• Tidak ada hasil yang ditemukan

sigma09-027. 307KB Jun 04 2011 12:10:24 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "sigma09-027. 307KB Jun 04 2011 12:10:24 AM"

Copied!
21
0
0

Teks penuh

(1)

q

-Wakimoto Modules

and Integral Formulae of Solutions

of the Quantum Knizhnik–Zamolodchikov Equations

Kazunori KUROKI

Department of Mathematics, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan E-mail: ma306012@math.kyushu-u.ac.jp

Received October 31, 2008, in final form February 25, 2009; Published online March 07, 2009

doi:10.3842/SIGMA.2009.027

Abstract. Matrix elements of intertwining operators betweenq-Wakimoto modules associa-ted to the tensor product of representations ofUq(slc2) with arbitrary spins are studied. It is shown that they coincide with the Tarasov–Varchenko’s formulae of the solutions of the qKZ equations. The result generalizes that of the previous paper [Kuroki K., Nakayashiki A., SIGMA4(2008), 049, 13 pages].

Key words: free field; vertex operator; qKZ equation; q-Wakimoto module

2000 Mathematics Subject Classification: 81R50; 20G42; 17B69

1

Introduction

In [8] the integral formulae of the quantum Knizhnik–Zamolodchikov (qKZ) equations [3] for the tensor product of spin 1/2 representation of Uq(sl2) arising from q-Wakimoto modules have

been studied. The formulae are identified with those of Tarasov–Varchenko’s formulae. The aim of this paper is to generalize the results to the case of tensor product of representations with arbitrary spins.

It is known that certain matrix elements of intertwining operators betweenq-Wakimoto modu-les satisfy the qKZ equation [3, 10]. Thus it is interesting to compute those matrix elements explicitly. In [5] two kinds of intertwining operators were introduced, type I and type II. They were defined according as the position of evaluation representations. In the application to the study of solvable lattice models two types of operators have their own roles. Type I and type II operators correspond to states and particles respectively. The properties of traces exhibit very different structure. However as far as the matrix elements are concerned they are not expected to be very different [5].

In [8] a computation of matrix elements has been carried out in the case of type I opera-tor and the tensor product of 2-dimensional vecopera-tor representation of Uq(sl2) generalizing the

result of [10] (see the previous paper [8]). In this paper we compute matrix elements for the composition of the type I intertwining operators [5] associated to finite dimensional irreducible representations of Uq(sl2). We perform certain multidimensional integrals and sums explicitly.

It is shown that the formulae thus obtained coincide with those of Matsuo [9], Tarasov and Varchenko [13] without the term corresponding to the deformed cycles.

(2)

type I case as opposed to the expectation. It is interesting to find the way to get a similar result for matrix elements in the case of type II operators.

The paper is organized in the following manner. The construction of the solutions of the qKZ equations due to Tarasov and Varchenko is reviewed in Section 2. In Section 3a free field construction of intertwining operator is reviewed. The formulae for the matrix elements of some operators are calculated in Section 4. The main theorem of this paper is stated in this section. In Section 5the proof of the main theorem is given. The evaluation representation ofUq(slc2) is

explicitly described in AppendixA. AppendixBgives the explicit form of theR-matrix in special cases. The explicit forms of the operators which appear in Section 3 are given in AppendixC. AppendixDcontains the list of OPE’s which is necessary to derive the integral formulae.

2

Tarasov–Varchenko’s formulae

We review Tarasov–Varchenko’s formula for solutions of the qKZ equations. In this paper we assume that q is a complex number such that |q| < 1. We mainly follow the notation of [13]. For a nonnegative integerl let V(l) =Lli=0Cv(l)

i be the l+ 1 dimensional irreducible

Uq(sl2)-module andVz(l) =V(l)⊗C[z, z−1] the evaluation representation ofUq(slc2) onV(l). The

action of Uq(slc2) on Vz(l) is given in Appendix A. Let l1 and l2 be nonnegative integers and

Rl1,l2(z)∈End(V

(l1)V(l2)) the trigonometric quantum R-matrix uniquely determined by the

following conditions:

(i) P Rl1,l2(z) commutes withUq(slc2),

(ii) P Rl1,l2(z) v (l1) 0 ⊗v

(l2) 0

=v(l2) 0 ⊗v

(l1) 0 ,

where P :V(l1)V(l2)V(l2)V(l1) is a linear map given by

P(v⊗w) =w⊗v.

