Surveys in Mathematics and its Applications
ISSN1842-6298 (electronic), 1843-7265 (print)
Volume4(2009), 65 – 75
PROBABILISTIC NORMS AND STATISTICAL
CONVERGENCE OF RANDOM VARIABLES
Mohamad Rafi Segi Rahmat and Bernardo Lafuerza-Guill´en
Abstract. The paper extends certain stochastic convergence of sequences ofRk-valued random
variables (namely, the convergence in probability, inLpand almost surely) to the context of E-valued random variables.
Full text
References
[1] C Alsina, B. Schweizer, and A. Sklar, On the definition of probabilis-tic normed space, Aequationes Math. 46 (1993), 91-98.Zbl 0792.46062
MR1220724(94h:46115).Zbl 0792.46062.
[2] C Alsina, B. Schweizer, and A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl.208(1997), 446-452. MR1441446(98c:46167).Zbl
0903.46075.
[3] J. Connor,The statistical and strong p-Cesaro convergence of sequences, Anal-ysis 8 (1988), 47-63.Zbl 0653.40001 MR0954458(89k:40013).Zbl 0653.40001.
[4] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
MR0048548(14,29c).Zbl 0044.33605.
[5] A. R. Freedman and J. J. Sember,Densities and Summability, Pacific J. Math. 95 (1981), 293-305.MR0632187(82m:10081).Zbl 0504.40002.
[6] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
MR0816582(875:40001).Zbl 0588.40001.
[7] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), 1187-1192. MR1181163(94e:40008). Zbl 0776.40001.
2000 Mathematics Subject Classification:40A05; 46S50; 54E70.
Keywords: probabilistic norm; random norm; statistical convergence; almost sure convergence.
2 Mohd. Rafi and B. Lafuerza-Guill´en
[8] J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), 3625-3631. MR1416085(98c:40003). Zbl
0883.40003.
[9] S. Karakus,Statistical convergence on probabilistic normed spaces, Math. Com-mun. 12(2007), 11-23. MR2420029.Zbl pre05228486.
[10] S. Karakus and K. Demirci, Statistical convergence on double sequences on probabilistic normed spaces, Int. J. Math. Math. Sci. 2007 (2007), 11 pages.
MR2320780(2008e:40012).Zbl 1147.54016.
[11] E. Kolk, The statistical convergence in Banach spaces, Tartu ¨Ul. Toimetised 928 (1991), 41-52. MR1150232(93c:40003).
[12] B. Lafuerza-Guillen, J. Lallena, and C. Sempi, Some classes of prob-abilistic normed spaces, Rend. Mat. Appl. (7), 17 (1997), 237-252.
MR1484933(99d:46103).Zbl 0904.54025.
[13] B. Lafuerza-Guillen, J. Lallena, and C. Sempi, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl. 232 (1999), 183-196.
MR1683042(2000m:46151).Zbl 0945.46056.
[14] B. Lafuerza-Guillen and C. Sempi, Probabilistic norms and conver-gence of random variables, J. Math. Anal. Appl. 280 (2003), 9-16.
MR1972188(2005a:28009).Zbl 1020.60018.
[15] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Camb. Phil. Soc.104(1988), 141-145.MR0938459(89k:40012).Zbl 0674.40008.
[16] Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231. MR2019757(2004m:40004). Zbl
1032.40001.
[17] T. ˇSal´at,On statistical convergent sequences of real numbers, Math. Slovaca30 (1980), 139-150.MR0587239(81k:40002).
[18] E. Sava¸s, On statistically convergent sequences of fuzzy numbers, Information Sciences, 137(2001), 277-282.MR1857091(2002g:03126).Zbl 0991.40001.
[19] C. Sempi,A short and partial history of probabilistic normed spaces, Mediterr. J. Math. 3(2006), 283-300.MR2242749(2007b:54052).Zbl 1121.54050.
[20] A. N. ˇSerstnev, On the notion of a random normed spaces, Dokl. Akad. nauk SSSR 149 (1963), 280-283.Zbl 0127.34902.
[21] D. A. Sibley, A metric for weak convergence of distribution functions, Rocky Mountain J. Math. 1 (1971), 427-430.
****************************************************************************** Surveys in Mathematics and its Applications4(2009), 65 – 75
Probabilistic norms and statistical convergence of random variables 3
[22] H. Steinhaus,Sur la convergence ordinaire et la convergence asymptotique, Col-log. Math. 2 (1951), 73-74.
[23] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, 1983. MR0790314(86g:54045).Zbl 0546.60010.
Mohamad Rafi Segi Rahmat Bernardo Lafuerza-Guill´en
School of Applied Mathematics, Departamento de Estad´ıstica The University of Nottingham Malaysia Campus, y Mathem´atica Aplicada, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Universidad de Almer´ıa,
Malaysia. 04120-Almer´ıa, Spain.
e-mail: [email protected] e-mail: [email protected]
****************************************************************************** Surveys in Mathematics and its Applications4(2009), 65 – 75