k u Be T T T r − − − − = + + ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 23 2 22 1 21 2 2 3 23 2 22 1 21 k L P k L P k L P k y y k u Be k u Be k u Be T T T r − − − − = + + ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 33 2 32 1 31 3 3 3 33 2 32 1 31 k L P k L P k L P k y y k u Be k u Be k u Be T T T r − − − − = + +

Didefinisikan lagi dengan

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 33 2 32 1 31 3 3 3 3 23 2 22 1 21 2 2 2 3 13 2 12 1 11 1 1 1 k L P k L P k L P k y y D k L P k L P k L P k y y D k L P k L P k L P k y y D T T T r T T T r T T T r − − − − = − − − − = − − − − =

maka dengan menggunakan solusi berupa determinan dapat ditentukan nilai sinyal control sebagai berikut :

33 32 31 23 22 21 13 12 11 33 32 3 23 22 2 13 12 1 1( ) Be Be Be Be Be Be Be Be Be Be Be D Be Be D Be Be D k u = 33 32 31 23 22 21 13 12 11 33 3 31 23 2 21 13 1 11 2( ) Be Be Be Be Be Be Be Be Be Be D Be Be D Be Be D Be k u = 33 32 31 23 22 21 13 12 11 3 33 31 2 22 21 1 12 11 3( ) Be Be Be Be Be Be Be Be Be D Be Be D Be Be D Be Be k u =

Selain itu nilai referensi trayektori berupa orde satu sehingga diharapkan mampu menggiring proses variabel

(Richalet et al, 1978). Berikut ini adalah penurunan model matematis dari nilai referensi orde satu.

3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 ) 1 ( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( sp r sp r sp r y k y k y y k y k y y k y k y

α

α

α

α

α

α

− + = + − + = + − + = +

dimana 0<α1<1, 0<α2<1 dan 0<α3<1. Lalu

y

sp1,

y

sp2

dan

y

sp3 merupakan set point yang diinginkan. Kemudian prediksi (d) kedepan untuk nilai referensi adalah

3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1

)

1

(

)

(

)

(

)

1

(

)

(

)

(

)

1

(

)

(

)

(

3 3 2 2 1 1 sp d d r sp d d r sp d d r

y

k

y

d

k

y

y

k

y

d

k

y

y

k

y

d

k

y

α

α

α

α

α

α

+

=

+

+

=

+

+

=

+

III. METODO LOGI PENELITIAN

A. Pemodelan Plant

Seperti yang dijelaskan pada bab sebelumnya bahwa di dalam proses reduction kiln terdapat beberapa material masukan dan keluaran. Material itu adalah Ore, Coal, Sulphur

(S), Main Burner Oil (MBO) yaitu HSFO, dan udara dari Main

Burner Air (MBA) dan air pipe (AP1-AP4). Sedangkan material output adalah Calcine, Offgas dan Dust.

Gbr.11 Skematik reduction kiln

Gambar 11 adalah skematik reduction kiln. Dalam memodelkan plant menggunakan hukum kesetimbangan panas. Secara matematis dapat di tuliskan sebagai berikut:

gen out in

acc

q

q

q

q

=

+

dimana qacc adalah panas akumulasi, qin adalah perpindahan

panas yang masuk ke sistem, qout adalah perpindahan panas

yang keluar dari sistem, dan qgen adalah perpindahan panas

dari dalam sistem yang ditimbulkan karen`a reaksi.

Sistem yang akan dimodelkan berupa MIMO sehingga dalam memodelkan harus mencari pula hubungan antar loop. Hubungan yang bisa terjadi antar loop adalah perpindahan panas gas dan perpindahan panas pada solid. Secara langsung panas yang dihasilkan gas loop yang paling dekat dengan

burner akan mempengaruhi loop setelahnya. Sedangkan solid kondisi yang paling jauh dari burner akan menjadi produk awal yang akan diproses di loop yang mendekati burner. Gambar 3.3 merupakan ilustrasi model plant secara MIMO yang akan dimodelkan beserta hubungan antar loop.

(37) (38) (39) (40) (41) (42) (44) (43) (45) (46) (47) (48) (49) (50) (51) (52)

(7)

Gbr.12 Perpindahan panas antar loop di reduction kiln

(Konrad S Stadler, Jan Poland, Eduardo

Gallestey.2010)

Dalam setiap loop sendiri terjadi perpindahan panas juga yaitu antara gas dengan solid, gas dengan wall dan solid

dengan wall. Dari asumsi-asumsi sebelumnya dapat

diturunkan beberapa persamaan kesetimbangan panas

termodinamik berdasarkan skematik perpindahan panas yang ditunjukkan pada gambar 13.