The explicit form of the R-matrix is given in AppendixBin casel1 = 1 orl2= 1. We set

b

Rli,lj(z) =ρli,lj(z)Reli,lj(z), Reli,lj(z) = (Cli ⊗Clj)Rli,lj(z)(Cli⊗Clj),

ρli,lj(z) =q lilj

2 (q

li+lj+2z−1;q4)

∞(q−li−lj+2z−1;q4)∞

(q−li+lj+2z−1;q4)

∞(qli−lj+2z−1;q4)∞

,

Clvǫ(l)=v (l)

l−ǫ vǫ(l)∈V(l)

,

where for a complex number awith|a|<1

(z;a)∞= ∞ Y

i=0

1−aiz.

Let kbe a complex number. We set

p=q2(k+2).

We assume thatp satisfies|p|<1. Let Tj denote the p-shift operator ofzj,

Tjf(z1, . . . , zn) =f(z1, . . . , pzj, . . . zn).

Let l1, . . . , ln and N be nonnegative integers. The qKZ equation for a Vl1 ⊗ · · · ⊗Vln-valued

function Ψ(z1, . . . , zn) is

TjΨ =Rbj,j−1(pzj/zj−1)· · ·Rbj,1(pzj/z1)κ hj

(3)

whereκ is a complex parameter,Rbi,j(z) signifies thatRbli,lj(z) acts on thei-th and j-th

compo-nents of the tensor product and κhj acts onj-th component as

κhj2 vm(lj) =κ

lj−2m

2 vm(lj).

We set

(z)∞= (z;p), θ(z) = (z)∞ pz−1(p)∞.

Consider a sequence (ν) = (ν1, . . . , νn) satisfying 0 ≤ νi ≤ li for all i and N = n P

i=1

νi. Let

r =♯{i|νi = 06 },{i|νi 6= 0}={k(1)<· · ·< k(r)}and ni =νk(i). We set

w(ν)(t, z) =Y

a<b

ta−tb

q−2t a−tb

X

Γ1⊔···⊔Γr={1,...,N} |Γs|=ns(s=1,...,r)

   

Y

1≤i<j≤r a∈Γi,b∈Γj

q−2t a−tb

ta−tb    

× Y

b∈Γs

tb

tb−q−lk(i)zk(i) Y

j<k(i)

q−ljt b−zj

tb−q−ljzj !

.

The elliptic hypergeometric spaceFellis the space of functionsW(t, z)=W(t1, . . . , tN, z1, . . . , zn)

of the form

W =Y(z)Θ(t, z) 1

n Q

j=1 N Q

a=1

θ(qljt a/zj)

Y

1≤a<b≤N

θ(ta/tb)

θ(q−2t a/tb)

satisfying the following conditions:

(i) Y(z) is meromorphic on (C∗)n inz1, . . . , zn, whereC∗ =C\ {0};

(ii) Θ(t, z) is holomorphic on (C∗)n+N int1, . . . , zn and symmetric in t1, . . . , tN;

(iii) Tt

aW/W = κq−2N+4a−2 n Q

i=1

qli, Tz

jW/W = q−ljN, where TatW = W(t1, . . . , pta, . . . , tN, z)

and Tz

jW =W(t, z1, . . . , pzj, . . . , zn).

Define the phase function Φ(t, z) by

Φ(t, z) =

N Y

a=1 n Y

i=1

(qlit a/zi)∞

(q−lit a/zi)∞

! Y

a<b

(q−2ta/tb)∞

(q2t a/tb)∞

!

.

ForW ∈ Fell let

I(w(ǫ), W) =

Z

e TN

N Y

a=1

dta

ta

Φ(t, z)w(ǫ)(t, z)W(t, z), (2)

where eTN is a suitable deformation of the torus

TN ={(t1, . . . , tN)| |ti|= 1,1iN},

specified as follows. The integrand has simple poles at

ta/zj = psq−lj ±1

(4)

ta/tb= psq2±1, s≥0, 1≤a < b≤N.

The contour of integration inta is a simple closed curve which rounds the origin in the

counter-clockwise direction and separates the following two sets

psq−ljz

j, psq2tb|s≥0,1≤j≤N, a < b ,

p−sqljz

j, p−sq−2tb|s≥0,1≤j ≤N, a < b .

Let Lbe a complex number and

κ=q−2 L+

n P

i=1

li

2−N+1

.

Then

ΨW =

n Y

i=1

zai i

! Y

i<j

ξli,lj(zi/zj) !

X

(ǫ)

I(w(ǫ), W)v(l1)

ǫ1 ⊗ · · · ⊗v (ln)

ǫn (3)

is a solution of the qKZ equation (1) for any W ∈ Fellwhere (−ǫ) = (l1−ǫ1, . . . , ln−ǫn) and

ai=

li

2(k+ 2) L+

n X

j=1

lj−

li

2 −N+ 1

!

