• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
12
0
0

Teks penuh

(1)

ISSN1842-6298 (electronic), 1843-7265 (print) Volume4(2009), 77 – 88

APPLICATIONS OF GENERALIZED

RUSCHEWEYH DERIVATIVE TO UNIVALENT

FUNCTIONS WITH FINITELY MANY

COEFFICIENTS

Abdul Rahman S. Juma and S. R. Kulkarni

Abstract. By making use of the generalized Ruscheweyh derivative, the authors investigate several interesting properties of certain subclasses of univalent functions having the form

f(z) =z− m ❳

n=2

(1−β)en (1−nβ+α(1−n))B

λ,µ

1 (n)

zn− ∞ ❳

k=m+1

akzk.

1

Introduction

LetA(n, p) denote the class of functions f normalized byf(z) =zp− ∞

P

k=n+p

akzk,(p, n∈

IN ={1,2,3,4, ....}),which are analytic and multivalent in the unit disk U ={z :

|z|<1}. The function f(z) is said to be starlike of order δ(0≤δ < p) if and only if Rezff(z(z)) > δ,(z ∈ U). On the other hand f(z) is said to be convex of order

δ(0≤δ < p) if and only if Re1 +zff′′′((zz))

> δ,(z∈ U).

Now for α≥0,0≤β <1 and λ >−1, µ, ν ∈IR, the following classes

Mλ,µp (α, β) =

(

f(z)∈A(n, p) :Re (

Jpλ,µf(z)

z(Jpλ,µf(z))′

)

> α

Jpλ,µf(z)

z(Jpλ,µf(z))′

−p

+β )

(1.1)

Mλ,µ1,1(α, β) =

(

f(z)∈A(1,1) :Re (

J1λ,µf(z)

z(J1λ,µf(z))′

)

> α

J1λ,µf(z)

z(J1λ,µf(z))′ −1

+β )

(1.2)

2000 Mathematics Subject Classification: 30C45

(2)

whereJ1λ,µf(z) is the generalized Ruscheweyh derivative off defined by

J1λ,µf(z) = Γ(µ−λ+ν+ 2) Γ(ν+ 2)Γ(µ+ 1)zJ

λ,µ,ν

0,z (zµ

−1f(z)) (1.3)

whereJ0λ,µ,ν,z f(z) generalized fractional derivative operator of orderλ(see eg.[1], [5], [7], [8]).

We can write (1.3) as

J1λ,µf(z) =z− ∞

X

k=n+1

akB1λ,µ(k)zk (1.4)

where

B1λ,µ(k) = Γ(k+µ)Γ(ν+ 2 +µ−λ)Γ(k+ν+ 1)

Γ(k)Γ(k+ν+ 1 +µ−λ)Γ(ν+ 2)Γ(1 +µ). (1.5)

Consider the class Mλ,µ1,1(α, β, em) is subclass of Mλ,µ1,1(α, β) consisting of func-tions of the form

f(z) =z−

m

X

n=2

(1−β)en

(1−nβ+α(1−n))B1λ,µ(n)z n

X

k=m+1

akzk, (1.6)

where

en=

[1−nβ+α(1−n)]Bλ,µ1 (n) 1−β an.

Many authors have studied the different cases (e.g. [2], [4], [6]), and for λ =

µ, ν = 1, we get the case was studied by [3].

2

Coefficient Bounds

In order to prove our results, we need the following Lemma due to A.R.S.Juma and S. R. Kulkarni [2].