Gbr.13 Perpindahan panas pada reduction kiln

Pemodelan gas :

(

)

+

(

)

+ + +5,372(T −gl Tg) = ∂ ∂ f AP g s g w g 0,02q 0,02q T T 0,01 T T 0,03 z T 1,58

Dengan mengelompokan variabel yang sama didapat:

( ) gl T 4 , 3 + + − + = − + ∂ ∂ f f a AP1 s w g AP1 g ΔH 0,01Q ΔHT 0,01Q 0,006T 0,02T T ΔH 0,01Q 3,426 z T

Dengan metode 0ewtonian dan Euler didapatkan solusi : Untuk TC8 :

(

17

)

=Tg5+17(a2−Tg5a1)

T

g4 Untuk TC6 :

( )

8

=Tg4+8(a2 −Tg4a1)

T

g3 Untuk TC4:

( )

∆8 =Tg3+8(a2Tg3a1) Tg2 dimana :

(

3,426 Q ΔH

)

a1 = −0,01 AP dan

=

2

a

gl T 4 , 3 01 . 0 + + − + s AP a f f w

0,006T

Q

ΔHT

0,01Q

ΔH

0,02T

Panas yang berasal dari nyala api (flame) dirumuskan:

f f f m .Δ q H • =

Berdasarkan data-data Plant di lapangan maka :

.45 m qf f • = sm J Pemodelan solid :

Dengan memasukkan data-data lapangan didapatkan persamaan untuk reduction kiln Solid sebagi berikut:

(

)

(

)

∂ ∂ ∂ ∂ s s s g s w s T T 870,69Q +4.100,94 = 0,41 T - T +0,73 T - T z t

Transformasi laplace dapat digunakan untuk

menyelesaikan persamaan diferensial parsial yang ditulis sebagai berikut: )] , ( [ 69 , 870 ) ( 73 , 0 ) ( 41 , 0 ) , ( 14 , 1 ) , ( 94 , 4100 s z T z Q s T z T s z T s z sT s s w g s s ∂ ∂ − + = +

Sehingga;

)]] , ( [ 69 , 870 ) ( 73 , 0 ) ( 41 , 0 [ ) 14 , 1 94 , 4100 ( 1 ) , ( T z s z Q s T z T s s z Ts g w s s ∂ − + + = untuk TC4 maka: 47 57 ) , ( ) , ( ) , ( )] , ( [ 2 2 1 2 − = ∆ ∆ = ∂ ∂ T z s T zs z s z T s z T z s s s s untuk TC6 maka: 57 65 ) , ( ) , ( ) , ( )] , ( [ 3 3 2 3 − − = ∆ ∆ = ∂ ∂ T zs T zs z s z T s z T z s s s untuk TC8 maka: 65 73 ) , ( ) , ( ) , ( )] , ( [ 4 4 3 4 − = ∆ ∆ = ∂ ∂ T z s T z s z s z T s z T z s s s s Pemodelan wall :

Solusi persamaan perpindahan panas pada wall adalah sebagai berikut :

(

)

(

)

(

)

∂ ∂ w g w s w w a T 7, 48 =1, 46 T -T +0,73 T -T -0,41 T -T t

kemudian variabel yang sama dijadikan satu maka:

( )

( )

( )

∂ ∂ w w g s a T 7, 48 +2,6T = 1, 46T z +0,73T z, t - 0, 41T t t

dengan menggunakan transformai laplace sebagai solusi persamaan diferensial, maka menjadi:

( )

(

)

( )

( )

( )

w g s a

1

T s = 1,46T z +0,73T z,s - 0,41T s

7, 48s+2,6

Pembacaan suhu onboard reduction kiln ditunjukkan oleh persamaan (67).

(

Tg Ts

)

T

s

T

onboard = − +

3 2

suhu onboard adalah gabungan antara suhu gas dan suhu

solid. (55) (53) (54) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67)

(8)

Pemodelan VSD Air Pipe

Gbr.14 Diagram blok untuk AP2, AP3, AP4

B. Perancangan Identifikasi Sistem

Langkah-langkah yang digunakan dalam perancangan identifikasi sistem MIMO menggunakan deret Laguerre adalah sebagai berikut :

1. Menentukan orde Laguerre (01, 02 dan 03). Dalam hal ini

semua orde didesain memiliki nilai yang sama untuk memudahkan proses identifikasi.