,

ξli,lj(z) =

pqli+lj+2z−1;q4, p ∞ pq

−li−lj+2z−1;q4, p

pqli−lj+2z−1;q4, p

∞ pq−li+lj+2z−1;q4, p

,

(z;p, q) =

∞ Y

i=0

∞ Y

j=0

(1−piqjz).

3

Free f ield realizations

We briefly review the free field construction of the representation of the Uq(slc2) of level k

[1,10,11] and intertwining operators [2,6,7]. We mainly follow the notation of [6]. We set

[n] = q

nq−n

q−q−1 .

Let kbe a complex number and{an, bn, cn,˜a0,˜b0,˜c0, Qa, Qb, Qc|n∈Z≥0} satisfy

[an, am] =δm+n,0

[(k+ 2)n][2n]

n , [˜a0, Qa] = 2(k+ 2),

[bn, bm] =δm+n,0 −[2n]2

n , [˜b0, Qb] =−4,

[cn, cm] =δm+n,0

[2n]2

n , [˜c0, Qc] = 4.

Other combinations of elements are supposed to commute. Set

N±=C[an, bn, cn| ±n >0].

Letr be a complex number andsan integer. The Fock moduleFr,sis defined to be the freeN−

module of rank one generated by the vector |r, si satisfying

(5)

We set

Fr=⊕s∈ZFr,s.

The right Fock module Fr,s† and Fr† are similarly defined using the vector hr, s| satisfying the

conditions

hr, s|N−= 0, hr, s|a˜0 =rhr, s|, hr, s|b˜0 =−2shr, s|, hr, s|˜c0=−2shr, s|.

Notice that Fr and Fr†have left and right Uq(slc2)-module structure respectively [10,11].

Let

|Li=|L,0i ∈FL,0, hL|=hL,0| ∈FL,0† .

They become left and right highest weight vectors of Uq(slc2) with the weight LΛ1+ (k−L)Λ0

respectively, where Λ0 and Λ1 are fundamental weights ofslc2.

We consider operators

φ(l)m(z) : Fr,s→Fr+l,s+l−m, J−(u) : Fr,s→Fr,s+1, S(t) : Fr,s→Fr−2,s−1,

the explicit forms of which are given in Appendix C. We set

φ(l)l (z) =φl(z)

for simplicity. The operator φ(l)m(z) is used to construct the vertex operator forUq(slc2):

φ(l)(z) : Wr→Wr+l⊗Vz(l), φ(l)(z) = l X

m=0

φ(l)m(z)⊗v(l)m,

where Wr is a certain submodule of Fr calledq-Wakimoto module [10].

The operatorJ−(u) is a generating function of a part of generators of the Drinfeld realization

forUq(slc2) at levelk.

The operator S(t) commutes with Uq(slc2) modulo total differences. Here modulo total

differences means modulo functions of the form

k+2∂zf(z) =

f(qk+2z)−f(q−(k+2)z) (q−q−1)z .

Consider

F(t, z) =hL+

n X

i=1

li−2N|φ(l1)(z1)· · ·φ(ln)(zn)S(tN)· · ·S(t1)|Li

which is a function taking the value inV(l1)⊗ · · · ⊗V(ln). Let

△j =

j(j+ 2) 4(k+ 2).

Set

b

F =

 n Y

i=1

z

△ L+Pn

j=ilj

−2N−△L+ Pn

j=i+1lj −2N

i

F =

 n Y

i=1

z

li

2(k+2) L+ P

i<j

lj−2N+li+22

i

F.

Then the function Fb(t, z) satisfies qKZ equation (1) with κ = q−2 L+

n P i=1li

2 −N+1

(6)

4

Integral formulae

Define the components of F(t, z) by

F(t, z) = X

νi∈{0,...,li} 1≤i≤n

F(ν)(t, z)v(l1)

ν1 ⊗ · · · ⊗v (ln) νn ,

where (ν) = (ν1, . . . , νn). By the conditions on weightsF(ν)(t, z) = 0 unless

n X

i=1

(li−νi) =N

is satisfied. We assume this condition once for all. Let

♯{i|νi 6=li}=r, {i|νi 6=li}={k(1)<· · ·< k(r)},

ni =lk(i)−νk(i) (1≤i≤r).

The main result of this paper is

Theorem 1. We have

F(ν)(t, z) =A(ν)(t, z)

 n Y

i=1

z

li

2(k+2) L−2N+ P

i<j lj

i

 Y

i<j

ξli,lj(zi/zj) !