Lemma 1. Let f(z) =zp− ∞

P

k=m+p

akzk. Then f(z)∈ Mλ,µp (α, β) if and only if

X

k=m+p

[(1 +α)−k(αp+β)] [(1 +α)−p(αp+β)]B

λ,µ

p (k)ak<1. (2.1)

(3)

Theorem 2. Let the function f(z) defined by (1.6). Then f ∈ Mλ,µ1,1(α, β, em) if and only if

X

k=m+1

(1−kβ) +α(1−k) 1−β B

λ,µ

1 (k)ak <1− m

X

n=2

en. (2.2)

Proof. Let

an=

(1−β)en

(1−nβ+α(1−n))Bλ,µ1 (n). (2.3)

We can say that f ∈ Mλ,µ1,1(α, β, em)⊂ Mλ,µ1,1(α, β) if and only if

m

X

n=2

[(1−nβ) +α(1−n)]Bλ,µ1 (n) 1−β an+

X

k=m+1

[1−kβ+α(1−k)]B1λ,µ(k) 1−β ak<1

or

X

k=m+1

[1−kβ+α(1−k)]B1λ,µ(k)

1−β ak<1−

m

X

n=2

en.

Corollary 3. Let f(z) defined by (1.6) be in Mλ,µ1,1(α, β, em). Then for k≥m+ 1 we have

ak≤

(1−β)(1− ∞

P

n=2

en)

(1−kβ+α(1−k))B1λ,µ(k), (2.4)

this result is sharp for

h(z) =z−

m

X

n=2

(1−β)en

[(1−nβ) +α(1−n)]B1λ,µ(n)z n

(1−β)(1− ∞

P

n=2

en)

[(1−kβ) +α(1−k)]B1λ,µ(k)z k.

(2.5)

Corollary 4. Let f defined by (1.6). Then f ∈ M10,,01(0, β, em), that is,

f(z) =z−

m

X

n=2

en(1−β) 1−nβ z

n

X

k=m+1

akzk,

if and only if

X

k=m+1

1−kβ

1−β ak<1−

m

X

n=2

(4)

Corollary 5. Let f defined by (1.6). Then f ∈ M11,,01(0, β, em), that is,

f(z) =z−

m

X

n=2

(1−β)(ν+ 1)en (1−nβ)Γ(n+ν) =z

n

X

k=m+1

akzk

if and only if

X

k=m+1

(1−kβ)Γ(k+ν)

(1−β)(ν+ 1) ak<1− m

X

n=2

en.

Corollary 6. Let f defined by (1.6). Then f ∈ M10,,01(α,0, em), that is,

f(z) =z−

m

X

n=2

en 1 +α(1−n)z

n

X

k=m+1

akzk

if and only if

X

k=m+1

(1 +α(1−k))ak<1− m

X

n=2

en.

Corollary 7. Let f defined by (1.6). Then f ∈ M11,,01(α,0, em) , that is,

f(z) =z−

m

X

n=2

en(ν+ 1)

(1 +α(1−n))Γ(n+ν)z n

X

k=m+1

akzk

if and only if

X

k=m+1

[1 +α(1−k)]Γ(k+ν)

(ν+ 1) ak<1− m

X

n=2

en.

We claim that all these results are entirely new.

3

Extreme points and other results

Theorem 8. Let f1(z), f2(z), ..., fℓ(z) defined by

fi(z) =z− m

X

n=2

(1−β)en

[1−nβ+α(1−n)]B1λ,µ(n)z n

X

k=m+1

ak,izk, (3.1)

(i= 1,· · · , ℓ) be in the class Mλ,µ1,1(α, β, em). Then G(z) defined by

G(z) = ℓ

X

i=1

λifi and ℓ

X

i=1

λi = 1,0≤ m

X

n=2

en≤1,0≤en≤1

(5)

Proof. In view of Theorem2, we have

Proof. It is clear that

(6)

by Theorem 2, we have the last expression is less than 1 Pℓ

The next Theorem is very useful to obtain the extreme points of the class

Mλ,µ1,1(α, β, em).

Theorem 12. Let

(7)

= z−

therefore at the end we can write

(8)

Theorem 14. Let f(z) defined by (1.6) be in the class Mλ,µ1,1(α, β, em). Then f(z)

Proof. It is sufficient to show that

(9)

Theorem 15. [Alexander’s Theorem]Let f be analytic in U withf(0) =f′(0)−

1 = 0. Then f is convex function if and only if zf′ is starlike function.