2. Menentukan time scale (a1, a2 dan a3) dan time sampling

(Ts1, Ts2 dan Ts3).

3. Menghitung matrik Laguerre (A1, A2 dan A3) dan vektor

Laguerre (B1, B2 dan B3) dengan menggunakan persamaan

(22.a) dan persamaan (22.b).

4. Langkah selanjutnya adalah melakukan pembaruan

keadaan (state update)menggunakan persamaan 23, bahwa

state yang akan datang bergantung pada state saat ini dan

masukan saat ini. Nilai awal matrik inisial state sama dengan matrik zeros untuk 0x1 pada setiap masukan.

5. Perhitungan koefisien deret Laguerre dari persamaan

(2.24) dengan menggunakan metode recursive least

squares (RLS). Solusi RLS ditunjukkan dengan persamaan

(28) dan persamaan (29) dengan menetapkan koefisien awal sama dengan nol, matrik kovarian error sama dengan matrik identitas dikali 1000 dengan banyak elemen

(01+02+03)x(01+02+03) untuk setiap keluaran.

Gbr.15 Flowchart program identifikasi

C. Perancangan Kendali Adaptif

Langkah-langkah dalam merancang kendali adaptif MIMO berbasis Laguerre series modelling ini dapat dijelaskan sebagai berikut:

1. Menetapkan nilai control horizon (d1, d2 dand3).

2. Menentukan kepekaan nilai referensi atau set point

(

α

1

,

α

2

dan

α

3)

3. Asumsikan ketika sampel sudah sampai di d1, d2 dand3

maka keluaran sistem kendali sama dengan nilai referensinya yaitu:

(

1

)

r1 sp1 1

k

d

y

y

y

+

=

=

(

2

)

r2 sp2 2

k

d

y

y

y

+

=

=

(

3

)

r3 sp3 3

k

d

y

y

y

+ = =

4. Menentukan nilai referensi dengan menggunakan

persamaan (49), persamaan (50) dan persamaan (51). 5. Menghitung keluaran pengendali (u1(k), u2(k) dan u3(k))

berdasarkan persamaan (43), persamaan (44) dan persamaan (45).

Gbr.16 Flowchart sistem kendali adaptif berbasis Laguerre

series modeling

IV. HASIL PENELITIAN

A. Validasi Model Open Loop

Berdasarkan simulasi diperoleh bahwa untuk laju aliran

udara dari AP2 sebesar 358 Nm3/min maka suhu di TC4 pada

keadaan steady sebesar 891,22oC, untuk laju aliran udara dari

AP3 sebesar 259 Nm3/min maka suhu di TC6 pada keadaan

steady sebesar 881,4oC dan untuk laju aliran udara dari AP4 sebesar 44 Nm3/min maka suhu di TC8 pada keadaan steady sebesar 718,32oC. Sedangkan pada data lapangan nilai suhu

1

2s

1,17

+

(9)

punch reading di TC4 sekitar 894oC dengan error sebesar 2,78

oC atau 0,31% error, punch reading di TC6 sekitar 892oC

dengan error sebesar 10,06 oC atau 1,18% error dan punch

reading di TC8 sekitar 743oC dengan error sebesar 24,68oC atau 2,76% error. Grafik respon open loop dapat dilihat pada gambar 17, gambar 18 dan gambar 19.

Gbr.17 Respon open loop suhu onboard TC4

Gbr.18 Respon open loop suhu onboard TC6

Gbr.19 Respon open loop suhu onboard TC8

B. Hasil Identifikasi Sistem MIMO dengan Laguerre

Gambar 20, gambar 21 dan gambar 22 menunjukkan grafik hasil sistem idenifikasi MIMO menggunakan deret

Laguerre pada setiap suhu onboard.

Gbr.20Respon sistem identifikasi suhu pada TC4

Gbr.21 Respon sistem identifikasi suhu pada TC6

Gbr.22 Respon sistem identifikasi suhu pada TC8

TABEL I

RMSE RESPON LAGUERRE DENGAN RESPON LAPLACE

8o Suhu Onboard RMSE

1 TC4 3,77%

2 TC6 3,62%

3 TC8 3,49%

C. Pengujian Tracking Set Point 0aik dan Turun

Hasil respon sistemnya dapat dilihat pada gambar 23, gambar 24 dan gambar 25 berikut ini :