Φ(t, z)w(ν)(t, z),

where (−ν) = (l1−ν1, . . . , ln−νn), ni=lk(i)−νk(i) and

A(ν)(t, z) =q−N Lq 3N(N−1)

2 −

n P

i=1 li

N

q 1 2(k+2) k

P

i<j

lilj+k(L−2N) n P

i=1

li+4LN−4N(N−1)

×

1

q−q−1

NX

(ν)  

 r Y

s=1

q

r P

t=s+1 nt

ns−lk(s)ns  

 ( r

Y

s=1 nYs−1

i=0

1−q2(lk(s)−i)

)

× N Y

a=1

t 2

k+2(a−1)− 1

k+2L−1 a

!

.

The formula for F(ν)(t, z) is of the form of (2), (3). More precisely in Tarasov–Varchenko’s formula (2), (3),W can be written as

W =

 n Y

i=1

z

li

2(k+2) L−3N− P

j<i

lj+Pi<jlj

i

 N Y

a=1

ta !

A(ν)(t, z)W′

for suitable W′. This W′ specifies an intertwiner. In this paper we don’t consider the problem on specifying W′.

To prove Theorem 1 let us begin by writing down the formula obtained by the free field description of operators φl(z), J−(u), S(t) given in Appendix C. Let (ǫ) = (ǫ1, . . . , ǫN),(µ) =

(µ1,1, . . . , µ1,n1, . . . , µr,nr)∈ {0,1}N. ThenF(ν)(t, z) can be written as

F(ν)(t, z) = (−1)N q−q−1−2N

r Y

i=1

1 [ni]!

N Y

a=1

(7)

× X ǫi,µi1,i2

N Y

i=1

ǫi I

   

Y

1≤i1≤r

1≤i2≤ni1

µi1,i2

dui1,i2

2πiui1,i2

  

F(ǫ)(µ)(ν) (t, z|u),

where

F(ǫ)(µ)(ν) (t, z|u) =DL+

n X

i=1

li−2N|φl1(z1)· · ·φlk(1)−1(zk(1)−1)

×[. . .[φlk(1)(zk(1)), J

µ1,1(u1,1)]qlk(1), J

µ1,2(u1,2)]qlk(1)−2. . . , J

µ1,n1(u1,n1)]qlk(1)−2(n1−1). . .

×[. . .[φlk(r)(zk(r)), J

µr,1(ur,1)]qlk(r), J

µr,2(ur,2)]qlk(r)−2. . . , J

µr,nr(ur,nr)]qlk(r)−2(nr−1)

×φlk(r)+1(zk(r)+1). . . φln(zn)SǫN(tN). . . Sǫ1(t1)|L

E

.

and the integrand in the right hand side signifies to take the coefficient of Q

1≤i≤r 1≤j≤ni

ui,j !−1

. For

the notation [x, y]q see AppendixC.

Let (m) = (m1, . . . , mr), 0≤mi≤ni. Then

I    

Y

1≤i1≤r 1≤i2≤ni1

µi1,i2

dui1,i2

2πiui1,i2

   F

(ν) (ǫ)(µ)(t, z)

= X

0≤mi≤ni

1≤i≤r

(−1)

r P

i=1

mi Yr

i=1

qmilk(i)q−mi(ni−1)

ni

mi !

× Z

CN    

Y

1≤i1≤r 1≤i2≤ni1

µi1,i2

dui1,i2

2πiui1,i2

  

F(ǫ)(µ)(m)(ν) (t, z|u),

where

F(ǫ)(µ)(m)(ν) (t, z|u) =DL+

n X

i=1

li−2N|φl1(z1)· · ·φlk(1)−1(zk(1)−1)

× Jµ1,1(u1,1)· · ·Jµ−1,m1(u1,m1)φlk(1)(zk(1))J

µ1,m1+1(u1,m1+1)· · ·J

µ1,n1(u1,n1)

· · ·

× Jµr,1(ur,1)· · ·Jµ−r,mr(ur,mr)φlk(r)(zk(r))J

µr,mr+1(ur,mr+1)· · ·J −

µr,nr(ur,nr)

×φlk(r)+1(zk(r)+1)· · ·φln(zn)SǫN(tN)· · ·Sǫ1(t1)|L

E

,

and CN is a suitable deformation of the torusTN specified as follows. We introduce the

lexico-graphical order

(i1, i2)<(j1, j2) ⇔ i1 < j1 or i1=j1 and i2 < j2.