Corollary 16. Let f ∈ Mλ,µ1,1(α, β, em). Then f(z) is convex of order δ(0≤δ < 1) in |z|< r where r is the largest value such that

m

X

n=2

nen

(1−nβ+α(1−n))B1λ,µ(n)r n−1+

k(1−

m

P

n=2

en)

(1−kβ+α(1−k))B1λ,µ(k)r

k−1 < 1

1−β.

Theorem 17. Let f ∈ Mλ,µ1,1(α, β, em) andλ >0, if

dn=

(1−β)e2n

(1−nβ+α(1−n))B1λ,µ(n) (2≤n≤m), (3.6)

then the function

H(z) =z−

m

X

n=2

(1−β)dn

((1−nβ) +α(1−n))B1λ,µ(n)z n

X

k=m+1

akzk

is also in the classMλ,µ1,1(α, β, em).

Proof. By assumption we have (1−nβ+α(1−n))Bλ,µ1 (n)>1 therefore,

dn=

(1−β)e2n

(1−nβ+α(1−n))Bλ,µ1 (n) < en≤1.

So, 0≤

m

P

n=2

dn< m

P

n=2

en≤1, thus

X

k=m+1

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1−

m

P

n=2

dn)

ak<

X

k=m+1

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1−

m

P

n=2

en)

<1.

Theorem 18. Let f, g ∈ Mλ,µ1,1(α, β, em) and λ >0. Then

(f ∗g)(z) =z−

m

X

n=2

(1−β)2e2n

(1−nβ+α(1−n))2(Bλ,µ 1 (n))2

zn− ∞

X

k=m+1

akbkzk

is also in the classMλ,µ1,1(α, β, dm)ifλ1 ≤inf

k

(Bλ,µ1 (k)) 2

(1− m

P

n=2

dn)−1

, wheredn(2≤n≤m)

(10)

Proof. By making use of (3.6), we have

(f∗g)(z) =z−

m

X

n=2

(1−β)dn

(1−nβ+α(1−n))B1λ,µ(n)z n

X

k=m+1

akbkzk.

By Theorem 17, we have

X

k=m+1

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1− Pm

n=2

dn)

ak<1

and

X

k=m+1

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1− ∞

P

n=2

dn)

bk<1.

Therefore, by Cauchy-Schwarz inequality we obtain

X

k=m+1

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1−

m

P

n=2

dn)

p

akbk <1. (3.7)

Now, we want to prove that

X

k=m+1

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1− Pm

n=2

dn)

akbk<1. (3.8)

In view of (3.7) the inequality (3.8) holds true if

p akbk

Bλ1,µ

1 (k)

B1λ,µ(k) <1. (3.9)

But we have

B1λ,µ(k)

1−

m

P

n=2

dn

p akbk<

(1−kβ+α(1−k))B1λ,µ(k)

(1−β)(1−

m

P

n=2

dn)

p

akbk<1.

Therefore (3.9) holds true if

1− Pm

n=2

dn

Bλ,µ1 (k) <

B1λ,µ(k)

Bλ1,µ

1 (k)

, or Bλ1,µ

1 (k)<

(Bλ,µ1 (k))2

1− Pm

n=2

dn

.

Then λ1 < (B λ,µ

1 (k)) 2

1− m

P

n=2

(11)

Theorem 19. Let f(z)∈ Mλ,µ1,1(α, β, em). Then

J1λ,µf(z) = exp

Z z

0

E(t)−α

(βE(t)−α)tdt

,|E(z)|<1, z∈ U.