Gbr.23 Respon uji tracking set point pada suhu onboard TC4

Gbr.24 Respon uji tracking set point pada suhu onboard TC6

kendali manual kendali otomatis kendali manual kendali otomatis

(10)

Gbr.25 Respon uji tracking set point pada suhu onboard TC8 TABEL III

KRITERIA KUALITATIF PERFORMANSI UJI TRACKI0G

SET POI0T TURUN

8o Kriteria

Performansi TC4 TC6 TC8

1 Rise time (Tr) 4menit 2menit 64menit 2 Overshoot

maksimum (Mp) 11,46% 0% 0%

3 Peak time (Tp) 5menit 2menit 64menit 4 Settling time (Ts) 112menit 142menit 64menit 5 Steady state error

(ESS) 2,98% 1,67% 1,61%

6 Standar deviasi

error 17,5 6,28 5,14

TABEL III

KRITERIA KUALITATIF PERFORMANSI UJI TRACKI0G

SET POI0T TURUN

8o Kriteria

Performansi TC4 TC6 TC8

1 Rise time (Tr) 43menit 44menit 20menit 2 Overshoot

maksimum (Mp) 2,09% 0,35% 1,4% 3 Peak time (Tp) 71menit 70menit 70menit 4 Settling time

(Ts) 105menit 115menit 100menit 5 Steady state

error (ESS) 2,29% 0,91% 0,55%

6 Standar deviasi

error 20,4 8,92 4,84

D. Uji Beban (Load)

Pada pengujian beban ini diharapkan pengendali mampu menyesuaikan aksi kendalinya apabila terjadi perubahan kecepatan solid. Pengujian yang dilakukan berupa melakukan

perubahan nilai awal 0,54 0m3/min menjadi 0,34 0m3/min dan

selanjutnya dari 0,54 0m3/min menjadi 0,94 0m3/min. Setelah

diberikan pengurangan dan penambahan beban maka suhu akan berubah dan secara otomatis keluaran pengendalinya juga ikut berubah agar respon tetap steady pada nilai set point.

Gambar 26, Gambar 27 dan Gambar 28 menunjukkan respon sistem apabila mendapatkan pengujian penurunan beban sedangkan gambar 29 menunjukkan aksi kendali yang diberikan pengendali saat terjadi penurunan beban. Indikasi penurunan beban berupa bertambahnya kecepatan solid yang ada pada reduction kiln.

Gbr.26 Respon uji penurunan beban pada TC4

Gbr.27 Respon uji penurunan beban pada TC6

Gbr.28 Respon uji penurunan beban pada TC8

Gbr.29 Aksi kendali uji penurunan beban

Gambar 30, gambar 31 dan gambar 32 menunjukkan respon sistem apabila mendapatkan pengujian kenaikan beban sedangkan gambar 33 menunjukkan aksi kendali yang diberikan saat terjadi kenaikan beban. Kenaikan beban diindikasikan dengan bertambahnya kecepatan solid yang ada dalam reduction kiln.

kendali manual kendali otomatis kendali manual kendali otomatis kendali manual kendali otomatis kendali manual kendali otomatis

(11)

Gbr.30 Respon uji kenaikan beban pada TC4

Gbr.31 Respon uji kenaikan beban pada TC6

Gbr.32 Respon uji kenaikan beban pada TC8

Gbr.33 Aksi kendali uji kenaikan beban

E. Uji 0oise

Pengujian noise dilakukan dengan menambahkan sinyal

noise gaussian pada keluaran plant sehingga proses (PV) akan

mengandung noise. Parameter yang diberi nilai pada pengujian noise adalah variansi yang diambil dari data lapangan yaitu sebesar 38,5%. 0oise diberikan setelah respon sistem sudah dalam kondisi steady terkendali dengan mengubahnya dengan menggunakan timer. Gambar 34, gambar 35 dan gambar 36 menunjukkan respon suhu onboard saat diberi noise.