For a given (m) = (m1, . . . , mr), 1≤mi ≤ni, we define

(8)

The contour for the integration variable ui1,i2 is a simple closed curve rounding the origin in

the counterclockwise direction such that qlj+k+2z

j ((i1, i2) < j), q−2uj1,j2 ((i1, i2) < (j1, j2)), q−µi1,i2(k+2)t

a (1≤a≤ N) are inside, and q−lj+k+2zj ((i1, i2) > j), q2uj1,j2 ((j1, j2) <(i1, i2))

are outside. We denote it C(i1,i2). Then

F(ǫ)(µ)(m)(ν) (t, z|u) =f(ν)(t, z)Φ(t, z)G(ν)(ǫ)(µ)(m)(t, z|u),

where

f(ν)(t, z) =

 

 Y

i<j

(qkzi) lilj

2(k+2)ξ

li,lj(zi/zj)  

 ( n

Y

i=1

(qkzi)− N li k+2

)

× ( n

Y

i=1

(qkzi) Lli

2(k+2)

) (N Y

i=1

(q−2ti)− L k+2

) ( Y

a<b

(q−2tb) 2

k+2

)

,

G(ν)(ǫ)(µ)(m)(t, z|u) =Gb(ν)(ǫ)(µ)(m)(t, z|u) Y

a<b

qǫbt

b−qǫata

tb−q−2ta !

,

b

G(ν)(ǫ)(µ)(m)(t, z|u) =

  Y

(i1,i2) qLµi1,i2

 

 Y

(i1,i2)>j

zj−qµi1,i2lj−k−2ui 1,i2 zj −qlj−k−2ui1,i2

 

× 

 Y

(i1,i2)<j

qµi1,i2ljui1,i2 −q

−µi1,i2lj+k+2z j

ui1,i2 −qlj+k+2zj

 

×    Y

(i1,i2)

1≤b≤N

q−µi1,i2ui1,i2 −q

−µi1,i2(k+1)−ǫbt b

ui1,i2 −q

−µi1,i2(k+2)t b

  

× 

 Y

(i1,i2)<(j1,j2)

q−µi1,i2u

i1,i2−q−µj1,j2uj1,j2 ui1,i2 −q−2uj1,j2

.

For i, let A±µ,i = {(i, j)|µi,j = ±}. The number of elements in A±µ,i is a±i and A±µ,i = {ℓ±i,1, . . . , ℓ±

i,a±i } . We seta

i =ai,A−µ,i =Aµ,i,Aµ=∪ri=1Aµ,i and

b

J(ǫ)(µ)(ν) = X

0≤mi≤ni 1≤i≤r

(−1)

r P

i1

mi(Yr

i=1

qmilk(i)q−mi(ni−1)

ni

mi )

× Z

CN 

 Y (i1,i2)

µi1,i2

dui1,i2

2πiui1,i2

 bG(ν)(ǫ)(µ)(m).

See the beginning of the next section for the notation of theq-binomial coefficient

ni

mi

.

For a given (a) = (a1, . . . , ar), 1≤ai ≤ni, we defineJb(ǫ)(a)(ν) and J(a)(ν) as follows

b

J(ǫ)(a)(ν) = X

|Aµ,i|=ai 1≤i≤r

b

(9)

J(a)(ν)= X

ǫ1,...,ǫN=±  

N Y

j=1

ǫj  

 Y

1≤a<b≤N

qǫbt

b−qǫata

tb−q−2ta   bJ(ǫ)(a)(ν) .

UsingJ(a)(ν),F(ν)(t, z) can be written as

F(ν)(t, z) = (−1)N q−q−1−2N

r Y

i=1

1 [ni]!

! N Y

b=1

t−b1

!

f(ν)(t, z)Φ(t, z)X

(a)

J(a)(ν).

Theorem1 straightforwardly follows from the following proposition.

Proposition 1. If (a)6= (n1, n2, . . . , nr), J(a)(ν)(t, z) = 0. For (a) = (n1, n2, . . . , nr) we have

J(n(ν)

1,...,nr)(t, z) = (−1)

N 1q−2N

qN(N−L)+

N(N−1) 2 −

n P

i=1 li

N

× r Y

s=1   q

r P

t=s+1 nt

ns−lk(s)ns

[ns]! nYs−1

i=0

(1−q2(lk(s)−i))

 

w(−ν)(t, z).

This proposition is proved by performing integrals in the variablesui,j in the next section.

5

Proof of Proposition

1

We set

[n]! =

n Y

i=1

[i],

n m

= [n]!

[n−m]![m]!,

for nonnegative integersn,m(n≥m). To prove Proposition1, we have to calculateJb(ǫ)(a)(ν) . We need the following lemmas.