Proof. The case α = 0 is obvious. Therefore, suppose that α 6= 0. Then for f ∈

Mλ,µ1,1(α, β, em) and let w =

J1λ,µf(z)

z(J1λ,µf(z))′ we have Re(w) > α|w−1|+β, therefore,

w−1

w−β

<

1

α or w−1

w−β = E(z)

α , where|E(z)|<1, z∈ U. This yields

J1λ,µf(z)

z(J1λ,µf(z))′ −1 J1λ,µf(z)

z(J1λ,µf(z))′ −β

= E(z)

α or

J1λ,µf(z)−z(J1λ,µf(z))′ J1λ,µf(z)−βz(J1λ,µf(z))′ =

E(z)

α .

Thus (J λ,µ

1 f(z))′

(J1λ,µf(z)) =

E(z)−α

(βE(z)−α)z.

By the integration we get the result.

References

[1] S. P. Goyal and Ritu Goya, On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional deriva-tive operator, Journal of Indian Acad. Math., 27 (2) (2005), 439-456.

MR2259538(2007d:30005).Zbl 1128.30008.

[2] A. R. S. Juma and S. R. Kulkarni,Application of generalized Ruscheweyh deriva-tive to multivalent functions, J.Rajasthan Acad. Phy. Sci.6(2007), no.3, 261-272.

MR2355701.

[3] Sh. Najafzadeh and S. R. Kulkarni, Application of Ruscheweyh derivative on univalent functions with negative and fixed many coefficients, J. Rajasthan Acad. Phy. Sci., 5 (1) (2006), 39-51.MR2213990.Zbl 1137.30005.

[4] S. Owa, M. Nunokawa and H. M. Srivastava, A certain class of multivalent functions, Appl. Math. Lett.,10(2) (1997), no.2, 7-10. MR1436490.

[5] R. K. Raina and T. S. Nahar, Characterization properties for starlikeness and convexity of some subclasses of analytic functions involving a class of frac-tional derivative operators, Acta Math. Univ. Comenian,69 (N.S.) (2000), 1-8.

MR1796782(2001h:30014).

(12)

[7] H. M. Srivastava, Distortion inequalities for analytic and univalent func-tions associated with certain fractional calculus and other linear operators (In analytic and Geometric Inequalities and Applications, eds. T. M. Ras-sias and H.M. Srivastava), Kluwar Academic Publishers, 478 (1999), 349-374.

MR1785879(2001h:30016).

[8] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications, Applied Math. and Computation, 118 (2001), no. 1, 1-52.

MRMR1805158(2001m:26016).Zbl 1022.26012.

Abdul Rahman S. Juma S. R. Kulkarni

Department of Mathematics Department of Mathematics Al-Anbar University, Fergusson College,

Ramadi, Iraq. Pune 411004, India

Referensi

Dokumen terkait

Hasil analisa untuk mendeskripsikan dimensi dari variabel entrepreneurial leadership dapat dijabarkan dengan menunjukan skor tertinggi berdasarkan perolehan

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan

Saran yang diberikan untuk perusahaan ini yaitu, perlunya perusahaan menjaga hubungan baik dengan pihak ekspedisi untuk mendistribusikan barang ke berbagai wilayah,

Dari daftar panjang tersebut diambil 3 (tiga) perusahaan dengan nilai terbaik untuk dimasukkan ke dalam daftar pendek konsultan yang diundang untuk mengikuti

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja

Strategi pengembangan bisnis yang dapat dilakukan perusahaan dengan melalui fungsi sumber daya manusia yang dimiliki oleh perusahaan adalah dengan meningkatkan

Menurut Poza (2009) untuk menentukan kriteria kesuksesan suksesor, indikator yang akan digunakan adalah sebagai berikut: 1). Bimbingan pendiri terhadap suksesor. Ada atau

Demikian juga wewenang, tugas dan fungsi BHP yang diatur dalam KUHPdt dan S 1872 Nomor 166 tentang Instruksi untuk Balai Harta Peninggalan mengenai perwalian, dan kewajiban BHP