Gbr.34 Respon uji noise TC4

Gbr.35 Respon uji noise TC6

Gbr.36 Respon uji noise TC8

TABEL IV

KRITERIA KUALITATIF PERFORMANSI UJI 0OISE

8o Suhu Onboard Kriteria Kualitatif Steady State Error (ESS) Standar Deviasi Error 1 TC4 1,62% 3,68 2 TC6 0,34% 2,26 3 TC8 0,47% 1,11 F. Uji Gangguan

Untuk hasil respon dari uji gabungan ini dapat dilihat pada gambar 37, gambar 38 dan gambar 39

Gbr.37 Respon uji gabungan pada TC4

kendali manual kendali otomatis kendali otomatis kendali manual kendali manual kendali otomatis kendali manual kendali manual kendali manual kendali otomatis kendali otomatis kendali otomatis kendali manual kendali otomatis

(12)

Gbr.38 Respon uji gabungan pada TC6

Gbr.39 Respon uji gabungan pada TC8

V. KESIMPULAN

Dari hasil pengujian dan analisis data yang telah dilakukan dapat ditarik beberapa kesimpulan sebagai berikut:

1. Telah dilakukan pemodelan menggunakan persamaan

matematis hukum kesetimbangan energi dengan steady

state error sebesar 0,31 % dari data suhu lapangan untuk TC4, steady state error sebesar 1,18 % dari data suhu

lapangan untuk TC6 dan steady state error sebesar 2,76 % dari data suhu lapangan untuk TC8. Validasi ini dilakukan secara open loop.

2. Pemodelan plant reduction kiln menggunakan MIMO

deret Laguerre dengan menetapkan orde sebanyak 12,

time sampling sebesar 1 detik untuk masing-masing

masukan, time scale atau pole 0,05 untuk masukan AP2, 0,01 untuk masukan AP3 dan 0,208 untuk masukan AP4. Hasil identifikasi menghasilkan RMSE sebesar 3,8% untuk TC4, 3,7% untuk TC6 dan 3,5% untuk TC8. Hasil identifikasi untuk model tersebut mampu mengikuti respon plant pada kondisi tunak (steady). Untuk kondisi dinamik atau transien masih belum baik ditandai dengan

overshoot dan osilasi.

3. Pengujian set point turun sebesar 820oC pada TC4

menghasilkan overshoot maksimum 11,46%, steady state

error 2,98% dan settling time 112 menit. Pengujian set point turun sebesar 780oC pada TC6 menghasilkan

overshoot maksimum 0%, steady state error 1,67% dan settling time 142 menit. Pengujian set point turun sebesar

795oC pada TC8 menghasilkan overshoot maksimum 0%,

steady state error 1,61% dan settling time 64 menit.

4. Pengujian set point naik sebesar 940oC pada TC4

menghasilkan overshoot maksimum 2,09%, steady state

error 2,29% dan settling time 105 menit. Pengujian set point turun sebesar 980oC pada TC6 menghasilkan

overshoot maksimum 0,35%, steady state error 0,91%

dan settling time 115 menit. Pengujian set point turun

sebesar 995oC pada TC8 menghasilkan overshoot

maksimum 1,4%, steady state error 0,55% dan settling

time 100 menit.

5. Sistem kurang baik dalam memberikan respon saat terjadi

kenaikan beban dan penurunan beban terutama pada TC4.

Pada penelitian selanjutnya disarankan untuk

mengembangkan kendali adaptif MIMO berbasis Laguerre

series modeling didasarkan pada pemodelan pengaruh antar

keluaran. Pada penelitian diharapkan dapat mengembangkan metode optimasi untuk mendapatkan nilai time scale dan orde

Laguerre yang paling baik.

VI. DAF TAR PUSTAKA

Abdel, Latif Elshafei. 1991. “Adaptive Predictive Control :

Analysis and Expert Implementation”. Department of

Electrical and Computer Engineering, University of British Columbia, Canada.

Chen, Huiping. 1998. “Identification and Control of White

Water Recycle Systems”.Department of Electrical

and Computer Engineering, University of British Columbia, Canada.

Constantine, Chirstos Zervos. 1988. “Adaptive Control Based

on Orthonormal Series Representation”. Department

of Electrical and Computer Engineering, University of British Columbia, Canada.

Dumont, G. A. 1986. “Application of Advance Control

Methods in the Pulp and Paper Industry”.Automatica.

Dumont, G. A. 1981. “Self Tuning Regulator: Principles,

Present Status and Significance”.Pulp and Paper,

Canada.

Huaijing Du. 1998. “Multivariable Predictive Control of A

TMP Plant”. Department of Electrical and Computer

Engineering, University of British Columbia,

Canada.

Huzmezan, Mihai. 2004. ”A New Generation of Adaptive Model Based Predictive Controllers Applied in Batch

Reactor Temperature Control”. Canada, Universal

Dynamics Technologies Inc.

Oliver, D, Philip. 1997. “System Identification Using Laguerre

Functions”. Department of Electrical and Computer

Engineering, Marcer University, Macon.