Lemma 1. For n≥1 and n≥m≥0, we have

(i) X

A⊔B={1,2,...,n} |A|=m

   

Y

i<j i∈A,j∈B

q2

  

=qm(n−m)

n m

;

(ii) X

A⊔B={1,2,...,n} |A|=m µi=1(i∈A), µi=−1(i∈B)

 Y

i<j

qµi 

=q−n(n2−1)+m(n−1)

n m

.

Proof . By the q-binomial theorem

n Y

i=1

1 +q−n−1+2ix=

n X

i=0

n i

xi,

we have the equation

X

1≤i1<···<im≤n

q2

m P

j=1 ij

=q(n+1)m

n m

.

(10)

Lemma 2. Let n≥1, n≥m≥0 and 1≤i1 <· · ·< im≤n. Then we have X

σ∈Sn

sgnσ tσ(i1)tσ(i2)· · ·tσ(im) Y

1≤a<b≤n

(tσ(b)−q−2tσ(a))

=q−m(n+1)−

n(n−1) 2 +2

m P

j=1 ij

[m]![n−m]! em(t1, . . . , tn) Y

1≤a<b≤n

(tb−ta),

where em(t1, . . . , tn) is the m-th elementary symmetric polynomial.

Proof . Set

F(t) = X

σ∈Sn

sgnσ tσ(i1)tσ(i2)· · ·tσ(im) Y

1≤a<b≤n

(tσ(b)−q−2tσ(a)).

It is easy to see thatF(t) is an antisymmetric polynomial. So we can write

F(t) =S(t) Y

1≤a<b≤n

(tb−ta),

whereS(t) is a symmetric polynomial. MoreoverS(t) is a homogeneous polynomial of degreem

and degtiS(t) = 1 for all i∈ {1, . . . , n}. Hence we have

S(t) =cem(t)

for some constantc.

The number (−1)

m P

j=1

ij+n(n2−1)−m(m2+1)

c is equal to the coefficient of

tni1tin2−1· · ·tnim−m+1t1n−m−1tn2−m−2· · ·tn−1

inF(t).

We can show

c=q−2nm+m(m−1)+2

m P

k=1 ik

q−m(m−1) X

σ∈Sm

q2ℓ(σ)

! 

q−(n−m)(n−m−1) X

τ∈Sn−m

q2ℓ(τ)

 ,

where ℓ(σ) is the inversion number ofσ.

Using the fact P

σ∈Sm

q2ℓ(σ)=qm(m2−1)[m]!, we have the desired result.

Lemma 3. For 1≤n≤l, we have

n X

s=0

(−1)sq−s(n−1)

n s

X

σ∈Sn s Y

i=1

(z−qltσ(i)) n Y

i=s+1

z−q−ltσ(i)

 Y

1≤a<b≤n

tσ(b)−q−2tσ(a) tσ(b)−tσ(a)

= (−1)nq−ln−n(n2−1)

(n1 Y

i=0

1−q2(l−i)

)

[n]!t1t2. . . tn.

Proof . We set

Ln,s = X

σ∈Sn

sgnσ

s Y

i=1

(z−qltσ(i)) n Y

j=s+1

z−q−ltσ(j)

Y i>j

tσ(i)−q−2tσ(j) ti−tj

(11)

Ln=

Here we have used theq-binomial theorem.

For a given sequence (mi)ri=1 (0≤mi≤ni), letMi ={(i, j)|j≤mi}. Set

Lemma 4. We have

(12)

× X

1,1 is calculated by taking the residue at ∞. After this integration the integrand as a

function of u+

1,2 has a similar structure. Then the integral with respect to uℓ+1,2 is calculated by

taking residue at∞ and so on. Finally we get

(13)

Next we perform integrations with respect to the remaining variables ui,j, (i, j) ∈ Aµ in the

Proposition 2. We have

(14)

×

Proof . Using Lemma 4we have

(15)
(16)
(17)
(18)
(19)

× Y a<b

tb−ta

tb−q−2ta !

X

Γ1⊔···⊔Γr={1,...,N} |Γs|=ns(s=1,...,r)

   

Y

1≤i<j≤r a∈Γi,b∈Γj

tb−q−2ta

tb−ta    

× r Y

s=1 Y

b∈Γs 

 tb

zk(s)−qlk(s)tb k(s)Y−1

i=1

zi−q−litb

zi−qlitb 

.

This completes the proof of Proposition 1.

A

The representation

V

z(l)

Let qhi, e

i, fi (i = 0,1) and qd be the generators of Uq(slc2). (See [4] for more details.) The

actions of the generators of Uq(slc2) onVz(l) are given as follows.

For 0≤i≤l and n∈Z,

e0v(l)j ⊗zn= [l−i]v (l)

i+1⊗zn+1, e1v(l)j ⊗zn= [i]v (l) i−1⊗zn,

f0vj(l)⊗zn= [i]v (l)

i−1⊗zn−1, f1vj(l)⊗zn= [l−i]v (l) i+1⊗zn,

qh0v(l)

i ⊗zn=q−(l−2i)v (l)

i ⊗zn, qh1v (l)

i ⊗zn=ql−2iv (l) i ⊗zn,

qdvj(l)⊗zn=qnvj(l)⊗zn.

B

R

-matrix

We give examples of explicit forms of R-matrix in the case ofl1 = 1 or l2 = 1. They are taken

from [4]. If we write

R1,l2(z) v (1) ǫ ⊗vj(l2)

= X

ǫ′=0,1

vǫ(1)′ ⊗r1lǫǫ2(z)vj(l2),

Rl1,1(z) v (l1) j ⊗v(1)ǫ

= X

ǫ′=0,1

rl11 ǫ′ǫ(z)v

(l1) j ⊗v

(1) ǫ′ ,

then we have

r1l2

00(z) r1l012(z)

r1l2

10(z) r1l112(z)

= 1

q1+l2/2z−1q−l2/2

q1+h/2−z−1q−h/2 (q−q−1)z−1f qh/2

(q−q−1)eq−h/2 q1−h/2−z−1qh/2

,

rl11

00(z) rl0111(z)

rl11

10(z) rl1111(z)

= 1

zql1/2−q−1−l1/2

zqh/2q−1−h/2 (qq−1)zqh/2f

(q−q−1)q−h/2e zq−h/2q−1+h/2

,

h=h1,e=e1 andf =f1.

C

Free f ield representations

The following formulae are given in [6]. For x=a, b, c let

x(L;M, N|z:α) =−X n6=0

[Ln]xn

[M n][N n]z

−nq|n|α+ Lx˜0

M N logz+ L M NQx,

x(N|z:α) =x(L;L, N|z:α) =−X n6=0

xn

[N n]z

−nq|n|α+x˜0

N logz+

1

(20)

The normal ordering is defined by specifying N+, ˜a0, ˜b0, ˜c0 as annihilation operators, N−, Qa,

Qb,Qc as creation operators.

Define operators

J−(z) : Fr,s→Fr,s+1, S(z) : Fr,s→Fr−2,s−1, φ(l)m(z) : Fr,s→Fr+l,s+l−m,

by

J−(z) = 1 (q−q−1)z(J

+(z)−J−−(z)),

Jµ−(z) =: exp

a(µ)

q−2z;−k+ 2

2

+b 2|q(µ−1)(k+2)z;−1+c 2|q(µ−1)(k+1)−1z; 0

:,

a(µ)

q−2z;−k+ 2

2

(

q−q−1

∞ X

n=1

aµnz−µnq(2µ− k+2

2 )n+ ˜a0logq

)

,

S(z) = −1

(q−q−1)z(S+(z)−S−(z)),

Sǫ(z) =: exp

−a

k+ 2|q−2z;−k+ 2

2

−b 2|q−k−2z;−1−c 2|q−k−2+ǫz; 0

:,

φ(l)l (z) =: exp

a

l; 2, k+ 2|qkz;k+ 2 2

:,

φ(l)lr(z) = 1 [r]!

I  

r Y

j=1

duj

2πi

 "

. . .hφ(l)l (z), J−(u1) i

ql, J −(u

2)

ql−2

, . . . , J−(ur) #

ql−2r+2 ,

where

[r]! =

r Y

i=1

[i], [X, Y]q=XY −qY X,

and the integral in φ(l)lr(z) signifies to take the coefficient of (u1· · ·ur)−1.