Proctec Team. 2005. “Basic Overview: Pembakaran untuk Reduction Kiln PT INCO Tbk Sorowako”. slide presentasi CRO. PT INCO Tbk Sorowako.

Proctec Team. 2006. “Nickel Reduction Kiln#1: BrainWave

Application Report”. Canada, Universal Dynamics

Limited.

R.B. Michaelson. 1978. “A Summary of Thermomechanical Pulping Plant Advanced Control Applications”. In ISA

PUPID/PCMD Symp pages 65-75, Portland, Oregon.

Spang, H.A. 1972. “A Dynamic Model of a Cement Kiln”.

Pergamon Press, Great Britain.

Stadler, Konrad S. Jan Poland, Eduardo Gallestey.2010. “Model Predictive Control of A Rotary Cement Kiln”.

Switzerland Limited.

Tsang, Brian. Paul, Manan. 2005. “Metsim Reduction Kiln Model for PT Inco Sorowako”, ITSL Process Engineering & Strategic Study.

Wang, Liuping. 2003. “Discrete Model Predictive Controller Design Using Laguerre Function”.School of Electrical kendali manual kendali otomatis kendali manual kendali otomatis

(13)

and Computer Engineering, Royal Melbourne Institute of Technology, Australia.

Yulianto. 2010. “Perancangan Kontrol Prediktif Berbasis

Adaptive Laguerre State Space Model pada Sistem Kontrol

Temperatur Onboard TC2 Reduction Kiln 3 dI PT INCO

SOROWAKO”. Teknik Fisika, Institut Teknologi

Sepuluh 8ope mber, Surabaya.

VII. BIODATA PENULIS

Penulis berasal dari kabupaten Magetan , propinsi Jawa Timur. Lahir pada tanggal 1 Juni 1988, merupakan anak pertama dari dua

bersaudara. Penulis menempuh

pendidikan formal di SDN

Sukowinangu 3 dari tahun 1996 sampai dengan tahun 2002, SMP Negeri 1 Magetan dari tahun 2002 sampai tahun 2004, SMA Negeri 1 Magetan dari tahun 2004 sampai tahun 2007, kemudian melanjutkan pendidikan S1 di Jurusan Teknik Fisika ITS Surabaya pada tahun 2007 dengan pilihan bidang minat Rekayasa Instrumentasi dan Kendali. Kecintaan penulis terhadap Instrumentasi dan Kendali terutama dalam bidang industri, Sistem Cerdas dan Process Control Design. Selama kuliah di jurusan Teknik Fisika, penulis aktif di Laboratorium Pengukuran Fisis sebagai asisten. Selain itu penulis juga belajar tentang dunia organisasi lewat HMTF dan PMK ITS Surabaya. Penulis juga belajar tentang dunia pengajaran dalam Pendidikan Sosial Masyarakat sebagai tutor untuk anak-anak setingkat SMP , SMA dan anak jalanan. Penulis juga gemar bermain musik, jogging dan sepak bola. Penulis dapat

Referensi

Dokumen terkait

Dan untuk mengendalikan proses agar masih sesuai dengan set point yang diinginkan maka dibutuhkan metode kontrol yang tepat pada sistem pemanasan di heat exchanger. Metode

Sistem kontrol kipas angin otomatis menggunakan sensor suhu LM35 merupakan sebuah sistem yang digunakan untuk mendeteksi suhu ruangan serta mentransmisikan data perubahan suhu

2. Merancang cara kerja sistem kendali Penerangan dan Peralatan Listrik Pada tahap ini akan dijabarkan mengenai kebutuhan dan metode yang digunakan untuk merancang perangkat

Dengan menggunakan sistem pakar maka penyakit mata tersebut dapat didiagnosa dan diobati secara tepat dengan prinsip pembentukan basis aturan dan pembangunan komponen dilakukan

Sistem yang digunakan pada proyek akhir ini dengan judul &#34;Perancangan keamanan EFB berbasis web terhadap serangan XSS menggunakan metode White box Testing&#34; adalah

Salah satu sistem sederhana yang dapat digunakan adalah dengan membuat sistem pengendalian PH air menggunakan sensor PH air yang akan memicu pergantian air tambak secara

Untuk mewujudkan suatu sistem yang dapat bekerja secara otomatis maka diperlukan suatu pengontrolan dimana dalam penelitian ini digunakan kontrol proporsional yang

Dan dalam membangun Sistem Informasi Inventory Barang Gudang Di Cv.Bitcom Computer House penulis menggunakan metode pengembangan sistem yang digunakan dalam pembuatan aplikasi ini