D

List of OPE’s

The following formulae are given in [6]

φl1(z1)φl2(z2) = (q kz

1) l1l2

2(k+2)

ql1+l2+2k+6z2 z1;q

4, q2(k+2)

q−l1−l2+2k+6z2 z1;q

4, q2(k+2)

ql1−l2+2k+6z2 z1;q

4, q2(k+2)

q−l1+l2+2k+6z2 z1;q

4, q2(k+2)

∞ ×:φl1(z1)φl2(z2) :, |q

−l1−l2+2k+6z

2|<|z1|,

φl(z)Jµ−(u) =

z−qµl−k−2u

z−ql−k−2u :φl(z)J

µ(u) :, |q−l−k−2u|<|z|,

Jµ−(u)φl(z) =qµl

u−q−µl+k+2z

u−ql+k+2z :φl(z)J

µ(u) :, |q−l+k+2u|<|z|,

φl(z)Sǫ(t) =

ql tz;p q−l t

z;p

(qkz)−k+2l :φ

l(z)Sǫ(t) :, |z|>|q−lt|,

Jµ−(u)Sǫ(t) =q−µ

u−q−µ(k+1)−ǫt u−q−µ(k+2)t :J

(21)

Jµ1(u1)Jµ−2(u2) = q−µ1u

1−q−µ2u2

u1−q−2u2

:Jµ1(u1)Jµ−2(u2) :, |u1|>|q

−2u 2|,

Sǫ1(t1)Sǫ2(t2) = (q

−2t 1)

2

k+2q ǫ1t

1−qǫ2t2

t1−q−2t2

q−2t2 t1;p

q2t2 t1;p

:Sǫ1(t1)Sǫ2(t2) :, |t1|>|q

−2t 2|.

Acknowledgements

After completing the paper we know that similar results to the present paper are obtained by H. Awata, S. Odake and J. Shiraishi [12]. I would like to thank all of them for kind correspon-dences and permitting me to write the results in a single authored paper. I am also grateful to Professor H. Konno for useful comments. I would like to thank Professor A. Nakayashiki for constant encouragements.

References

[1] Abada A., Bougourzi A.H., El Gradechi M.A., Deformation of the Wakimoto construction,Modern Phys. Lett. A8(1993), 715–724,hep-th/9209009.

[2] Bougourzi A.H., Weston R.A., Matrix elements of Uq(su(2)k) vertex operators via bosonization,Internat.

J. Modern Phys. A9(1994), 4431–4447,hep-th/9305127.

[3] Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations,Comm. Math. Phys.146(1992), 1–60.

[4] Idzumi M., Tokihiro T., Iohara K., Jimbo M., Miwa T., Nakashima T., Quantum affine symmetry in vertex models,Internat. J. Modern Phys. A8(1993), 1479–1511,hep-th/9208066.

[5] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, Vol. 85, American Math. Soc., Providence, RI, 1995.

[6] Kato A., Quano Y.-H., Shiraishi J., Free boson representation ofq-vertex operators and their correlation functions,Comm. Math. Phys.157(1993), 119–137,hep-th/9209015.

[7] Konno H., Free-field representation of the quantum affine algebraUq(sl2b ) and form factors in the higher-spin

XXZ model,Nuclear Phys. B432(1994), 457–486,hep-th/9407122.

[8] Kuroki K., Nakayashiki A., Free field approach to solutions of the quantum Knizhnik–Zamolodchikov equa-tions,SIGMA4(2008), 049, 13 pages,arXiv:0802.1776.

[9] Matsuo A., Quantum algebra structure of certain Jackson integrals,Comm. Math. Phys.157(1993), 479–

498.

[10] Matsuo A., Aq-deformation of Wakimoto modules, primary fields and screening operators,Comm. Math. Phys.160(1994), 33–48,hep-th/9212040.

[11] Shiraishi J., Free boson representation of quantum affine algebra,Phys. Lett. A171(1992), 243–248.

[12] Shiraishi J., Free boson realization of quantum affine algebras, PhD thesis, University of Tokyo, 1995.

Referensi

Dokumen terkait

[r]

[r]

Berdasarkan hal tersebut terdapat beberapa hal yang dibutuhkan dalam meningkatkan kawasan Kabupaten Indramayu, yaitu dibutuhkannya media untuk menyampaikan informasi

Tujuan umum akreditasi adalah untuk mendapatkan gambaran sejauh mana pemenuhan standar yang telah ditetapkan oleh rumah sakit-rumah sakit di Indonesia, sehingga mutu

Kesimpulannya adalah pegagan mampu meningkatkan memori spasial tikus putih pascastres dan pemberian ekstrak etanol pegagan selama enam minggu memberikan efek peningkatan memori

Penelitian ini bertujuan untuk menganalisis pengaruh kitosan secara topikal terhadap penyembuhan luka bakar kimiawi pada kulit tikus putih terinduksi asam sulfat..

HSP25 plays important role in regulating osteoclast function in the compression area and osteoblast in tension area in the process alveolar bone remodeling

menggunakan ambang batas yang telah dilakukan secara online menggunakan Aplikasi SPSE di portal LPSE Kementerian Sosial RI melalui alamat Website LPSE